Infrared subtraction at NNLO and beyond

Matteo Marcoli Loop Summit 2 - Cadenabbia 21/07/2025

Work in collaboration with:

Elliot Fox, Nigel Glover

Xuan Chen, Petr Jakubcik, Giovanni Stagnitto

Overview

Introduction: s.o.t.a. of fixed-order calculations in QCD

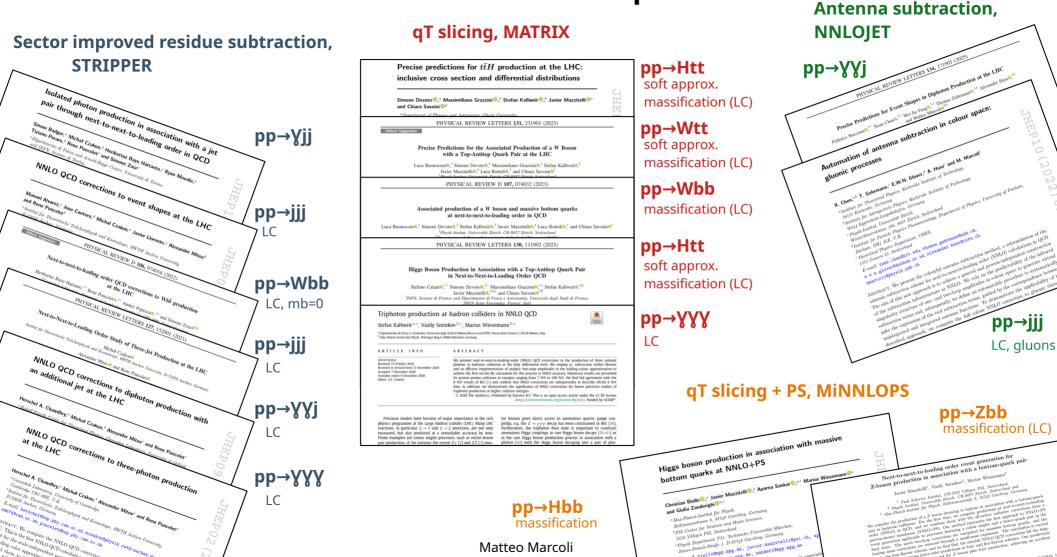
Generalized final-state antenna functions at NNLO

First steps and results at N³LO with antenna subtraction

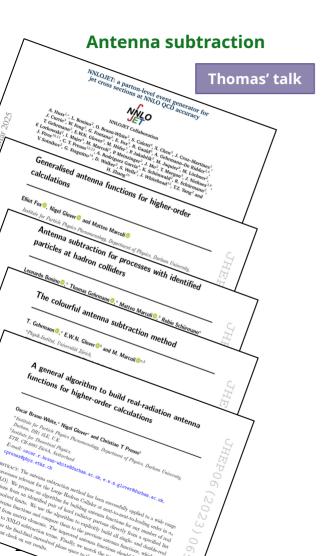
Summary and outlook

INTRODUCTION

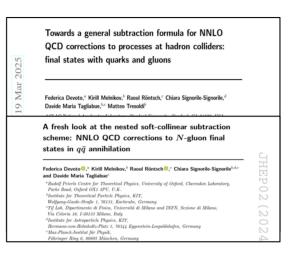
State of the art of NNLO calculations: 2→3 processes



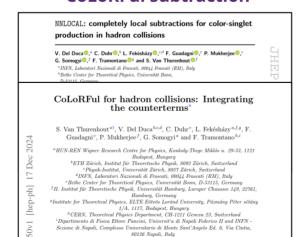
State of the art of NNLO calculations: formalisms and tools

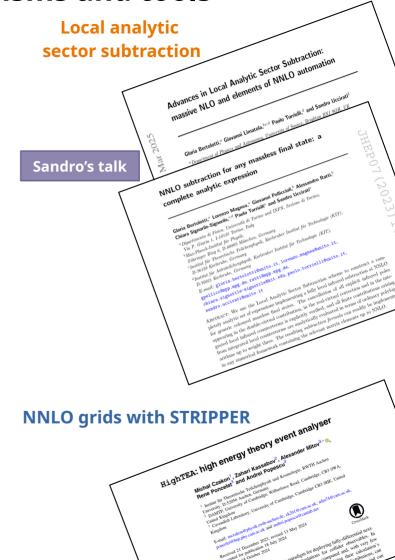


Nested soft-collinear subtraction



CoLoRFul subtraction





State of the art of NNLO calculations

So, is NNLO **solved**? In principle yes ...

