Introduction to Photon Science

Part ll: Basics of Free-Electron Lasers



FELs at DESY
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Synchrotrons vs. free-electron lasers

Synchrotrons

» Electrons traveling in a wide
circular path, emitting light
as they change directions

« Lightis UV or X-ray,
but not (fully) coherent

* Multiple users

——————

undulator

incoherent

synchrotron

free-electron laser

i

ANV~
WA=

i

coherent

Electron
bunch

photons

DESY. | Introduction to Photon Science | Sadia Bari

Free-electron lasers

» Electrons accelerated in a
straight line and manipulated
to generate light

 Light is coherent and
intensely bright in very
short pulses

» Single user
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Invention of free-electron laser

John Madey, The University of Hawai'i
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FEL was theorized by John Madey in his Ph.D. thesis, Stanford 1970:
J.M.J. Madey, J. Appl. Phys. 42, 1906 (1971)

First realization: Stanford, Electron energy: 43.5 MeV, FEL radiation: 3.4 um
D.A.G. Deacon, L.R. Elias, J.M.J. Madey, G.J. Ramian, H.A. Schwettman, T.l. Smith; Phys.
Rev. Lett. 38, 892 (1977)
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Free-electron laser (FEL) vs. conventional laser

amplification due to stimulated emission of electrons bound to atoms (crystal,
liquid dye, gas)

amplification / gain medium = ,free” (unbound) electrons, stripped from atoms
in an electron gun, accelerated to relativistic velocities and travelling through

an undulator (= periodic magnetic multipole structure) to produce intense
radiation
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Free-electron laser (FEL) vs. conventional laser
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Quantized energy levels

Pump energy initiates population
inversion

Stimulated emission

Optical resonator (cavity)

Electron energy is not quantized

"Pump energy” is the kinetic energy of the electrons

Stimulated emission

Optical cavity or single pass SASE



Free-electron laser at short wavelength

= Optical cavity does not work for wavelength A < 100nm
(low reflectivity, radiation damage)
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Self-amplified spontaneous emission — SASE FEL

Electron
bunch

Incoherent
radiation

Intensity, log(/)

_ I~ n (number of electrons)

Crystallogr. Rep. 67,5 (2022)
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Distance

Coherent
radiation

Slippage between electrons and photons is Ay
per undulator period

Electrons in phase with e.m.-wave are retarded
(“emit photons”),

electrons with opposite phase gain energy
(“absorb photons”)

-> Longitudinal charge density modulation
(“micro-bunching”) with periodicity
equal to A,

-> Self-amplification of spontaneous
emission due to increasingly coherent emission
from micro-bunches (like point charge)

| ~ Ne2 N2
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Comparison undulator radiation — X-ray FEL radiation

(simulation by Sven Reiche)

DESY. | Introduction to Photon Science | Sadia Bari

FEL

Undulator

10"

3 Photons

-~ 2-100 fs

10° Photons

100 ps

time

Page 54



Insertion devices: Wigglers and Undulators

Intensity of the emitted radiation

Np = Number of magnet poles

Ne = Number of electrons/bunch

Incoherent superposition

INNeNp

Undulator Partially coherent superposition

[~N, Ny

Free-Electron Laser Fully coherent superposition

[~ N2 N,?

Self-Amplified Spontaneous Emission (SASE)
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Self-amplified spontaneous emission — SASE
Requirement for SASE

> Good electron beam quality and sufficient overlap between electron-
beam and radiation pulse along the undulator:

low emittance, low energy spread of electron beam
extremely high charge density (kA peak currents)
precise magnetic field of undulator
accurate beam steering through undulator (few pm precision)

Electron Gun &
Linear Accelerator

Undulator

Electron Dump

FEL Radiation
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Self-amplified spontaneous emission — SASE

Emitted light, temporal distribution
For a given wavelength there is only one resonant electron energy

(continuous energy transfer)
Au ( KZ)

— 14+ —
A 2y? T2

Wavelength change by changing the electron energy or magnetic field strength

FEL process starts from noise: randomly distributed electron bunch and
spontaneous undulator radiation

7777777
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Radiation pulse is “spiky” in time (and frequency) domain

P [GW]

