# LHC Physics - Higgs



Lydia Beresford DESY Summer Student Lectures 01.08.24



### **Physics Goals of the LHC**



# Search for the Higgs Boson



### The Standard Model (SM)



Higgs-gauge boson (W,Z) interactions

See Markus Diehl's lectures for more on QCD



+h.c.

**Higgs-fermion** interactions

**Higgs-self** interactions



## The Brout-Englert-Higgs mechanism in the SM

Introduction of the presence of a scalar field into the SM leads to

- Particles acquire mass
- **Bosons:** 3 out of 4 through electroweak symmetry breaking
- **Fermions:**  $\propto$  Yukawa yij couplings
- **Prediction of the existence of a particle** • → Higgs Boson
  - Higgs Boson interacts with itself







## The situation before the LHC

#### Status 2009: SM Higgs mass above 114 GeV and NOT in range 160-170 GeV



95% CL





#### Limit plots are used if we don't see a significant signal



DOI:<u>10.22323/1.084.0229</u>

Tevatron Run II Preliminary, L=0.9-4.2 fb<sup>-1</sup>





With 95% confidence level, we can say that the real signal strength is smaller than the indicated value (calculate for each mass point separately)







#### The limit for a given model will improve by adding more data

However if a signal is there the observed limit does not improve anymore



If the observed limit is worse than the expected  $\rightarrow$  you have an excess

"better" = lower on the y-axis here



#### Higgs production cross section as a function of $M_{\mbox{\scriptsize H}}$



<u>HiggsXSBR</u>

DOI:<u>10.13140/RG.2.2.24097.02408</u>





#### Higgs production cross section as a function of $M_{\mbox{\scriptsize H}}$



<u>HiggsXSBR</u>

DOI:<u>10.13140/RG.2.2.24097.02408</u>



11

#### Higgs production cross section as a function of $M_{\mbox{\scriptsize H}}$



<u>HiggsXSBR</u>

DOI:10.13140/RG.2.2.24097.02408



12

#### Higgs production cross section as a function of $M_{\mbox{\scriptsize H}}$



<u>HiggsXSBR</u>

DOI:10.13140/RG.2.2.24097.02408





# Higgs decay modes: a little bit of everything





14

# Higgs decay modes: a little bit of everything





Quiz: can you name the Higgs "discovery channels"?



# Higgs to $\gamma\gamma$

Fairly clean signature: 2 photons & reconstruct  $m\gamma\gamma$ 

- Very good mass resolution  $\rightarrow$  Excellent channel to measure m $\gamma\gamma$
- Large but smoothly falling di-photon background













# Higgs to ZZ

### Very clean signature: 4 leptons (electrons & muons, 2 same flavour opposite sign pairs) **Channel with high S/B ratio**

Low rate due to branching fraction of ZZ and  $Z \rightarrow$  leptons -











# Higgs to ZZ

### Very clean signature: 4 leptons (electrons & muons, 2 same flavour opposite sign pairs) **Channel with high S/B ratio**

- Low rate due to branching fraction of ZZ and  $Z \rightarrow$  leptons -
- Typically one Z is on-mass shell & the trailing lepton is at low  $p_T$











# **Higgs to WW**

Final states including two leptons & two neutrinos

Higgs mass diluted by presence of neutrinos  $\rightarrow m_T$  variable is used -

Large event rate but also large bkgs from SM WW and top pair production













# **Aside: control regions**

#### Large event rate but also large bkgs from SM WW and top production

 $\rightarrow$  Control regions in data needed to estimate backgrounds

#### **Control Region (CR):**

- Little or no signal expected -
- Orthogonal to the Signal Region (SR)



Phys. Lett. B 716 (2012) 1-29











# **Discovery!**

- Strongly motivated
- Two experiments: ATLAS & CMS
- **Several channels**  $\bullet$

p-value reflects consistency of observed data with the absence of signal







#### 21



Nature 607 52-59 (2022)

Production mode Cross section (pb)

| ggH | $48.31 \pm 2.44$  |
|-----|-------------------|
| VBF | $3.771\pm0.807$   |
| WH  | $1.359\pm0.028$   |
| ZH  | $0.877\pm0.036$   |
| ttH | $0.503 \pm 0.035$ |
| bbH | $0.482\pm0.097$   |
| tH  | $0.092\pm0.008$   |

#### At m<sub>H</sub> = 125 GeV

- $gg \rightarrow H$ : main production mode
- Followed by VBF then WH



# Higgs decay modes: a little bit of everything



Nature 607 52-59 (2022)

| Decay channel  | Branching fraction (%) |
|----------------|------------------------|
| bb             | 57.63 $\pm 0.70$       |
| WW             | $22.00 \pm 0.33$       |
| gg             | $8.15 \pm 0.42$        |
| au	au          | $6.21 \pm 0.09$        |
| CC             | $2.86 \pm 0.09$        |
| ZZ             | $2.71 \pm 0.04$        |
| $\gamma\gamma$ | $0.227 \pm 0.005$      |
| $Z\gamma$      | $0.157 \pm 0.009$      |
| SS             | $0.025 \pm 0.001$      |
| μμ             | $0.0216 \pm 0.0004$    |

#### At $m_{H} = 125 \text{ GeV}$

- $H \rightarrow bb$ : main decay mode but large bkgs
- $H \rightarrow \gamma \gamma$ ,  $H \rightarrow ZZ$  and  $H \rightarrow WW$  are the "discovery channels"





## The Higgs turned 10!



#### <u>A detailed map of Higgs boson interactions by the ATLAS experiment ten years</u> after the discovery

particles.