STRIPPER: given the relevant amplitudes and enough computational resources, the NNLO calculation is streamlined

But:

refine IR schemes, efficiency

prohibitive computational cost

improve resources (ML, GPUs, grids, ...)

different techniques

missing cross-validation

NNLO tools

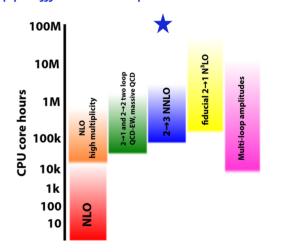
cooperation

2-loop automation

still a long way to NNLO event generation

PS matching

pp → jjj event shapes with STRIPPER



[Febres Cordero,von Manteuffel,Neumann '22]

State of the art of N³LO calculations

Inclusive:

- gg→H [Anastasiou,Durh,Dulat,Herzog,Mistleberger '15] [Mistleberger '18]
- qq→HH [Chen,Li,Shao,Wang '19,'20]
- VBF H [Dreyer, Karlberg '16]
- VBF HH [Dreyer, Karlberg '18]
- pp→\/Z/W [Durh,Dulat,Mistleberger '20]
 [Durh,Mistleberger '21]
- bb→H [Baglio,Durh,Mistleberger,Szafron '22]
- pp→Z/W H

Fully differential:

```
• gg→H [Cieri,Chen,Ghermann,Glover,Huss '18] **
[Billis,Dehnadi,Ebert,Michel,Tackmann '21] **
[Chen,Gehrmann,Glover,Huss,Mistleberger,Pelloni '21] **
```

- DIS [Currie,Gehrmann,Glover,Huss,Niehues,Vogt '18]
- H→bb [Mondini,Schiavi,Williams '19]
- e⁺e⁻→jj [Chen,Jakubcik,MM,Stagnitto ʻ25] ‡

Several phenomenologically relevant results despite the extreme complexity.

Available techniques are applicable to limited cases.

New approaches must be developed for more complicated processes.

qT slicing

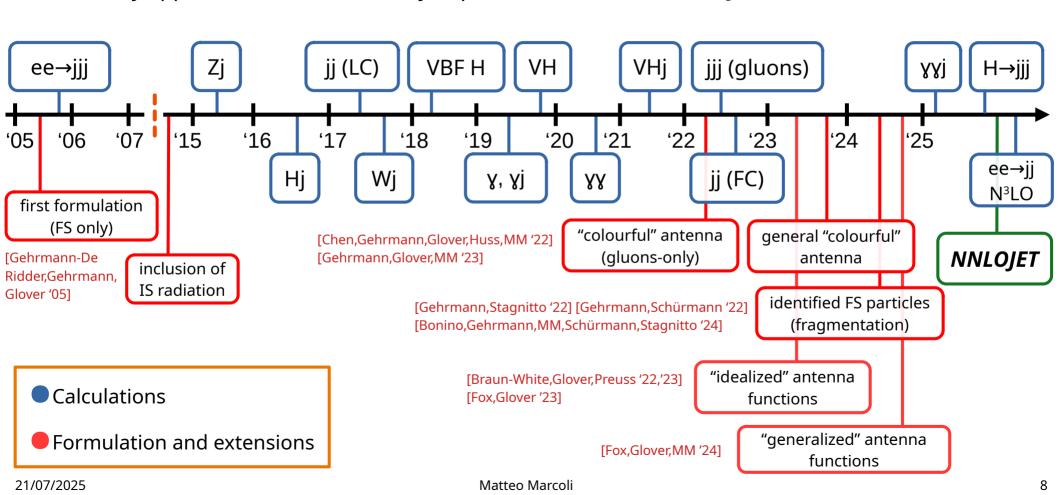
† Projection-to-Born

‡ Antenna Subtraction

Antenna subtraction

[NNLOJET collaboration: Huss et al. '25]

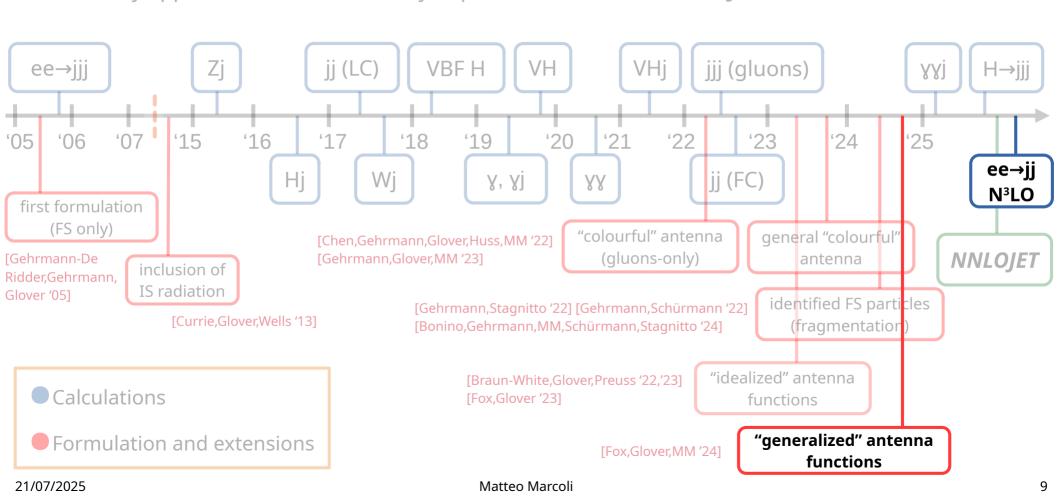
Successfully applied at NNLO to a variety of processes within the *NNLOJET* Monte Carlo framework