100 150 200 250
T [fs]
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SASE FEL properties

high intensity (GW peak power)
coherence (laser-like radiation)
femtosecond pulses!

narrow bandwidth!

full wavelength tunability!
down to X-rays!

but: shot-to-shot fluctuations (w/o seeding)

-> very good photon diagnostics are mandatory!
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X-ray free-electron lasers worldwide

European XFEL
Schenefeld + Hamburg | DE

PAL-XFEL

PAL, Pohang | KR

FLASH ! FLASHII
DESY, Hamburg | DE

SACLA

SCSS
RIKEN, Harima | JP

LCLS-II

SLAC, Menlo Park | US

SwissFEL
PSI, Villigen | CH
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Free-electron lasers Source size
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The FLASH facility

Soft X-ray
sFLASH Undulators D.Photo?
iagnostics
FLASH1 THz =190

RF Gun  Bunch Compressors
Lasers
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Injector: creating bunches of electrons
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Optical laser strikes Cs,Te
photocathode, releasing a
cloud of electrons

(1-3% quantum efficiency)

Electrons move into a
magnetic field, 11/2-cell
resonator, shaping into a
bunch

Small accelerator module
“fires” bunch into the main
electron accelerator
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Superconducting accelerator module
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\"

Accelerator module with
superconducting niobium cavities

25 MV/m routinely
Length: 12 m
Weight: about 10 tons!
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Bunch compressors

> electromagnetic chicane
(4 dipole magnets)

> longitudinal compression
of electron bunches

> ~Tmm-> 0.1 mm

RF Gun  Bunch Compressors
Lasers

5MeV 150 MeV 450 MeV 1250 MeV
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> 12 mm fixed gap — tuning with accelerator

> Intersections with quadrupole doublets for
focusing electron beam, electron beam
diagnostics and steerer coils
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Superconducting modules: bunch structure
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— Bunch charge FLASH
— RF signal (e.g. Amplitude)
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FLASH1 experimental hall — Albert-Einstein hall
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European XFEL: schematic layout

Materials Imaging

. MlD and Dynamics
messsmsmm  clectron tunnel € electron switch

High Energy

s photon tunnel @ electron bend HED pensiy science

-
— |
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Cavities, total length 1.7 km : o SCS Shectecopt g
linear accelerator SASE 2 SASE 1 SASE 3
for electrons (10.5, 14.0, 17.5 GeV) 0.05 nm - 0.4 nm 0.05 nm - 0.4 nm 0.4 nm - 4.7 nm

Supercond. Linac: up to 17.5 GeV

Undulators:
SASE1/2: 34 modules, 212 m total length
SASE 3 : 20 modules, 125 m total length

Photon energies: 0.2 — 3 — 26 keV
Average brilliance: ~102° 1/(s:-mm?mrad?-0.1%BW)

\Schenefeld

Peak brilliance: ~1033

Pulse length: <100 fs ( <1 fs)
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European XFEL

S c i e n ce at th e b ea m I i n es = clectron tunnel € electron switch e gﬂnaée[;'yarl‘zmsglng

High Energy

[ photontunnel @ electron bend HED oensty science

Optional space for
two undulators and
four instruments

i undulator 1 electron dump

Single Particles, Clusters,
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Serial Femtosecond
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linear accelerator SASE 2 SASE 1 SASE 3
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Materials imaging & dynamics: structure determination of nanodevices and
dynamics at the nanoscale

HED High energy density science: investigation of matter under extreme conditions using
hard X-ray FEL radiation, e.g. probing dense plasmas

SPB/SFX Ultrafast coherent diffraction imaging of single particles, clusters and
biomolecules: structure determination of single particles (atomic clusters,
biomolecules, virus particles, cells), serial femtosecond crystallography

3100-24800 eV

FXE Femtosecond X-ray experiments: time-resolved investigations of the dynamics of
. solids, liquids, gases

é SQS Small quantum systems: investigation of atoms, ions, molecules and clusters in
intense fields and non-linear phenomena

SCS Spectroscopy & coherent scattering: Electronic and atomic structure and dynamics
9 of nanosystems and of non-reproducible biological objects using soft X-rays

260-3100 eV
A
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