The ATLAS Collaboration

#### A portrait of the Higgs boson by the CMS experiment ten years after the discovery

The most up-to-date combination of results on the properties of the Higgs boson is reported, which indicate that its properties are consistent with the standard model predictions, within the precision achieved to date.

The CMS Collaboration



Ten years after the discovery of the Higgs boson, the ATLAS experiment at CERN probes its kinematic properties with a significantly larger dataset from 2015–2018 and provides further insights on its interaction with other known













# Higgs to bb

#### Highest branching ratio of Higgs decays to two b-quarks

- Large SM backgrounds •
- Statistical combination of various "channels" or "regions" ullet
- Often machine learning techniques used •

#### 3 main channels targeting WH & ZH:

- 0 leptons (Z  $\rightarrow \nu \nu$ ),
- 1 lepton (W  $\rightarrow \mu\nu, e\nu$ ),
- 2 leptons (Z  $\rightarrow \mu\mu$ , *ee*)

#### See lectures by Matthias Komm for introduction to Machine Learning















#### DOI:<u>10.13140/RG.2.2.24097.02408</u>

#### Observation of the ttH process provides direct access to the top Yukawa coupling of the Higgs





# ttH: direct probe of top Yukawa coupling

- Very small production cross section: one of latest discoveries
- Large number of complex final states:
  Mixture of b-jets, leptons, taus and photons
- Many different channels: many different bkgs and different systematic uncertainties

 $\rightarrow$  Excellent way to cross check each other





# What does the SM predict for the Higgs boson?



### $\rightarrow$ SM Higgs sector is overall very predictive: Knowing the fermion masses, only free parameter is $m_{\rm H}$

https://phdcomics.com/comics.php?f=1489

Higgs-Fermion couplings  $\propto$  fermion mass Higgs-Boson couplings  $\propto$  boson mass<sup>2</sup>





### Let's test these predictions

- Measure all properties: Mass, spin, CP, couplings
- Deviations could point to physics beyond the SM
- Higgs can also play an important role in searches for new physics

https://phdcomics.com/comics.php?f=1489





### Higgs mass measurements

- Not predicted by SM
- Mass measurements in "golden channels":  $H \rightarrow \gamma \gamma$  and  $H \rightarrow ZZ$
- Optimised analyses in categories with best mass resolution (photon, electron and muon)
- **Reached 0.09% precision**

ullet





# Standard Model fits after the Higgs discovery: 2022



Knowing the Higgs boson mass has large impact on global fits (compare grey vs blue)

<u>10.1140/epjc/s10052-018-6131-3</u>

#### 31

# Higgs width

#### What is the "width" of a particle? ●

- Heisenberg uncertainty principle implies energy (i.e. also mass) of all unstable particles must have uncertainty Width is inversely proportional to lifetime
- Larger the width smaller the lifetime
- Higgs width predicted to be ~4 MeV

https://atlas.cern/Updates/Briefing/Higgs-Total-Width





# Higgs width

Two ways to access Higgs width:

- **Direct mass measurement:** Limited by experimental resolution to ~1-2 GeV ullet
- Indirect methods e.g. using off-shell signal strength (away from peak): • On-shell cross section depends on width, off-shell does not  $\rightarrow$  ratio is sensitive to width!

Latest CMS result ( $H \rightarrow ZZ$ ):  $\Gamma_{\rm H} = 3.2^{+2.4}_{-1.7} \,{\rm MeV}$ 

Nature Physics 18, 1329–1334 (2022)



https://cms.cern/news/life-higgs-boson



# Higgs width

Two ways to access Higgs width:

- **Direct mass measurement:** Limited by experimental resolution to ~1-2 GeV ullet
- Indirect methods e.g. using off-shell signal strength (away from peak): • On-shell cross section depends on width, off-shell does not  $\rightarrow$  ratio is sensitive to width!