Antenna subtraction

[NNLO]ET collaboration: Huss et al. '25]

Successfully applied at NNLO to a variety of processes within the *NNLOJET* Monte Carlo framework



GENERALIZED FINAL-STATE ANTENNA FUNCTIONS AT NNLO

Standard antenna functions (FSR)

Describe unresolved emissions between two hard radiators

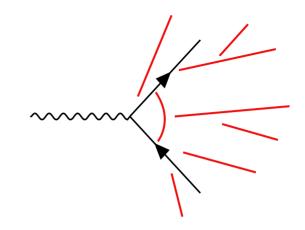
Traditionally extracted from colour-ordered matrix elements for colour-singlet decay

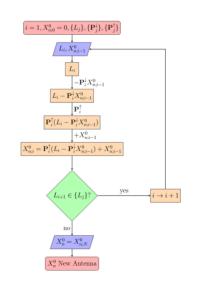
[Gehrmann-De Ridder, Gehrmann,Glover '04,'05]

[Braun-White, Nigel, Preuss '22,'23]

Recently: **designer antenna algorithm** to build antenna functions directly from unresolved factors

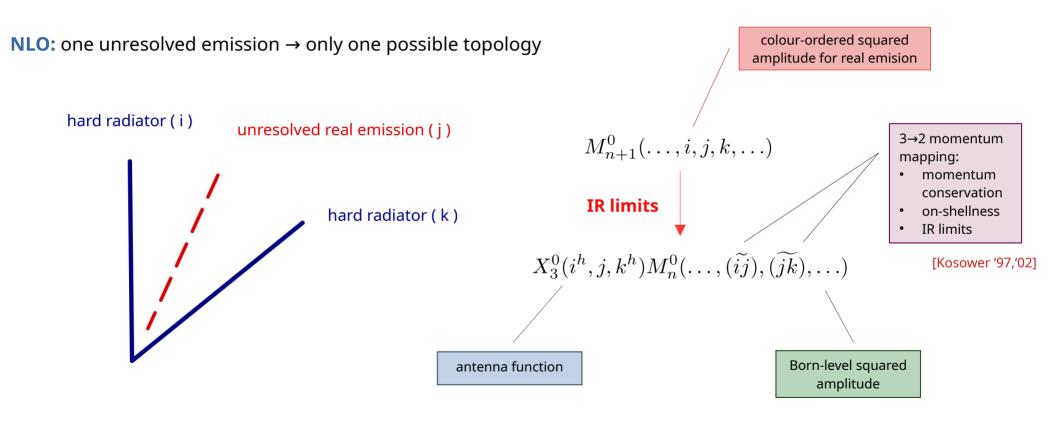
- Simpler expressions
- Better isolation of IR limits
- Removal of some unphysical singularities





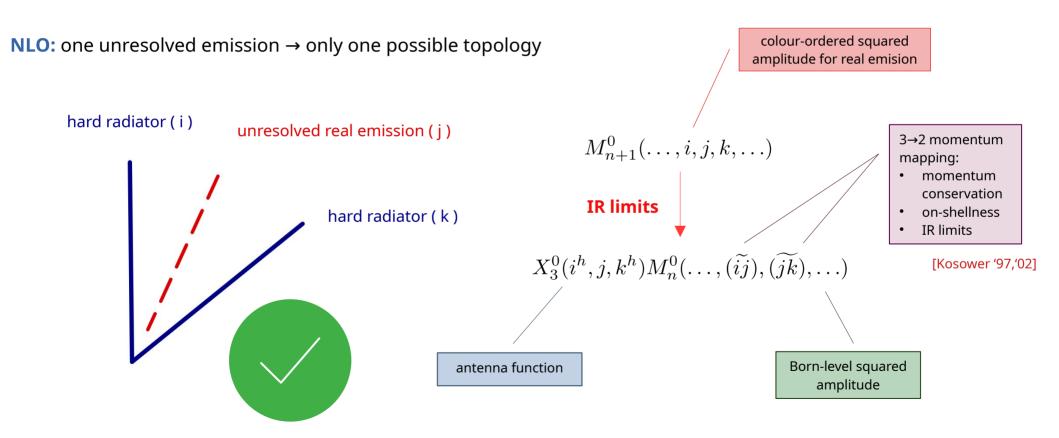
Two-hard-radiator antenna functions work very well for some configurations, **less well** for others

What **emission topologies** can they easily describe?



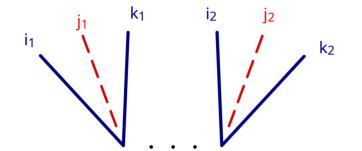
Two-hard-radiator antenna functions work very well for some configurations, **less well** for others

What **emission topologies** can they easily describe?



