

SPACE ANTENNA

Stray Light challenges in LISA Interferometry Sources, Dynamics, & Mitigation Strategies

Katharina-Sophie Isleif / Helmut Schmidt University

Particle Physics Pizza Seminar DESY, 13.05.2024

Pptical Metrology for Gravitational and Astroparticle Physics

http://gwplotter.com 4

Laser Interferometer Space Antenna

Earth

 $= \frac{10 \,\mathrm{pm}}{2.5 \cdot 10^9 \,\mathrm{m}} \approx 10^{-21}$

1AU = 150 mio km

TO MIO KIII

Venus

Sun

JProf'in Katharina-Sophie Isleif

102

 ΔL

h_{GW}

Heterodyne Interferometry

Heterodyne Interferometry

Fiber non-reciprocal measurements

JProf'in Katharina-Sophie Isleif

Fiber non-reciprocal measurements

JProf'in Katharina-Sophie Isleif

Fleddermann, R., et. Al (2018). Sub-pm non-reciprocal noise in the LISA backlink fiber. Classical and Quantum Gravity, 35(7), 075007.

Heterodyne phase readout...

$$u_{ac} \propto \hat{E}_1 \hat{E}_2 \eta \cos(\Delta \omega t + \varphi)$$

$$I = u_{ac} \cdot \cos([\omega_2 - \omega_1]t) = \hat{E}_1 \hat{E}_2 \cdot \cos\varphi$$
$$Q = u_{ac} \cdot \sin([\omega_2 - \omega_1]t) = \hat{E}_1 \hat{E}_2 \cdot \sin\varphi$$

JProf'in Katharina-Sophie Isleif

$$u_{ac} \propto \hat{E}_1 \hat{E}_2 \eta \cos(\Delta \omega t + \varphi)$$

$$I = u_{ac} \cdot \cos([\omega_2 - \omega_1]t) = \hat{E}_1 \hat{E}_2 \cdot \cos\varphi$$
$$Q = u_{ac} \cdot \sin([\omega_2 - \omega_1]t) = \hat{E}_1 \hat{E}_2 \cdot \sin\varphi$$

JProf'in Katharina-Sophie Isleif

$$u_{ac} \propto \sqrt{1 - r} \hat{E}_1 \hat{E}_2 \eta \cos(\Delta \omega t + \varphi)$$

$$+\sqrt{r}\hat{E}_{1}\hat{E}_{2}\eta_{p}\cos(\Delta\omega t+\varphi-\varphi_{p})$$

$$I_{p}^{\pm} = \pm \sqrt{1 - r} \hat{E}_{1} \hat{E}_{2} \cdot \cos \varphi + \sqrt{r} \hat{E}_{1} \hat{E}_{2} \cos(\varphi - \varphi)$$
$$Q_{p}^{\pm} = \pm \sqrt{1 - r} \hat{E}_{1} \hat{E}_{2} \cdot \sin \varphi + \sqrt{r} \hat{E}_{1} \hat{E}_{2} \sin(\varphi - \varphi)$$

JProf'in Katharina-Sophie Isleif

... with parasitic beams (interferometers)

It picks up additional phase noise by reflecting at

noise that can up-convert to higher frequencies

Legend:

- nominal
- ▶ stray light

 $\varphi = \arctan$

Phase error due to parasitic beams

$$\tilde{\varphi}^{\pm} = \arctan\left(\frac{Q}{I}\right) = \frac{\pm\sqrt{r}\sin\varphi_{p}}{\pm\sqrt{1-r} + \sqrt{r}\cos^{2}\varphi_{p}}$$