#### Quiz: why would a Higgs width > SM prediction be exciting?

Nature Physics 18, 1329–1334 (2022)



https://cms.cern/news/life-higgs-boson



# **Higgs spin and CP**

#### Spin (SM = 0)

- **Spin 1 excluded** using ZZ, WW decays (and by H  $\rightarrow \gamma\gamma$ ) •
- Spin 2 excluded for number of different tensor structures (~99.9%)
- $\rightarrow$  Very likely spin 0 as predicted for the SM Higgs

#### Parity (SM: even)

- **Parity odd excluded** at > 99.9% (ATLAS, CMS) ullet
- Admixtures (CP even and CP odd couplings) still possible •



## Higgs couplings

#### So far all measured couplings consistent with SM



Higgs-Fermion couplings  $\propto$  fermion mass

Higgs-Boson couplings  $\propto$  boson mass<sup>2</sup>



## **Higgs couplings summary**



#### <u>Nature volume 607, 41–47 (2022)</u>

No evidence yet Probably needs future colliders



### **Undiscovered decays**

**Example**  $H \rightarrow \mu \mu$ bb



#### Challenging: small coupling, large Drell-Yan bkg

- $\rightarrow$  Categorise events by production mode  $\rightarrow$  Use of sophisticated machine learning techniques

### Achieved evidence (> $3\sigma$ )



Nature 607 52-59 (2022)

p-value reflects consistency of observed data with the absence of signal

<u>JHEP 01 (2021) 148</u>



# **Di-Higgs production**



LHC cross section plot, https://lhc-xsecs.org

- **Extremely interesting but very rare** ~1000x rarer than H
- **Enables us to test the Higgs self-coupling**
- **Deviations from SM expected in many BSM models**

Higgs-self coupling will be a key focus at the HL-LHC





# **BSM Higgs searches**

We indirectly search for BSM physics via precisely measuring the Higgs We also perform direct searches e.g.

- Flavour violating searches e.g.  $H \rightarrow e\mu$ •
- Invisible decays of Higgs bosons •
- •



### **Next lecture**



### Search for New Physics

#### 41

#### The Standard Model - fundamental particles







DESY summer student LHC physics lectures by Sarah Heim



<u>DESY summer student LHC physics lectures</u> by Sarah Heim

- -> Gauge bosons with mass -> Higgs-particle couplings terms —
- -> Higgs boson

- -> find ground state -> express in terms of ground state
- -> introduce a Higgs field, with a scalar potential
- In order to give the gauge bosons mass and keep gauge invariance
- Basically:
- the masses of the W<sup>±</sup>, Z gauge bosons and the fermions
- to generate in a gauge invariant way

Higgs mechanism:



makes use of one Higgs doublet of complex scalar fields to spontaneously break the SU(2)L  $\times$  U(1)Y symmetry

—> Higgs couplings ~ boson mass^2 Higgs couplings ~ fermion mass



# **Higgs Parity**

If coupling of Higgs boson to other particles does not change under CP  $\rightarrow$  CP-even (scalar)

If all coordinates are flipped, like left and right are flipped in a normal mirror  $\rightarrow$  Coupling is CP-odd (pseudoscalar)





# **Spin and CP**

Effect of spin on  $|\cos\theta^*|$  of the two photons







#### Run 2 production rates shown (13 TeV, ~150 fb<sup>-1</sup>)





DOI:<u>10.13140/RG.2.2.24097.02408</u>







# Higgs to $\tau\tau$

 $\tau$  leptons are complicated to reconstruct

- Various decay modes including neutrinos
- Analysis through statistical combination of variety of channels













## Higgs to $\tau\tau$

#### Large backgrounds from $Z \rightarrow \tau \tau + jets$



JHEP 08 (2022) 175







200



## **Differential Higgs measurement**



#### Enough Higgs candidates to perform **differential measurements** for variety of observables





## **Di-Higgs production**

#### **Very recent ATLAS Run 2 combination:**





 $K_{\lambda}$ Higgs-self coupling will be a key focus at the HL-LHC



### Putting it all together

#### Almost all production modes established





### Higgs mass measurements

- Not predicted by SM
- Mass measurements in "golden channels":  $H \rightarrow \gamma \gamma$  and  $H \rightarrow ZZ$
- **Optimised analyses in categories** with best mass resolution (photon, electron and muon energy response)
- **Reached 0.09% precision**

#### Phys. Lett. B 805 (2020) 135425





### $H \rightarrow WW$ control region

Owing to spin correlations in the  $WW^{(*)}$  system arising from the spin-0 nature of the SM Higgs boson and the V-A structure of the W boson decay vertex, the charged leptons tend to emerge from the primary vertex pointing in the same direction [107]. This kinematic feature is exploited for all jet multiplicities by requiring that  $|\Delta \phi_{\ell \ell}| < 1.8$ , and the dilepton invariant mass,  $m_{\ell \ell}$ , be less than 50 GeV for the 0-jet and 1-jet channels. For the 2-jet channel, the  $m_{\ell \ell}$  upper bound is increased to 80 GeV.

6.2.3. *WW control sample* The MC predictions of the *WW* background in the 0-jet and 1-jet analyses, summed over lepton flavours, are normalised using control regions defined with the same selections as for the signal region except that the  $\Delta \phi_{\ell\ell}$  requirement is removed and the upper bound on  $m_{\ell\ell}$  is replaced with a lower bound:  $m_{\ell\ell} > 80$  GeV.