NNLO: two unresolved emissions → multiple topologies

colour-unconnected emissions: no shared hard radiatior

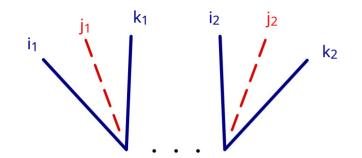


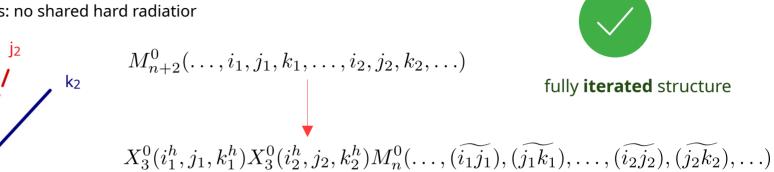


Matteo Marcoli 14 21/07/2025

NNLO: two unresolved emissions → multiple topologies

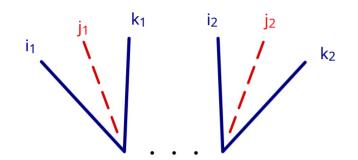
colour-unconnected emissions: no shared hard radiatior

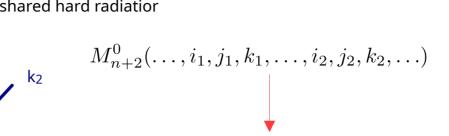




NNLO: two unresolved emissions → multiple topologies

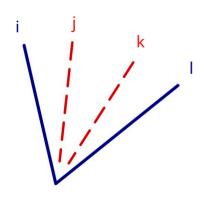
colour-unconnected emissions: no shared hard radiatior

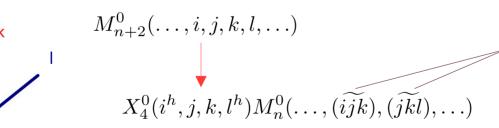




$$X_3^0(i_1^h, j_1, k_1^h) X_3^0(i_2^h, j_2, k_2^h) M_n^0(\dots, (\widetilde{i_1j_1}), (\widetilde{j_1k_1}), \dots, (\widetilde{i_2j_2}), (\widetilde{j_2k_2}), \dots)$$

colour-connected emissions: both hard radiators shared



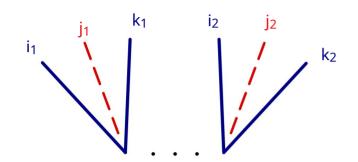


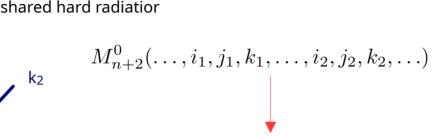
4→2 momentum mapping

fully **iterated** structure

NNLO: two unresolved emissions → multiple topologies

colour-unconnected emissions: no shared hard radiatior



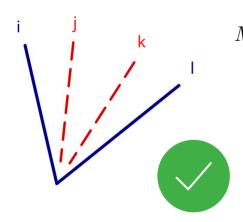


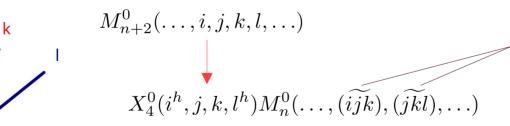
fully **iterated** structure

17

$$X_3^0(i_1^h, j_1, k_1^h) X_3^0(i_2^h, j_2, k_2^h) M_n^0(\dots, (\widetilde{i_1j_1}), (\widetilde{j_1k_1}), \dots, (\widetilde{i_2j_2}), (\widetilde{j_2k_2}), \dots)$$

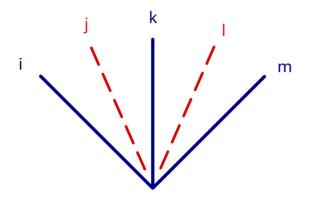
colour-connected emissions: both hard radiators shared





4→2 momentum mapping

There is more ... almost colour-connected emissions: only one shared hard radiator



NOT fully iterated: the two emissions "feel" each other through the recoil on the shared radiator

traditional antenna functions can be used, but a **very complicated** sequence of iterated structures is needed, plus **Large-Angle-Soft-Terms**