JProf'in Katharina-Sophie Isleif

Coupling of parasitic beams

JProf'in Katharina-Sophie Isleif

Sources of parasitic beams

Isleif (2018) https://doi.org/10.15488/3526

Sources of parasitic beams

Isleif (2018) https://doi.org/10.15488/3526

Dynamics & power of parasitic beams

 $r \approx 0.1 \%$

102

Ghost beams

Isleif (2018) https://doi.org/10.15488/3526

Phase measurement in LISA

102

 φ_p

Paper in preparation

102

 φ_p

Paper in preparation

102

 φ_p

Fiber backscatter: $r \approx 4 \text{ ppm/m}$

102

11th International LISA Symposium **IOP** Publishing IOP Conf. Series: Journal of Physics: Conf. Series 840 (2017) 012016 doi:10.1088/1742-6596/840/1/012016

Suppressing ghost beams: Backlink options for LISA

K-S Isleif¹, O Gerberding², D Penkert², E Fitzsimons³, H Ward⁴, D Robertson⁴, J Livas⁵, G Mueller⁶, J Reiche², G Heinzel² and K **Danzmann**^{1,2}

¹ Leibniz Universität Hannover, Institute for Gravitational Physics, Callinstr. 38, 30167 Hannover, Germany

² Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Callinstr. 38, 30167 Hannover, Germany

³ UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ

⁴ University of Glasgow, R460 Level 4, IGR Physics & Astronomy, Kelvin Building, University Avenue Glasgow G12 8QQ

⁵ NASA's Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771, USA

⁶ University of Florida, Department of Physics, Gainesville, Florida 32611, USA

Eliminate origin spurious beams $(P \rightarrow 0 W)$

- By optical design (not entering diodes)
 - Block ghost beams: baffles
 - Avoid 0° surfaces (use wedged 2ndary surface)

Reduce power of spurious beams $(P \rightarrow nW - pW)$

- Clean surfaces to avoid scattering
- Good Coatings (AR, polarization, ...)
- Attenuation stages (reduce r, polarization, ...) **Reduce dynamics** ($\varphi_p \rightarrow 0 \text{ rad}$)
- Stable interferometer (e.g. quasi-monolithic)
- Fiber length stabilization / OPL
- Stabilize environment (temperature, air, ...) Auxiliary sensing
- Balanced detection
- Coherent noise cancellation

Distinguish ghost beams from main interferometer

- Frequency-shifted, AOM
- Polarization/Faraday Isolator
- Digitally-enhanced interferometry: destroy coherence

Isleif et. al (2017) doi:10.1088/1742-6596/840/1/012016

to interferometer

JProf'in Katharina-Sophie Isleif

Eliminate origin spurious beams $(P \rightarrow 0 W)$

- By optical design (not entering diodes)
 - Block ghost beams: baffles
 - Avoid 0° surfaces (use wedged 2ndary surface)

Reduce power of spurious beams $(P \rightarrow nW - pW)$

- Clean surfaces to avoid scattering
- Good Coatings (AR, polarization, ...)
- Attenuation stages (reduce r, polarization, ...)
- **Reduce dynamics** ($\varphi_p \rightarrow 0 \text{ rad}$)
 - Stable interferometer (e.g. quasi-monolithic)
 - Fiber length stabilization / OPL
 - Stabilize environment (temperature, air, ...) Auxiliary sensing
 - Balanced detection
 - Coherent noise cancellation

Distinguish ghost beams from main interferometer

- Frequency-shifted, AOM
- Polarization/Faraday Isolator
- Digitally-enhanced interferometry: destroy coherence

Isleif et. al (2017) doi:10.1088/1742-6596/840/1/012016

to interferometer

$$\tilde{\varphi} \approx \sqrt{\frac{P_{p,1}}{P_1}} \sin(\varphi_p)$$

JProf'in Katharina-Sophie Isleif

Eliminate origin spurious beams $(P \rightarrow 0 W)$

- By optical design (not entering diodes)
 - Block ghost beams: baffles
 - Avoid 0° surfaces (use wedged 2ndary surface)

