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HED —research at extremes

Laser Compression Relativistic Laser-Plasmas Pulsed Magnetic Fields
Shock & ramp compression Electron transport, Solid state physics
Instabilities and filamentation, New quantum states
Particle acceleration, Superconductivity
High EM fields

XRD, IXS, XES . :
S i > 40 T pulsed coil, 600 ps
Long-pulse ns laser Multi-100 TW fs laser detector, goniometer
Diamond Anvil Cells Isochoric X-ray excitation
Fast dynamic piezo DAC Transport properties, e
Pulsed laser heated DAC Hollow atoms, rates R e
X-ray heated DAC N 1| |reen '

X-ray spectrometers
EMP-hard X-ray detectors

XES, IXS, XRD High-purity polarimetry

18 to 25 keV Tight focusing

] | European XFEL
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X-ray probing of relativistic laser plasmas

X-ray diffraction XRD

X-ray spectrosco Ph

.y .p . by (sub-nm structure) Ase
(emission of lines, Contrast
inelastic scattering) Imaging PCI

XES, IXS (~um structure)

Small Angle
........... X-ray Scattering
(SAXS CDI)

I B 0 European XFEL Phys. Plasmas 21, 033110 (2014)
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With an Optique Peter X-ray microscope system
we can achieve high imaging resolutions
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Three objectives with different Detector used is Andor ZYLA.

maghnification (2X, 7.5X, 20X).
200nm was measured with monochromatic beam and

Most commonly used is 7.5X which has a CRL4b.

good compromise with FOV.
The focus with other lens configurations can also be

L J | European XFEL
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HED 2621/ USER COMMUNITY ASSISTED COMMISSIONING OF THE UHI LASER AT HED,
IMPACT OF RELATIVISTIC PLASMA ENVIRONMENT ON X-RAY DIAGNOSTICS PI: TONCIAN

W X-ray emission spectroscopy in Cu
¥ Hole boring in a 10 um Cu wire foils
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Demonstration of simultaneous SAXS and PCI:
fs-dynamics with both nm- and pym-scale resolution
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COMBINATION OF XES, SAXS AND IMAGING TO ACCESS MULTI-SCALE PHYSICS

SAXS probing pre-plasma expansion in 10 um Cu wires before the arrival of ReLaX main pulse
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Imaging probing of laser driven shock and target expansion
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HED 4597/ WIRE IMPLOSION DRIVEN VIA SURFACE RETURN CURRENTS

See platform poster

B Now offered as ReLaX standard configuration 2 Cu 25 ym wire shock imaging

Cylindrical shock wave

A. Laso Garcia et al., arXiv:2402.06983
L. Yang et al., arXiv:2309.10626

L J | European XFEL
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HED 5689-HIBEF PA - GENERATION OF EXTREME PRESSURE Uﬂigggggﬁ HED HIBEF
STATES WITH CYLINDRICAL IMPLODING WIRES Universitat (%8 @ e
Rostock S XFEL sz:xsswﬂsoézﬁm%“sp

Reconfirmation and extension of HED 4597 “Cylindrical compression
of thin wires by irradiation of a Joule class short pulse laser*
demonstrating compression of Cu 10, 15, 25 ym and Al, C, PP, Fe, W

Cu 25 pm wire

2x magnification 7.5x magnification
700 ps

Expected implosion time for all materials
predicted correctly by simulations

Implosion time at reference point (44um to laser focus)
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Shock Experiments

Nanosecond high-energy lasers are used in multiple domains to
generate extrem pressure states, high deformation rates and
velocity outflows, relevant for

B Equation of State of materials

BE Hypervelocity impacts (e.g. debris protection)

B8 Material science: plastic deformation, failure, spallation

Access of micro- to meso-structural data requires brilliant x-ray
sources -> Combine such laser with X-FELs

DiPOLE 100X enabels high number of data set due to it's high
repetition rate

L J | European XFEL
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Direct laser compression platform for
diffraction

M Dedicated setup for diffraction with large area x-ray
detector.