[Gehrmann De-Ridder, Gehrmann, Glover, Heinrich '07] [Weinzierl '08] [Currie, Glover, Wells '13]

most complicated and inefficient sector of antenna subtraction

 $\frac{1}{3}d_3^0(\mathbf{1}_q, i_q, j_q)d_3^0(\mathbf{2}_q, k_q, \widetilde{(ji)}_q) A_3^0(\widetilde{(1i)}_q, \widetilde{(ji)k})_q, \widetilde{(2k)}_q) J_3^{(3)}(\widetilde{\rho_{1i}}, \widetilde{\rho_{(ji)k}}, \widetilde{\rho_{2k}})$ $d_3^0(2_q, k_g, j_g)d_3^0(1_q, i_g, \widetilde{(jk)}_q) A_3^0(\widetilde{(1i)}_g, \widetilde{((jk)i)}_g, \widetilde{(2k)}_q) J_3^{(3)}(\widetilde{p_{1i}}, \widetilde{p_{(jk)i}}, \widetilde{p_{2k}})$ $d_3^0(1_q, k_g, j_g)d_3^0(2_g, i_g, (\widetilde{jk})_g) A_3^0((\widetilde{1k})_g, (\widetilde{(jk)i})_g, (\widetilde{2i})_d) J_3^{(3)}(\widetilde{p_{1k}}, \widetilde{p_{(jk)i}}, \widetilde{p_{2i}})$ $d_3^0(2_q, i_g, j_g)d_3^0(1_q, k_g, \widetilde{(ji)}_g) A_3^0(\widetilde{(1k)}_g, \widetilde{((ji)k)}_g, \widetilde{(2i)}_g) J_3^{(3)}(\widetilde{p_{1k}}, \widetilde{p_{(ji)k}}, \widetilde{p_{2i}})$ $d_3^0(1_q, i_g, j_g)d_3^0(\widetilde{11})_q, k_g, \widetilde{(ji)}_q) A_3^0(\widetilde{(11)k})_q, \widetilde{((ji)k)}_q, 2_q) J_3^{(3)}(\widetilde{p_{(1i)k}}, \widetilde{p_{(ji)k}}, p_2)$ $d_3^0(1_q, k_g, j_g)d_3^0(\widetilde{(1k)}_q, i_g, \widetilde{(jk)}_q) A_3^0(\widetilde{((1k)i)}_q, \widetilde{((jk)i)}_q, 2_q) J_3^{(3)}(\widetilde{p_{(1k)i}}, \widetilde{p_{(jk)i}}, p_2)$ $d_3^0(2_q, i_g, j_g)d_3^0(\widetilde{(2i)}_q, k_g, \widetilde{(ji)}_q) A_3^0(1_q, \widetilde{((ji)k)}_q, \widetilde{((2i)k)}_q) J_3^{(3)}(p_1, \widetilde{p_{(ji)k}}, \widetilde{p_{(2i)k}})$ $d_3^0(2_q, k_g, j_g)d_3^0(\widetilde{(2k)}_q, i_g, \widetilde{(jk)}_q) A_3^0(1_q, \widetilde{(jk)i})_q, \widetilde{((2k)i)}_q) J_3^{(3)}(p_1, \widetilde{p_{(jk)i}}, \widetilde{p_{(2k)i}})$ $A_3^0(1_q, i_g, 2_q)d_3^0(\widetilde{(1i)}_q, k_g, j_g) A_3^0(\widetilde{((1i)k)}_q, \widetilde{(jk)}_q, \widetilde{(2i)}_q) J_3^{(3)}(\widetilde{p_{(1i)k}}, \widetilde{p_{jk}}, \widetilde{p_{2i}})$ $d_3^0(1_q, k_g, j_g)A_3^0(\widetilde{(1k)}_q, i_g, 2_q)A_3^0(\widetilde{(1k)}_q, \widetilde{(jk)}_g, \widetilde{(2i)}_q)J_3^{(3)}(\widetilde{\rho_{(1k)i}}, \widetilde{\rho_{jk}}, \widetilde{\rho_{2i}})$ $A_3^0(1_a, k_a, 2_{\bar{q}})d_3^0(\widetilde{(1k)}_a, i_a, j_{\bar{q}}) A_3^0(\widetilde{((1k)i)}_a, \widetilde{(ji)}_a, \widetilde{(2k)}_a) J_3^{(3)}(\widetilde{p_{(1k)i}}, \widetilde{p_{ji}}, \widetilde{p_{2k}})$ $d_3^0(1_q, i_q, j_q)A_3^0(\widetilde{(1i)}_a, k_q, 2_q)A_3^0(\widetilde{(1i)k})_a, \widetilde{(ji)}_a, \widetilde{(2k)}_a)J_3^{(3)}(\widetilde{p_{(1i)k}}, \widetilde{p_{1i}}, \widetilde{p_{2k}})$ $A_3^0(1_q, i_g, 2_q)d_3^0(\widetilde{(2i)}_q, k_g, j_g) A_3^0(\widetilde{(1i)}_q, \widetilde{(jk)}_g, \widetilde{((2i)k)}_q) J_3^{(3)}(\widetilde{p_{1i}}, \widetilde{p_{jk}}, \widetilde{p_{(2i)k}})$ $\frac{1}{3}d_3^0(2_g, k_g, j_g)A_3^0(1_g, i_g, (\widetilde{2k})_g)A_3^0((\widetilde{1i})_g, (\widetilde{jk})_g, (\widetilde{(2k)i})_g)J_3^{(3)}(\widetilde{p_{1i}}, \widetilde{p_{2k}}, \widetilde{p_{(2k)i}})$ $\frac{1}{5}A_{3}^{0}(1_{q}, k_{q}, 2_{q})d_{3}^{0}(\widetilde{(2k)}_{g}, i_{q}, j_{q})A_{3}^{0}(\widetilde{(1k)}_{g}, \widetilde{(ji)}_{g}, \widetilde{((2k)i)}_{g})J_{3}^{(3)}(\widetilde{p_{1k}}, \widetilde{p_{2k}}, \widetilde{p_{2k}})$ $-\frac{1}{2}d_3^0(2q,i_g,j_g)A_3^0(1q,k_g,\widetilde{(2i)}_q)A_3^0(\widetilde{1k})_q,\widetilde{(ji)}_g,\widetilde{((2i)k)}_q)J_3^{(3)}(\widetilde{p_{1k}},\widetilde{p_{ji}},\widetilde{p_{(2i)k}})$ $\frac{1}{5}A_3^0(1_q, k_q, 2_q)A_3^0(\widetilde{(1k)}_a, i_q, \widetilde{(2k)}_a)A_3^0(\widetilde{(1k)}_i)_a, j_q, \widetilde{(2k)}_i)_a)J_3^{(3)}(\widetilde{p_{12k1i}}, p_j, \widetilde{p_{22k1i}}, j_q, \widetilde{p_{12k1i}})$