Reduce power of spurious beams $(P \rightarrow nW - pW)$

- Clean surfaces to avoid scattering
- Good Coatings (AR, polarization, ...)
- Attenuation stages (reduce r, polarization, ...)
- **Reduce dynamics** ($\varphi_p \rightarrow 0 \text{ rad}$)
 - Stable interferometer (e.g. quasi-monolithic)
 - Fiber length stabilization / OPL
 - Stabilize environment (temperature, air, ...) Auxiliary sensing
 - Balanced detection
 - Coherent noise cancellation

Distinguish ghost beams from main interferometer

- Frequency-shifted, AOM
- Polarization/Faraday Isolator
- Digitally-enhanced interferometry: destroy coherence

Isleif et. al (2017) doi:10.1088/1742-6596/840/1/012016

Laser 2 from fiber backlink

JProf'in Katharina-Sophie Isleif

Eliminate origin spurious beams $(P \rightarrow 0 W)$

- By optical design (not entering diodes)
 - Block ghost beams: baffles
 - Avoid 0° surfaces (use wedged 2ndary surface)

Reduce power of spurious beams $(P \rightarrow nW - pW)$

- Clean surfaces to avoid scattering
- Good Coatings (AR, polarization, ...)
- Attenuation stages (reduce r, polarization, ...)
- **Reduce dynamics** ($\varphi_p \rightarrow 0 \text{ rad}$)
 - Stable interferometer (e.g. quasi-monolithic)
 - Fiber length stabilization / OPL
- Stabilize environment (temperature, air, ...) Auxiliary sensing
- Balanced detection
- Coherent noise cancellation

Distinguish ghost beams from main interferometer

- Frequency-shifted, AOM
- Polarization/Faraday Isolator
- Digitally-enhanced interferometry: destroy coherence

Isleif et. al (2017) doi:10.1088/1742-6596/840/1/012016

to interferometer

10x suppression (2 photodiodes required per intereferometer)

JProf'in Katharina-Sophie Isleif

Eliminate origin spurious beams $(P \rightarrow 0 W)$

- By optical design (not entering diodes)
 - Block ghost beams: baffles
 - Avoid 0° surfaces (use wedged 2ndary surface)

Reduce power of spurious beams $(P \rightarrow nW - pW)$

- Clean surfaces to avoid scattering
- Good Coatings (AR, polarization, ...)
- Attenuation stages (reduce r, polarization, ...)

Reduce dynamics ($\varphi_p \rightarrow 0 \text{ rad}$)

- Stable interferometer (e.g. quasi-monolithic)
- Fiber length stabilization / OPL
- Stabilize environment (temperature, air, ...) Auxiliary sensing
- **Balanced detection**
- Coherent noise cancellation

Distinguish ghost beams from main interferometer

- Frequency-shifted, AOM
- Polarization/Faraday Isolator
- Digitally-enhanced interferometry: destroy coherence

Isleif et. al (2017) doi:10.1088/1742-6596/840/1/012016

Balanced detection

JProf'in Katharina-Sophie Isleif

Fiber non-reciprocal measurements

JProf'in Katharina-Sophie Isleif

Fleddermann, R., et. Al (2018). Sub-pm non-reciprocal noise in the LISA backlink fiber. Classical and Quantum Gravity, 35(7), 075007.

Attenuation stage

JProf'in Katharina-Sophie Isleif

Hennig, J, Master thesis 2013, Mitigation of stray light effects in the LISA Backlink

JProf'in Katharina-Sophie Isleif

Attenuation stage

JProf'in Katharina-Sophie Isleif

102

Attenuation stage

Simulations with attenuation stage

No attenuation (A=1)

JProf'in Katharina-Sophie Isleif

Attenuation A = 0.0025

LISA interferometers

• Parasitic beams (from fiber backlink) contaminating all LISA interferometers

Simulations for:

- Different dynamics
- With and without balanced detection
- With and without attenuation stage

JProf'in Katharina-Sophie Isleif

High dynamics

Medium

Low

Parasitic beams do not contaminate other LISA interferometers, they oscillator at different beat note