M Variable geometry for shock propagation vs. X-ray
direction

B F/5 focussing optic, phase plates for 500, 250 and 100
mum focal spot available

M No noise on the detector due to laser plasma interaction

I — =
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Time (ns)
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Shock platform capabilities

140 m Polyimide Pressure (VISAR) 500 ym PP LT -7
B Polyimide P re (Cu Diffraction) 500 yum PP -
. o Polyimide Pressure (Cu Diffraction) 250 ym PP e
VISAR system to get indepentdent pressure = Il
information for spatial and temporal evolution S 100 I
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European XFEL

5 ns square pulse
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Target energy DIPOLE (30,0 0.0 J 1536 mm)
Tableindex |21 Write table settings 1EER tjm!ng D ogL-10.00 . M
TargettimingArm1 0.0 0.0 mm | Gotoslot[ gop _mm] 589119905 Ns
Next setting TargettimingArm2 0.0 0.0 |mm | Gotoslot [ 000 mm| 589119924 ns
. Targettiming Arm3  |5.0 0.0 _mm | Gotoslot[ gop mm] 58,912.003.7 NS
Update line Timing SOP 0.0 0.1 mm | Gotoslot] 939 mm 58912,0066 NS
Timing VISAR laser 0.0 0.0 mm | Goto slot 589109437 ns
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High-rep rate target delivery

Low cross-section experiments require large shot
numbers (100...1000)

Important bottleneck (amongst other): sample delivery

First test during first user experiment: 1 Hz on a 10 cm
stripe

Tape target run for 10 minutes @ 1 Hz: VISAR data
stable, no x-ray data

R&D project for next steps: integration, debris Breakout reproducibility:
management, alignement verification 500 { 15t shot
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Strategic milestone towards high repetition rate laser-driven
shock compression targets using DIPOLE
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Typical VISAR signal
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3 m of aluminized Kapton tape target moved at 15 mm/s
DiPOLE fired at 1 Hz, full power (~37 J@2w)
VISAR diagnostics at 0.5 Hz

White light interferometry diagnostics shows focus
reproducibility within 5 um

600 shots in 10 min

Rewinding the shot Kapton tape target — device built by STFC




Gas inlets

Debris free sample delivery

)

LY ! e LHe outlet
I High precision jet alignment (~1 micron)
I In-operation sample frame configuration

I Rotation of the full plattform by +/- 45 deg

/4
Liquid Helium
flow cryostat

Liquid H2 sheet



Achieving high repetition rate via large nozzle— UIf Zastrau, European XFEL, 11-12 June 2024 15
interaction separation is not the best option...
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Chopper performance characterization with Methane jet

BE Chop sequence B Chop series at 1Hz B Chop series at 10Hz

Chopper blade

Jet vel
~50m/s

Nozzle distance ~1.5 mm

200pm
—

L J | European XFEL
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X-ray single-pulse heating at HED-HIBEF

HED-HIiBEF Instrument Review, March 7*" 2024 HED-HIBEF Instrument Review, March 7*" 2024

Resolving the re-binding of valence states in
isochorically heated zinc via resonant
inelastic x-ray scattering

European

XFEL e

Schwinkendorf”, M Makita?, T Preston?, U Zastrau?, F Seiboth’, E Galtier’, G Dyer’. P Heimann®, R Alonso Mori, T Hatcher®, D

Spectroscopy of x-ray heated mid-Z materials | European
XFEL

2, B Nagier’. S Vinko*, O Kambach', J Wark!. R Royle*. S Ren*, YF Shi*, R FalconeS. HK ChungF. JP