 $-\frac{1}{2}A_{3}^{0}(1_{q}, i_{g}, 2_{q})A_{3}^{0}(\widetilde{(1i)}_{q}, k_{g}, \widetilde{(2i)}_{q})A_{3}^{0}(\widetilde{((1i)k)}_{q}, j_{g}, \widetilde{((2i)k)}_{q})J_{3}^{(3)}(\widetilde{p_{(1i)k}}, p_{j}, \widetilde{p_{(2i)k}})$

$$\begin{split} & \times A_{0}^{0}(((\widetilde{\mathbf{h}}_{1},k_{2}),d((0)k_{1},k_{2}),(0)k_{2})A_{1}^{0}((\widetilde{\mathbf{h}}_{1},k_{2}),(0)k_{2})A_{2}^{0}((\widetilde{\mathbf{h}}_{1},k_{2}),$$

from e⁺e⁻→jjj @NNLO

 $+\frac{1}{2}\left(S_{(\widetilde{11})\widetilde{k})i(\widetilde{1j})\widetilde{k}} - S_{(\widetilde{11})\widetilde{i}(\widetilde{j})} - S_{2i(\widetilde{1j})\widetilde{k})} + S_{2i(\widetilde{j})} - S_{2i(\widetilde{11})\widetilde{k})} + S_{2i(\widetilde{11})}\right)$

 $\times d_3^0(\widetilde{(1i)}_a,k_a,\widetilde{(ji)}_a)\,A_3^0(\widetilde{((1i)k)}_a,\widetilde{((ji)k)}_a,2_{\bar{q}})\,J_3^{(3)}(\widetilde{p_{(1i)k}},\widetilde{p_{(ii)k}},p_2)$

 $+\frac{1}{2}\left(S_{((k))k((k))} - S_{((k)k((k))} - S_{2k(((k)))} + S_{2k((k))} +$

 $\times d_3^0(\widetilde{(1k)_q},i_g,\widetilde{(jk)_q})\,A_3^0(\widetilde{((1k)i)_q},\widetilde{((jk)i)_q},2_{\bar{q}})\,J_3^{(3)}(\widetilde{p_{(1k)i}},\widetilde{p_{(jk)i}},p_2)$

 $+\frac{1}{2}\left(S_{(\widetilde{2ijk})i(\widetilde{(ji)k})} - S_{(\widetilde{2i})i(\widetilde{ji})} - S_{1i(\widetilde{(ji)k})} + S_{1i(\widetilde{ji})} - S_{1i(\widetilde{(2i)k})} + S_{1i(\widetilde{2i})}\right)$

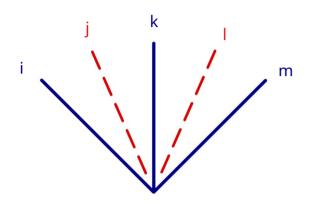
 $\times d_3^0(\widetilde{(2i)}_q,k_q,\widetilde{(ji)}_q)\,A_3^0(1_q,\widetilde{((ji)k)}_q,\widetilde{((2i)k)}_q)\,J_3^{(3)}(p_1,\widetilde{p_{(ji)k}},\widetilde{p_{(2i)k}})$

 $+\frac{1}{2}\left(S_{\widetilde{(2k)i)k(ik(i)}} - S_{\widetilde{(2k)k(jk)}} - S_{1k(\widetilde{(jk)i)}} + S_{1k(\widetilde{jk})} - S_{1k(\widetilde{(2k)i)}} + S_{1k(\widetilde{2k})i}\right)$