JProf'in Katharina-Sophie Isleif

Eliminate origin spurious beams $(P \rightarrow 0 W)$

- By optical design (not entering diodes)
 - Block ghost beams: baffles
 - Avoid 0° surfaces (use wedged 2ndary surface)

Reduce power of spurious beams $(P \rightarrow nW - pW)$

- Clean surfaces to avoid scattering
- Good Coatings (AR, polarization, ...)
- Attenuation stages (reduce r, polarization, ...) **Reduce dynamics** ($\varphi_p \rightarrow 0 \text{ rad}$)
- Stable interferometer (e.g. quasi-monolithic)
- Fiber length stabilization / OPL
- Stabilize environment (temperature, air, ...) Auxiliary sensing
- Balanced detection
- Coherent noise cancellation

Distinguish ghost beams from main interferometer

- Frequency-shifted: two additional lasers per bench
- Polarization/Faraday Isolator
- Digitally-enhanced interferometry: destroy coherence

Isleif et. al (2017) doi:10.1088/1742-6596/840/1/012016

Three-Backlink Interferometer

JProf'in Katharina-Sophie Isleif

Three-Backlink Interferometer

JProf'in Katharina-Sophie Isleif

bd13

bd1

Three-Backlink Interferometer

JProf'in Katharina-Sophie Isleif

JProf'in Katharina-Sophie Isleif

Bischof (2023) https://doi.org/10.15488/3526

Three Backlink

JProf'in Katharina-Sophie Isleif

Today: 1-3pm after balanced detection (unpublished)

Bischof (2023) https://doi.org/10.15488/13195

JProf'in Katharina-Sophie Isleif

Eliminate origin spurious beams $(P \rightarrow 0 W)$

- By optical design (not entering diodes)
 - Block ghost beams: baffles
 - Avoid 0° surfaces (use wedged 2ndary surface)

Reduce power of spurious beams $(P \rightarrow nW - pW)$

- Clean surfaces to avoid scattering
- Good Coatings (AR, polarization, ...)
- Attenuation stages (reduce r, polarization, ...)

Reduce dynamics ($\varphi_p \rightarrow 0 \text{ rad}$)

- Stable interferometer (e.g. quasi-monolithic)
- Fiber length stabilization / OPL
- Stabilize environment (temperature, air, ...)

Auxiliary sensing

- Balanced detection
- Coherent noise cancellation

Distinguish ghost beams from main interferometer

- Frequency-shifted: two additional lasers per bench
- Polarization/Faraday Isolator
- Digitally-enhanced interferometry: destroy coherence

D. Voigt et al., Applied Physics Letters, 123(2) 2023 https://doi.org/10.1063/5.0176639

JProf'in Katharina-Sophie Isleif

Tunable coherence for scattered light suppression

- Combines multiplexing with continuous wave interferometry
- **Pseudo-random noise (PRN) timestamps** are imprinted onto the laser phase:

Digital **demodulation** recovers signal if delay is matched:

correct delay			\mathbb{N}	\mathbb{N}	\mathbb{V}	\mathcal{M}	Signal
		F					

sequences with strong autocorrelation properties allows isolation of signals based on time-of-flight:

GHz phase modulations => cm scale coherence

D. Voigt et al., Applied Physics Letters, 123(2) 2023 https://doi.org/10.1063/5.0176639

JProf'in Katharina-Sophie Isleif

Tunable coherence for scattered light suppression

GHz phase modulations => cm scale coherence

D. Voigt et al., Applied Physics Letters, 123(2) 2023 https://doi.org/10.1063/5.0176639

Simulations

- Tunable coherence
- Simulation of scattered light in a Michelson interferometer
- Credit: Oliver Gerberding