Khaghani?, HJ Lee?
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_[ = - _.:,_ relevant 1o ICF and astrophysics 1] . akow us o map to ponse, which can be.
- s111 ,mm,' cu 4 W 15d-Z solid targets can be isochorically heated usig XFEL beams. Electrons are then compared with single-temperature models.
X1o1 MZ M3 ponochromator Poskion hod '* hector] 5t K-shell, L 3 2l =
Shutter| |Attenuator peomicd incerd Bench - P Fe show desag dicted Ka Torsmesin (4| (1op) Attenuation scan
by Hartree-Fock codes [3) | -~ on Ma foil targets.
A 3 i 7 - - o ) n
and » 7 f v {leR) Simutated emissicn * (bottom) Emission
s, P gaskn| z "\ Lee et al ‘energies of different atomic 3 [\ SCH sateliites = spectra of various
o deerion o rporaesand izabon -— .+ | tansitons produced for the - elements for the
e e s g 3 e i of B . 3 L\ —— | B [\ e [
4 - R g 0 O . | Highlighted are experimental A target, averaged over
- - 10 few-shot J BINE e 2 | measurements of Fe IN CH satellites 100 shots.
of ransient plasima states - Sl —— —— f
® XFELs are able to mochoncally heat large sample volumes to v . - 0 H = e e~ +—* | (below)Diagram of the HED- o Al
uniform conditions due 10 thewr large penetration depth e 2 L ?“" ® 5 & - . - 2738 expenmental setup.
ot o - . . . Primary dragnostics are the
= Target density does not to evolve from solid densiy in Results 1 pp— { {Fimmy deomoich e b
e e lengh o Come e
= ™ Specira could be deconvoived 10 yield a measured vacant density of states a3 & ot G B & % vonHamos specirometers, and 3
- function of energy on target, without refying on forward modelling LiF flat crystal spectrometer.
from LTE, vatence electronic states rapxly collisona
el e R . Deconvolution of SASE was performed via L-curve reguianzation
thermalize /
- o w | o
W An intial x-ray only RIXS expenment at MEC demonstrated e Lo 73 qf“‘mi-\
the abiiy 1o resolve partiaf ionizations B Energy shi of 3p states, a5 well a5 rebinding of 3d & 4p clectrons was measured TR % o Co \
v s \
W This expenment achweve effective temperature 6 oV — 15 eV 8 Data were compared with DF T simulations, and shown 1o correspond well with the: o S "
simensionalty of electronic orbitals. Nl —-+{PD (ransmssion)
= Alhigher temperatures. & plasma o ot ek . LU hransmesin).
the picture - "9 pes ¥ the range of temperatures. = \ a—
\ Transition metal SPe -~ b
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= Details of the rebnding of electronic states to the alom in this regme are dificutto oc by S sspmiimnt b X A «o\ targets (V, Cr, Mn. ) 210N Counting] ] Z
model, and inferesting to benchmark B Further studies wih seeded XFEL and drven samples promises 1o reveal sincture of )
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dagnosic in drven s “
e W .
3 - Experiment (HED-2738) Fracoy o)
9510 eV | 9510 eV 3 i l | | = Sold !am(—vs inthe range 2 = 30 (2n) were heated with a nano-focused = The high gradient free, ally targets, using the XFEL 35
H ! | (FEL beam tuned above the relevant K-edge with an intensiy >10°* Wicm* a drives, p
§ B i o i St i il Gas e o T i = Specracante compared withdetaded atormc level calcudaons using 8 ale equBtion
- F B | of energes on Larget ——— plasma scre
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iw H q o spectrato
H H | be recorded with excellent signalinose
H 3 ! o Future work
4 ‘e o Discem fine energy level shifts due to M-shell screening according to temperature.
3
* ] N Forward HAPG spectrometer analysis = Achseved via mapping spectra infegrated over the focal spot distribubon to the single

9560 eV 4, 5 9560 eV

Experiment

10 W/ em) Zn fods 100 oV temperatures.
B Incident x-ray photon energy was just below the K-edge

W RIXS spectra were recorded at and below the Zn Ka

W 40,000 spectra were collected for a detailed study of the response of valence states

N N 0 ENLIGHTENING SCIENCE
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X-ray single pulse heating at HED-HIBEF
I

Controlling non-thermal electron populations
in dense plasmas with the European XFEL

Plasma screening observed by highly resolved 2=y
K-shell transitions partfagliogo
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7~ (Mativation=Exoticstates of matter = Experiment (Feb 2022) Measured spectra
X-Ray Free Electron Lasers (XFEL's) have emerged as an all new way to create plasmas. Not only does the sh welength radiation provide unp T - X Anstua Jeh

uniformity in heating solid samples, but also cres

es signatures of the plasma state itself, through the fluorescence spectrum. Furthermore , the tunab
XFEL photon energy allows the user to create a tailored electron distribution through photo-ion

n. In this work, we profit from this unique Lightsource by
driving solids into the plasma state with distinct photon energies and hence photoelectron energies and observe the relaxation signatures. This work helps us to

\___ understand the previously not accessible timescales of electron relaxation in dense plasmas used in fusion energy and exist inside super earths Y,
g~ XFEL driven plasma /— Non thermal distribution
* XFEL's can heat any solid to a high energy density plasma on For modelling, the multitude of atomic processes induced by the XFEL must be

the femtosecond timescale. X-ray photons are absorbed by accounted for. We include these process in a new code called BigBart [1]

photo-jonisation, creating hot electrons and holes 1] Aberto G. de I Varga et ol., High Energy Density Physics, 9, 3, 2013), 542:547,
~Tke!

Kesell Pl

 L-shell 4 ) Auger + Mesell PI we e

fomsalmn et Ka Auger (Double) Pgwre:2: Non-thermal ‘elactron This single-beam, x-ray only experiment have used the CRL4 to focus the The spectra for given irradiation (110 kJ/cm2) for various XFEL photon energies shows:
Al K ::lﬂ:b; le»dvn: G beam down to ~0.4 pm focal spot, therefore rradiating with more then 100 * Elastic scattering -> used to infer plasma temperature.
o sell P = Grich Klem2, That is enough to heat the 3 pm thick Cu foil target to few hundred eV. . > enable emitt
R Lasl AN pumped by 25 fs pulse, with 5.2 Three x-ray spectrometers were observing emission from Ka til KB including Resmices’> (il procios Kionicatiort of o inyg Kl
| N keV photon energy and 10% e . The XFEL 8900 Absnrmon edges (white bars) -> convoluted by the resonances
il Wiem2 intensity. XFEL pulse is and 9900 eV’ in 25 eV steps, high quality focus was found for ay edge > allows for highly precise line measurement as a function of irradiance.
T et repessontad sbove the time ng. Several ‘acquired for
5 asis, Arrows highlight the main energy with variable bearm enesgy. The right-hand side subplots show fitted intensity and position plots of the Ka L6 ransition. We
5 contributions 1o the non- can see two intensity peaks where the emission is driven either by KB or by hollow KB, and a
s thermal tall formation vie Transition lines clear shift of the emission energy in those peaks, showing various M-shell occupancies probed.

