

Towards the era of high-energy neutrino astronomy with P-ONE and PLEnuM

Lisa Schumacher, Erlangen Centre for Astroparticle Physics
DESY-Zeuthen AP Seminar, May 03, 2024

Towards the era of high-energy neutrino astronomy with P-ONE and PLEnuM

and KM3NeT!

Or: why do we need another neutrino telescope?

Lisa Schumacher, Erlangen Centre for Astroparticle Physics

DESY-Zeuthen AP Seminar, May 03, 2024

Outline

- 1) Introduction to Neutrino Astronomy
- 2) Pacific Ocean Neutrino Experiment (P-ONE)
- 3) Planetary Neutrino Monitoring (PLEnuM)

The Cosmic Ray Puzzle

Where and how are cosmic rays accelerated? Where and how are neutrinos produced?

Why are neutrinos interesting?

- 1) Neutrinos are unambiguous tracers of hadronic processes of CRs
- 2) Neutrinos can travel cosmological distances and through dense environments without absorption or deflection
- 3) Non-zero neutrino masses already point to physics beyond the standard model
 - what else are they hiding?

Where do these neutrinos come from?

The road so far

First hint of spectral features in the diffuse astrophysical neutrino flux

https://doi.org/10.22323/1.444.1064

The road so far

Open Questions

- Are TXS056+056 and NGC1068 just the brightest sources of an entire population of similar sources? Or are they special in another way?
- Are there other source populations?
- How does CR acceleration and neutrino production work in these sources?
- Is the Galactic-Plane emission truly diffuse or are there also smallerscale sources?

Open Questions

- Are TXS056+056 and NGC1068 just the brightest sources of an entire population of similar sources? Or are they special in another way?
- Are there
- sources?
- Is the Gal scale sour

IceCube gathered data for more How does than a decade and progress based on livetime alone will slow down We need more telescopes! But how much more, exactly?

hese

maller-

Current & future neutrino telescopes

Pacific Ocean Neutrino Experiment P-ONE

https://www.pacific-neutrino.org/

The vision of P-ONE

Multi-km³ detector integrated into ONC infrastructure

P-ONE Timeline

Goals of P-ONE-1:

- Demonstrate that hardware, technical & mechanical design, deployment, data transfer, trigger... are working and scalable
- (Re-)measure optical properties over 1km depth
- Measure first atmospheric muons
- Determine background rates:
 - Bioluminescence rate & variability
 - K40 decay

First string:

20 modules with 16 PMTs each

Target: -> 2028

• 1000 m length

Integrated hemisphere

Titanium Ring + Hemisphere

https://doi.org/10.22323/1.444.1219 PoS(ICRC2023)1219

What is special about P-ONE?

- Existing infrastructure and maintanance (ONC)
- Connectorless module design
- Full waveform digitization + off-shore data reduction
 - Tau neutrino identification ("double bang")
 - Particle shower sub-structure?
- o Field of view:
 - P-ONE's latitude will be similar to KM3NeT, so on average they observe the same sky declinations
 - However: Instantaneous field of view is complementary to KM3NeT

Performance

P-ONE Demonstrator (P-ONE-10) 150 100 50 -50-100-150 -100 -5050 100 150 x [m]

https://doi.org/10.22323/1.444.1053 PoS(ICRC2023)1053

Effective Area

Muon-Neutrino directional resolution

Performance

P-ONE Demonstrator (P-ONE-10)

150

100

50

-50

-100

-150

P-ONE Preliminary

-150 -100 -50 0 50 100 150

x [m]

https://doi.org/10.22323/1.444.1053 PoS(ICRC2023)1053

Effective Area

Finding the best* geometry for P-ONE

* different physics cases -> different "best" geometries

Work by Christian Haack (ECAP)

- Idea:
 - ML-aided simulation (fast) replacing full MC-based simulation & LLH recos (slow)
- Optimization target: Resolution + Acceptance, Analysis Sensitivities
- Optimization constraints: Cost, geometric constraints (sea-bottom cabling), ...
- Goal: $\frac{\partial \text{Analysis}}{\partial \text{Detector}}$

Detector Optimization Parameters:

- Horizontal spacing of detector lines
- Number of PMTs & placement per module
- Vertical spacing of modules on a line
- Placement & number of calibration instruments
- Trigger algorithm

Optimization of Neutrino Source Search

Work by Christian Haack and LS

Inputs:

- Energy & directional resolution
- Acceptance
- Simple trigger & event selection
- Likelihood-based clustering analysis with PLEnuM software
- Determine optimum of analysis performance wrt. string spacing

Current & future neutrino telescopes

Current & future neutrino telescopes

What do we want to do?

Physics goals: How good will we be able to measure...