D. Voigt et al., Applied Physics Letters, 123(2) 2023 https://doi.org/10.1063/5.0176639

Tunable coherence for scattered light suppression

Credit: Oliver Gerberding, University Hamburg

Tunable coherence for scattered light suppression

Credit: Oliver Gerberding, Daniel Voigt, University Hamburg

- Non-linear coupling from parasitic beams produce *noise shoulder*
- resulting phase error depends on power, mode overlap and dynamics
- **Mitigation** strategies involve
 - **Passive** reduction (baffled, by design,...)
 - Active reduction (Faraday isolator, frequency swap, tunable coherence, balanced detection)
 - **Environmental** reduction (reduce phase dynamics, stabilize temperature, air, vacuum)

SPACE ANTENNA

Stray Light challenges in LISA Interferometry Sources, Dynamics, & Mitigation Strategies

Katharina-Sophie Isleif Helmut Schmidt University

Particle Physics Pizza Seminar DESY, 13.05.2024

Additional slides

LISA interferometers

High dynamics

Medium

Low

Dynamics in the LISA satellite

Fiber backscatter experiment

JProf'in Katharina-Sophie Isleif

102

Rohr, 2022, https://doi.org/10.15488/12537

- portable
- detecting very low power levels of backscatter
- test of different fibers and fibers connectors
- calibration measurements
- test of radiated fibers
- backscatter over temperature

Rohr et. al, 2022, https://doi.org/10.1364/OE.404139

Fiber backscatter experiment

JProf'in Katharina-Sophie Isleif

102

Rohr, 2022, https://doi.org/10.15488/12537

Rohr et. al, 2022, https://doi.org/10.1364/OE.404139

Backlink options

backlink	interferir	ng beams	phase error [rad]		
DFBL	SLB TX SLB BL SLB TX	TX LO SLB ALO	$ \begin{vmatrix} 1.1 \cdot 10^{-4} \\ 2.2 \cdot 10^{-3} \\ 0.25 \cdot 10^{-6} \end{vmatrix} $		
PFBL / RMBL / FBBL	SLB TX SLB BL SLB TX	TX LO SLB ALO	$\begin{vmatrix} \sqrt{\text{PBS}_{\text{extc}}} \cdot 1.1 \cdot 10^{-4} \\ \sqrt{\text{PBS}_{\text{extc}}} \cdot 4.4 \cdot 10^{-3} \\ \text{PBS}_{\text{extc}} \cdot 0.5 \cdot 10^{-6} \end{vmatrix}$		
FIFBL	SLB TX SLB BL SLB TX	TX LO SLB BL	$\begin{vmatrix} \sqrt{\mathrm{ISO}_{\mathrm{extc}}} \cdot 1.1 \cdot 10^{-4} \\ 2.2 \cdot 10^{-3} \\ \sqrt{\mathrm{ISO}_{\mathrm{extc}}} \cdot 0.25 \cdot 10^{-6} \end{vmatrix}$		
CFBL	SLB TX SLB BL SLB TX	TX LO SLB BL	$\begin{vmatrix} \sqrt{CAV_{extc}} \cdot 1.1 \cdot 10^{-4} \\ 2.2 \cdot 10^{-3} \\ \sqrt{CAV_{extc}} \cdot 0.25 \cdot 10^{-6} \end{vmatrix}$		
FSFBL REF	SLB BL SLB ALO -	LO ALO -	$\left \begin{array}{c} 0.25 \cdot 10^{-6} \\ 0.25 \cdot 10^{-6} \end{array}\right $		
AOMFBL	SLB TX SLB BL SLB TX	TX LO SLB BL	$ 1.1 \cdot 10^{-4} \\ - \\ - \\ -$		

JProf'in Katharina-Sophie Isleif

102 1004 \Box $LO'(f_3)$ LO (f_{A}) ALO' (f_{1}) \blacksquare ALO (f_3) (\sim) GB ALO GB ALO interferometer **GB BL**

