Introduction to Photon Science

Part II: Basics of Free-Electron Lasers

FELs at DESY

FLASH and European XFEL

Synchrotrons vs. free-electron lasers

Synchrotrons

- Electrons traveling in a wide circular path, emitting light as they change directions
- Light is UV or X-ray, but not (fully) coherent
- Multiple users

Free-electron lasers

- Electrons accelerated in a straight line and manipulated to generate light
- Light is coherent and intensely bright in very short pulses
- Single user

Invention of free-electron laser

Free-electron laser (FEL) vs. conventional laser

• Laser:

amplification due to stimulated emission of electrons bound to atoms (crystal, liquid dye, gas)

FEL:

amplification / gain medium = "free" (unbound) electrons, stripped from atoms in an electron gun, accelerated to relativistic velocities and travelling through an undulator (= periodic magnetic multipole structure) to produce intense radiation

Free-electron laser (FEL) vs. conventional laser

- Quantized energy levels
- Pump energy initiates population inversion
- Stimulated emission
- Optical resonator (cavity)
- Electron energy is not quantized
- "Pump energy" is the kinetic energy of the electrons
- Stimulated emission
- Optical cavity or single pass SASE

Free-electron laser at short wavelength

Optical cavity does not work for wavelength λ < 100nm (low reflectivity, radiation damage)

→ single pass SASE FEL

Self-amplified spontaneous emission – SASE FEL

Crystallogr. Rep. 67,5 (2022)

- Slippage between electrons and photons is λ_{phot} per undulator period
- Electrons in phase with e.m.-wave are retarded ("emit photons"), electrons with opposite phase gain energy ("absorb photons")
- -> Longitudinal charge density modulation ("micro-bunching") with periodicity equal to λ_{phot}
- -> Self-amplification of spontaneous emission due to increasingly coherent emission from micro-bunches (like point charge)
- $I \sim N_e^2 N_p^2$

Comparison undulator radiation – X-ray FEL radiation

Insertion devices: Wigglers and Undulators

Intensity of the emitted radiation

 N_p = Number of magnet poles

Self-amplified spontaneous emission – SASE

Requirement for SASE

- Sood electron beam quality and sufficient overlap between electronbeam and radiation pulse along the undulator:
 - Iow emittance, low energy spread of electron beam
 - extremely high charge density (kA peak currents)
 - precise magnetic field of undulator
 - accurate beam steering through undulator (few µm precision)

Self-amplified spontaneous emission – SASE

Emitted light, temporal distribution

 For a given wavelength there is only one resonant electron energy (continuous energy transfer)

$$\lambda_l = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} \right)$$

- Wavelength change by changing the electron energy or magnetic field strength
- FEL process starts from noise: randomly distributed electron bunch and spontaneous undulator radiation
- Radiation pulse is "spiky" in time (and frequency) domain

SASE FEL properties

- > high intensity (GW peak power)
- > coherence (laser-like radiation)
- > femtosecond pulses!
- > narrow bandwidth!
- > full wavelength tunability!
- > down to X-rays!
- > but: shot-to-shot fluctuations (w/o seeding)
 - -> very good photon diagnostics are mandatory!

X-ray free-electron lasers worldwide

Free-electron lasers

FLASH

The FLASH facility

DESY. | Introduction

Injector: creating bunches of electrons

- Optical laser strikes Cs₂Te photocathode, releasing a cloud of electrons (1-3% quantum efficiency)
- Electrons move into a magnetic field, 11/2-cell resonator, shaping into a bunch
- Small accelerator module
 "fires" bunch into the main electron accelerator

Superconducting accelerator module

- > Accelerator module with superconducting niobium cavities
- > 25 MV/m routinely
- > Length: 12 m
- > Weight: about 10 tons!

Bunch compressors

- electromagnetic chicane (4 dipole magnets)
- longitudinal compression > of electron bunches
- $\sim 1 \text{ mm} \rightarrow 0.1 \text{ mm}$ >

150 MeV

٢ŀ

RF Gun

Lasers

5 MeV

RF Stations

Undulators

- > 27 m undulator
- > 12 mm fixed gap \rightarrow tuning with accelerator
- Intersections with quadrupole doublets for focusing electron beam, electron beam diagnostics and steerer coils

Superconducting modules: bunch structure

FLASH1 experimental hall – Albert-Einstein hall

Supercond. Linac: up to 17.5 GeV

Undulators: SASE1/2: 34 modules, 212 m total length SASE 3 : 20 modules, 125 m total length

Photon energies: 0.2 – 3 – 26 keV Average brilliance: ~10²⁵ 1/(s·mm²·mrad²·0.1%BW)

Peak brilliance: ~10³³

Pulse length: <100 fs (< 1 fs)

European XFEL

Science at the beamlines

	Endstation	Science
3100-24800 eV	MID	Materials imaging & dynamics: structure determination of nanodevices and dynamics at the nanoscale
	HED	High energy density science: investigation of matter under extreme conditions using hard X-ray FEL radiation, e.g. probing dense plasmas
	SPB/SFX	Ultrafast coherent diffraction imaging of single particles, clusters and biomolecules: structure determination of single particles (atomic clusters, biomolecules, virus particles, cells), serial femtosecond crystallography
260-3100 eV	FXE	Femtosecond X-ray experiments: time-resolved investigations of the dynamics of solids, liquids, gases
	SQS	Small quantum systems: investigation of atoms, ions, molecules and clusters in intense fields and non-linear phenomena
	SCS	Spectroscopy & coherent scattering: Electronic and atomic structure and dynamics of nanosystems and of non-reproducible biological objects using soft X-rays