- Neutrino sources
- Diffuse flux
- Galactic diffuse & sources

•

Software goals:

- Open-source software for everyone
- Quickly estimate the power of (combined) analyses

https://github.com/PLEnuM-group/Plenum/tree/dev

Community goals:

- Long-term, effective cooperation between collaborations
- Make data & analyses accessible for "outsiders"

Next steps in neutrino astronomy

(a non-exhaustive list)

- Source populations (steady, transient/time-variable)?
- Energy spectrum of astrophysical neutrinos beyond power law?
- Energy spectrum of single sources and populations?
- Astrophysical neutrino sources at 1 PeV and beyond?
- O ...
- > How much data / exposure will we need to answer these questions?

Combined effective areas of PLEnuM

of 10yr muon tracks http://doi.org/DOI:10.21234/sxvs-mt83

Gen2: The Window to the Extreme Universe, arXiv:2008.04323)

Lisa Schumacher | ECAP - Erlangen Centre for Astroparticle Physics

What input is needed for PLEnuM?

$$A_{\text{eff}}(E, \vec{\Omega}) = T_{\text{Earth}}(E_{\nu}, \vec{\Omega}) \otimes P_{\nu \to \mu}(E_{\nu}, E_{\mu}, R)$$
$$\otimes \epsilon_{\text{select}}(E_{\mu}, \vec{\Omega}) \otimes A_{\text{geo}}(\vec{\Omega})$$

 $N_{\nu}(\sin(\delta_{\rm src}))$ $= T_{\rm live} \cdot \int_{E_{\rm min}}^{E_{\rm max}} dE \, A_{\rm eff} \left(E, \sin(\delta_{\rm src}) \right) \cdot \frac{d\Phi_{\rm src}}{dE}$

- Effective area: rotated from local zenith to declination for other detectors based on IceCube's effective area
- Energy resolution
- Angular resolution

Important: currently everything is based on IceCube's data release of 10yr muon tracks http://doi.org/DOI:10.21234/sxvs-mt83

Reproduce NGC 1068 fit on public data

- · · · IceCube NGC 1086 (2020)
- --- IceCube NGC 1086 (2022)
 - PLEnuM best-fit

NGC 1068 in public IceCube data analysed with PLEnuM

Publication in preparation!

Best field of view for high-energy ν_{μ}

Best field of view for high-energy ν_{μ}

Galactic center/plane

We used the integrated FOV so far, now we look at the instantaneous FOV

Instantaneous detection efficiency

Discovery potential for point sources

... as function of declination and for hard and soft spectra

Discovery potential for point sources

... as function of declination and for hard and soft spectra

Discovery potential for point sources

... as function of declination and for hard and soft spectra

Beyond the single power law – NGC 1068

Spectral models

And Kheirandish+, https://doi.org/10.3847/1538-4357/ac1c77

in progress

Beyond the single power law – NGC 1068

--- IceCube --- IC + PLE ν M-1 --- IC + IC-North --- IC + PLE ν M-2 Clear distinction of cut-off feature with $>3\sigma$ significance possible with PLEnuM!

Publication work in progress

Galactic plane

Galactic Plane in public IceCube data analysed with PLEnuM

Work in progress by Anke Mosbrugger (ECAP)
CRINGE model (Schwefer et al.):
DOI 10.3847/1538-4357/acc1e2

Detecting FSRQs as neutrino sources

https://doi.org/10.22323/1.444.0991 ICRC 2023 F. Oikonomou, LS

- 106 flat-spectrum radio quasars (incl. TXS 0506+056 as masquerading FSRQ)
- Assume a flaring duty cycle as in
 Yoshida+ https://doi.org/10.3847/1538-4357/acea74
- Spectral model: LMBB2b* for TXS
 -> scale all FSRQ fluxes relative to TXS
 based on luminosity distance or quiescent gamma-ray flux
- PLEnuM-1: reach 3σ discovery potential
- PLEnuM-2: reach 5σ discovery potential https://doi.org/10.3847/1538-4357/aad59a
 *A. Keivani+

Beyond the single power law - diffuse

- IceCube sees hints for features in the diffuse astrophysical neutrino spectrum already today!
- State-of-the-art analysis tool & simulations
- Including cascades with good energy

resolution 10TeV - 10 PeV

https://doi.org/10.22323/1.444.1064

https://doi.org/10.22323/1.395.1185 ICRC2021

- Projected significance of cut-off with **PLEnuM**
- Only muon neutrino tracks (no cascades)

Take away messages

- 1) The era of neutrino astronomy has just begun
- 2) The detectors coming online in the next decade(s) will enable discoveries over the whole sky and will push the frontier towards fainter sources
- 3) Beyond the first discoveries made by IceCube, much more neutrinos will be needed to really start digging into the characteristics of neutrino sources