Frequency shifted fiber backlinks

$f_1 \rightarrow f_2$	$2 > f_3 > f_4$	4	f_1	$f_1 = f_2$	
nominal beat	SLS I	beats	nominal beat	SLS b	bea
$egin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{vmatrix} f_3 - f_4 \\ f_3 - f_4 \\ f_3 - f_4 \\ f_3 - f_4 \\ f_3 - f_4 \end{vmatrix}$	$egin{array}{c} f_1 - f_4 \ f_2 - f_3 \ f_1 - f_3 \ f_2 - f_3 \ f_2 - f_4 \end{array}$	$egin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{vmatrix} f_3 - f_4 \\ f_3 - f_4 \\ f_3 - f_4 \\ f_3 - f_4 \end{vmatrix} $	$egin{array}{c} f_1 \ f_1 \ f_1 \ f_1 \ f_1 \ f_1 \ f_1 \end{array}$
ABA	CDCD				
	nominal beat $f_1 - f_3$ $f_2 - f_4$ $f_1 - f_4$ $f_2 - f_3$	$f_{1} f_{2} \geq f_{3} > f_{4}$ nominal beat $f_{1} - f_{3}$ $f_{2} - f_{4}$ $f_{3} - f_{4}$	$f_{1} = f_{2} > f_{3} > f_{4}$ nominal beat SLS beats $f_{1} - f_{3} = f_{4} = f_{1} - f_{4}$ $f_{2} - f_{4} = f_{3} - f_{4} = f_{2} - f_{3}$ $f_{1} - f_{4} = f_{3} - f_{4} = f_{1} - f_{3}$ $f_{3} - f_{4} = f_{1} - f_{3}$ $f_{3} - f_{4} = f_{2} - f_{4}$	$f_{1} = f_{2} \Rightarrow f_{3} > f_{4} \qquad \text{fm} $	$f_{1} = f_{2}$ nominal beat SLS beats final beat SLS beats final beat SLS for the final beat SLS for the final beat final beat SLS for the final beat fi

eter	f_{1}	f_2 and	$f_4 = f_2 - f_2$	$\Omega_2 + \Omega_1$ and $f_3 =$	$= (f_1 + \Omega_1 - \Omega_2)$
	nomir	al beat		SLS bea	ts
L	f_1	$-f_4$	$\int f_1 - f_4$	$f_1 - (f_1 + 2\Omega_1)$	$f_4 - (f_1 + 2\Omega_1)$
し'	f_2	$-f_{3}$	$f_2 - f_3$	$f_2 - (f_2 - 2\Omega_2)$	$f_3 - (f_2 - 2\Omega_2)$

Sources of spurious beams

JProf'in Katharina-Sophie Isleif

	с	ategory	comp	noise source origin	dynamic	model	phase [r
			bonded	2nd refl.	$\ll 1\mathrm{pm}$	P, rays	$\sqrt{\frac{1}{2}}$
>	st beams		metal mounted	2nd refl.	$\ll 1\mathrm{nm}$	P, rays,	
			fibers	fiber scatter	thermal, angle jitter, stress	overlap, dynamics	$\sqrt{\frac{\eta_{\rm SLS}}{\eta_{\rm SLS}}}$
	gho	diffracted	Isolator, aperture	diffraction, clipping	$\ll 1\mathrm{nm}$	P, rays	$\sqrt{-1}$
			fiber	fast axis coupling	thermal, acoustic, coupling pointing	no model used	unk
		p-pol.	FIOS	FIOS misalignm., birefringent lens			
	scat		bonded	dust, surface	$\ll 1\mathrm{pm}$	P, rays	$\sqrt{\frac{1}{2}}$
		cattered	metal mounted	roughness, – scratches, coating – quality	roughness, — scratches, coating	$\ll 1\mathrm{nm}$	P, rays,
	C		steering mirrors		thermal, steering	dynamics	$\sqrt{-\eta}$
	stra	y light	external	lamp			$\sqrt{\frac{P_{\rm SI}}{P_{\rm r}}}$

Isleif (2018) https://doi.org/10.15488/3526

DFMI

Isleif, K. S.,...(2014). Highspeed multiplexed heterodyne interferometry. Optics Express, 22(20), 24689-24696.