 $\times d_3^0(\widetilde{(2k)}_g,i_q,\widetilde{(jk)}_g)\,A_3^0(1_q,\widetilde{((jk)i)}_g,\widetilde{((2k)i)}_g)\,J_3^{(3)}(p_1,\widetilde{p_{(jk)i}},\widetilde{p_{(2k)i}})$

 $\frac{1}{2}\left(S_{(\widetilde{110k})i\widetilde{120k})} - S_{(\widetilde{110k})ij} - S_{(\widetilde{210k})ij} + S_{(\widetilde{110i}j)} + S_{(\widetilde{210i}j)} - S_{(\widetilde{110i}(\widetilde{20k}))}\right)$

There is more ... almost colour-connected emissions: only one shared hard radiator



NOT fully iterated: the two emissions "feel" each other through the recoil on the shared radiator

traditional antenna functions can be used, but a **very complicated** sequence of iterated structures is needed, plus **Large-Angle-Soft-Terms**

[Gehrmann De-Ridder, Gehrmann, Glover, Heinrich '07] [Weinzierl '08] [Currie, Glover, Wells '13]

most complicated and inefficient sector of antenna subtraction

 $\frac{1}{3}d_3^0(\mathbf{1}_q, i_q, j_q)d_3^0(\mathbf{2}_q, k_q, \widetilde{(ji)}_q) A_3^0(\widetilde{(1i)}_q, \widetilde{(ji)k})_q, \widetilde{(2k)}_q) J_3^{(3)}(\widetilde{\rho_{1i}}, \widetilde{\rho_{(ji)k}}, \widetilde{\rho_{2k}})$ $dl(2_0, k_0, j_0)dl(1_0, i_0, (\widetilde{ik})_+) A_*^0((\widetilde{ij})_+, (\widetilde{(ik)})_+, (\widetilde{2k})_+) J_*^{(3)}(\widetilde{p_{10}}, \widetilde{p_{10}}, \widetilde{p_{20}})$ $d_3^0(1_q, k_g, j_g)d_3^0(2_g, i_g, (\widetilde{jk})_g) A_3^0((\widetilde{1k})_g, (\widetilde{(jk)i})_g, (\widetilde{2i})_d) J_3^{(3)}(\widetilde{p_{1k}}, \widetilde{p_{(jk)i}}, \widetilde{p_{2i}})$ $d_3^0(2_q, i_q, j_q)d_3^0(1_q, k_g, \widetilde{(ji)}_q) A_3^0(\widetilde{(1k)}_q, \widetilde{((ji)k)}_q, \widetilde{(2i)}_q) J_3^{(3)}(\widetilde{p_{1k}}, \widetilde{p_{(ji)k}}, \widetilde{p_{2i}})$ $d_3^0(1_q, i_g, j_g)d_3^0(\widetilde{(1i)}_q, k_g, \widetilde{(ji)}_q) A_3^0(\widetilde{((1i)k)}_q, \widetilde{((ji)k)}_q, 2_q) J_3^{(3)}(\widetilde{p_{(1i)k}}, \widetilde{p_{(ji)k}}, p_2)$ $d_3^0(1_a, k_a, j_a)d_3^0(\widetilde{(1k)}_a, i_a, \widetilde{(jk)}_a) A_3^0(\widetilde{(1k)i}_a, \widetilde{((jk)i)}_a, 2_a) J_3^{(3)}(\widetilde{p_{(1k)i}}, \widetilde{p_{(1k)i}}, p_2)$ $A_{3}^{0}(2_{q}, k_{g}, j_{g})d_{3}^{0}(\widetilde{2k})_{q}, i_{g}, \widetilde{(jk)}_{q})A_{3}^{0}(1_{q}, \widetilde{(jk)i})_{q}, \widetilde{(2k)i)_{q}})J_{3}^{(3)}(p_{1}, \widetilde{p_{(jk)i}}, \widetilde{p_{(2k)i}})$ $A_3^0(1_a, i_a, 2_a)d_3^0(\widetilde{1i})_{a}, k_a, j_a) A_3^0(\widetilde{(1i)k})_{a}, \widetilde{(jk)}_{a}, \widetilde{(2i)}_{a}) J_3^{(3)}(\widetilde{p_{(1i)k}}, \widetilde{p_{ik}}, \widetilde{p_{2i}})$ $d_3^0(1_a, k_a, j_a)A_3^0(\widetilde{(1k)}_a, i_a, 2_d)A_3^0(\widetilde{((1k)i)}_a, \widetilde{(jk)}_a, \widetilde{(2i)}_a)J_3^{(3)}(\widetilde{p_{(1k)i}}, \widetilde{p_{ik}}, \widetilde{p_{2i}})$ $A_{3}^{0}(1_{a}, k_{a}, 2_{b})d_{3}^{0}(\widetilde{(1k)}_{a}, i_{a}, j_{a}) A_{3}^{0}(\widetilde{((1k)i)}_{a}, \widetilde{(ji)}_{a}, \widetilde{(2k)}_{a}) J_{3}^{(3)}(\widetilde{p_{(1k)i}}, \widetilde{p_{ii}}, \widetilde{p_{2k}})$ $d_3^0(1_q, i_q, j_q)A_3^0(\widetilde{(1i)}_\alpha, k_q, 2_q)A_3^0(\widetilde{(1i)k})_\alpha, \widetilde{(ji)}_\alpha, \widetilde{(2k)}_\alpha)J_3^{(3)}(\widetilde{p_{(1i)k}}, \widetilde{p_{ii}}, \widetilde{p_{2k}})$ $A_3^0(1_a, i_a, 2_d)d_3^0(\widetilde{(2i)}_a, k_a, j_a) A_3^0(\widetilde{(1i)}_a, \widetilde{(jk)}_a, \widetilde{(2i)k)}_a) J_3^{(3)}(\widetilde{p_{1i}}, \widetilde{p_{1k}}, \widetilde{p_{(2i)k}})$ $d_3^0(2_q, k_q, j_q)A_3^0(1_q, i_q, (\widetilde{2k})_d)A_3^0((\widetilde{1i})_q, (\widetilde{jk})_q, (\widetilde{(2k)i})_d)J_3^{(3)}(\widetilde{p_{1i}}, \widetilde{p_{2k}}, \widetilde{p_{(2k)i}})$ $A_3^0(1_q, k_q, 2_q)d_3^0(\widetilde{(2k)}_q, i_q, j_q) A_3^0(\widetilde{(1k)}_q, \widetilde{(ji)}_q, \widetilde{(2k)i)}_q) J_3^{(3)}(\widetilde{p_{1k}}, \widetilde{p_{2l}}, \widetilde{p_{2l}}_{(2k)i})$ $\frac{1}{3}d_3^6(2_q, i_q, j_q)A_3^0(1_q, k_q, \widetilde{(2i)}_d)A_3^0(\widetilde{(1k)}_a, \widetilde{(ji)}_a, \widetilde{(2i)k)}_d)J_3^{(3)}(\widetilde{p_{1k}}, \widetilde{p_{1j}}, \widetilde{p_{120k}})$ $\frac{1}{5}A_3^0(1_q, k_q, 2_q)A_3^0(\widetilde{(1k)}_a, i_q, \widetilde{(2k)}_a)A_3^0(\widetilde{(1k)}_i)_a, j_q, \widetilde{(2k)}_i)_a)J_3^{(3)}(\widetilde{p_{12k1i}}, p_j, \widetilde{p_{22k1i}}, j_q, \widetilde{p_{12k1i}})$