Photoionization (P1) and Auger

This figure Bustrates the
resonant processes. The Plasma screening as a Plasma screenlng as a function of chrage state
material s drvene.g. viaKp | g of

transition in particular L and M i

shell occupancy, and Kafrom | | iseremiimess | osssrmi

Figure 1: XFEL
the XFEL pulse, giving # snapshot of s highly exotic state.

\ N J
N

identiied with their
mmmmwmacw:zwalmnlmmm as
afunction of charge state. It roughly resembles the predicted trend by
Stewart-Pyatt model, m|s:|eanysumgmnucases as shown in
previous experiments

7~ Experiments

The Ka fines in this figure are
« Experiments were carried out at the European XFEL, where @ the charge
state and L-shell occupancy
ofthe emaing oos, The
charge state

ac

heated Copper, Iron and Titanium to hundreds of thousand of degrees Kelvin with pulses of only 25
femtoseconds. Spectra from the k-alpha to k-beta were recorded to observe signatures of electron collisions and relaxation.

mision, b wam eschved
thanks o slecive pumping
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Conclusi What's next?
The effects of non thermal electron population when heating solid with X-ray + Comparison with experimental result in search for non-thermal
radiation have been studied. Clear signatures of non-thermal electron populations fingerprints.
were recorded experimentally. We are currently developing a code to account for all « Parameter scan across several interesting materials for new experiments
the non thermal processes, and the data obtained will constrain the relaxation rates design
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Towards higher pressures: Laser upgrade

W Laser energy presently limits pressure range,
compression times and sample dimensions

B0 In particular ion-electron demixing (1-2 TPa
range) and off-Hugoniot compression would
profit of multi-KJ at XFEL, Lab-Astro requires
multi-beam setups

B THRILL: EU project (Horizon-infra 2022,
4 year project, 10 M€ budget)

® Development of a laser amplifier with more than
1 kJ pulse energy with repetition rate of
~1 shot/minute (presently ~1 shot/h)

I Cooled amplifier techniques, beam transport,
optics developement, ...
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A multi kJ laser would open new domain of physics and

keep XFEL competitive
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Fusion related research

Fusion research gains new public interest
after NIF results and foundation of start-up
companies

Present installations (DIPOLE and RELAX)
can study related fundamental physics
EOS for early stage ablabtion processes ...
entrance

Hydrodynamic instabilities hole
Interaction physics for fast/shock ignition  oyer cone

beams

Further studies would require multi-kJ system veams
possibly multi-beamline system — XFEL could
offer unique diagnostic capabilities
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Future Inertial Fusion Energy (IFE) research at HED-HIBEF

High-repetition rate (10 Hz) high-energy laser experiments (main collaboration with UKRI-STFC /
University of Oxford) - technology required for an IFE power plant (which needs to run at ~10 Hz)

IFE science using optical lasers and XFEL probing:

Study of ablators: Equation of state of ablator materials at a few Mbar

(i.e., comparable to the initial shock in common ICF implosion designs);

evolution of micro- and nanoscale scale heterogeneities

with high resolution phase contrast imaging and small angle scattering.

Laser-plasma interaction: Intense laser-matter interaction and energy transport

relevant to shock ignition (~1016 W/cm?) & fast ignition (>1018 W/cm?);

test low-compression approaches to fusion energy; investigate converging shocks or miniature implosions
triggered by the ReLaX laser.

Hydrodynamic instabilities: Apply phase contrast imaging capabilities together

with spectroscopy probing of plasma conditions.

Relevant conditions with multi-beam geometry: High energy shock with DIPOLE laser to create highly
compressed state then hit by high-intensity RELAX laser; XFEL diagnostics allows to study properties of
hot dense matter (ionization, opacity, conductivities, ..) with unprecedented accuracy.

Future upgrade to kJ drive laser energies planned (HIBEF 2.0)
- Create conditions that are even more relevant to IFE

Capabilities of HIBEF at EuXFEL are currently superior to the LCLS in the US where a strong IFE
program has already been initiated.
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