Isleif, K. S., Gerberding O.,... (2016, May). Comparing interferometry techniques for multi-degree of freedom test mass readout. In Journal of Physics: Conference Series (Vol. 716, No. 1, p. 012008). IOP Publishing.

JProf'in Katharina-Sophie Isleif

Deep **F**requency **M**odulation interferometry

JProf'in Katharina-Sophie Isleif

Ghost beam suppression in DFMI $P^{\pm} \propto \frac{E_{\rm S}^2}{2} + \frac{E_{\rm L}^2}{2} \pm E_{\rm L} E_{\rm S} \bigg[J_0(n) \bigg]$

fit

$$I_1 J_2 \cdots J_N$$

 $\phi m \psi$
 $Q_n \psi$
 $Q_n = [1, ..., N]$

$$n)\cos(\phi) + 2\sum_{n=1}^{\infty} J_n(m)\cos\left(\phi + n\frac{\pi}{2}\right)\cos\left(n(\omega_{\rm m}t + \psi)\right) \right]$$

Gerberding and Isleif 2021, https://www.mdpi.com/1424-8220/21/5/1708

(2)

Ghost beam suppression in DFMI

JProf'in Katharina-Sophie Isleif

102

Gerberding and Isleif 2021, https://www.mdpi.com/1424-8220/21/5/1708

Ghost beams in DFMI

 $P_{\rm N,E,1,2}^{\pm} = \pm E_{\rm N} E_{\rm E} \cos \left[\phi_{\rm E} + m_{\rm E} c(t) \right]$ $\pm E_{\rm N}E_1\cos\left[\phi_1+m_1c(t)\right]$ $\pm E_{\rm N}E_2\cos[2\phi_{\rm L}+\phi_1+(2m_{\rm L}+m_1)c(t)]$ $+E_{\rm E}E_1\cos\left[\phi_{\rm L}+m_{\rm L}c(t)\right]$ $+E_{\rm E}E_2\cos\left[\phi_{\rm L}+m_{\rm L}c(t)\right]$ $+E_1E_2\cos[2\phi_{\rm L}+2m_{\rm L}c(t)]$ $=\pm 1\cos\left[\phi_{\rm E}+m_{\rm E}c(t)\right]$ $\pm 0.05 \cos [\phi_1 + m_1 c(t)]$ $\pm 0.05 \cos \left[2\phi_{\rm E} - \phi_1 + (2m_{\rm L} + m_1)c(t) \right]$ $+0.05 \cos \left[\phi_{\rm E} - \phi_1 + m_{\rm L} c(t)\right]$ $+0.05 \cos \left[\phi_{\rm E} - \phi_1 + m_{\rm L} c(t)\right]$ $+0.0025\cos \left[2\phi_{\rm E}-2\phi_1+2m_{\rm L}c(t)\right]$

Gerberding and Isleif 2021, https://www.mdpi.com/1424-8220/21/5/1708

Ghost beam suppression in DFMI

JProf'in Katharina-Sophie Isleif

Gerberding and Isleif 2021, https://www.mdpi.com/1424-8220/21/5/1708

Ghost beam suppression in DFMI

Article

Ghost Beam Suppression in Deep Frequency Modulation Interferometry for Compact On-Axis Optical Heads

Oliver Gerberding ¹,*¹ and Katharina-Sophie Isleif ²,*¹

- D-22761 Hamburg, Germany
- 2

Institute of Experimental Physics, University of Hamburg, Luruper Chaussee 149, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany

Correspondence: oliver.gerberding@physik.uni-hamburg.de (O.G.); katharina-sophie.isleif@desy.de (K.-S.I.)