TOF Transformer - Update

R=12.0mm, T=190ps

R=10.3mm, T=179ps

Data

- Transformer trained on Bohdan's cylinder & time selection
- ★ Transformer trained here
- Optimal values
- First 10 Ecal layers
- Bohdan's algorithm on
 - RMS90: 16.99ps

Bohdan's data*:

RMS90

*see remarks

- Performance on validation dataset with 500k showers
- Transformer:
 - RMS90: (16.17+-0.02)ps
 - Mean90: (1.18+-0.02)ps
- Bohdan's algorithm on my data*:
 - RMS90: (17.27+-0.02)ps
 - Mean90: (5.41+-0.03)ps

Bohdan:

Transformer:

Transformer training on whole shower (<10 layers): currently training

- Currently using the same model for the whole shower, this (probably) has to be changed
- Model training (strongly) dependent on the loss function
- Always training on 1,000,000 showers
- Note:
 - More data = worse results bug does not appear anymore!

Total number of model parameters: 606,593

Remarks

- Yesterday:
 - discovered bug in data generation → see next slide
 - Bohdan ran his algorithm again, no (significant) changes in the results → RMS90 worse(?!) by 0.05ps
- Bohdan's data =/= my data:
 - I have a momentum cut p<10GeV
- Whole shower = cylinder cut with 999mm cylinder radius and time median cut of 999ps

The Bug

Cylinder Algorithm

- Calculate d_perp to every hit
- Remove all hits with d_perp > R
 - If no hit has d_perp <= R, select the one with smallest d_perp and remove all other hits
- Calculate: t_i d_i/c
- Calculate median of t i d i/c, i=1,...
- Remove all hits with |median corrected time t_i| > dT
- If no hit has |median corrected time t_i| > dT, select the one with smallest |median corrected time t_i| and remove all other hits