 $-\frac{1}{2}A_{3}^{0}(1_{q}, i_{g}, 2_{q})A_{3}^{0}(\widetilde{(1i)}_{q}, k_{g}, \widetilde{(2i)}_{q})A_{3}^{0}(\widetilde{((1i)k)}_{q}, j_{g}, \widetilde{((2i)k)}_{q})J_{3}^{(3)}(\widetilde{p_{(1i)k}}, p_{j}, \widetilde{p_{(2i)k}})$

$$\begin{split} &+\frac{1}{2} \Big(S_{(115)34}(i_{10}i_{2}) - S_{(134)35} - S_{24((15)3} + S_{24(35)} - S_{24(15)3} + S_{24(15)} + S_{24(15)$$

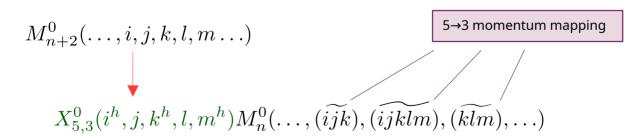
 $+\frac{1}{2}\left(S_{\widetilde{(1)}\widetilde{(k)})\widetilde{(l')}\widetilde{(k)}} - S_{\widetilde{(1l)}\widetilde{l'}\widetilde{(j')}} - S_{2\widetilde{l'}\widetilde{(l')}\widetilde{(k)}} + S_{2\widetilde{l'}\widetilde{(j')}} - S_{2\widetilde{l'}\widetilde{(1l)}\widetilde{k}} + S_{2\widetilde{l'}\widetilde{(1l)}}\right)$

 $\times d_3^0(\widetilde{(1i)}_a,k_a,\widetilde{(ji)}_a)\,A_3^0(\widetilde{((1i)k)}_a,\widetilde{((ji)k)}_a,2_{\bar{q}})\,J_3^{(3)}(\widetilde{p_{(1i)k}},\widetilde{p_{(ii)k}},p_2)$

$$\begin{split} &-\frac{1}{2}\Big(S_{(\widetilde{(1k)})\hat{b}_k(\widetilde{2k})\hat{i})} - S_{(\widetilde{(1k)})\hat{b}_j} - S_{(\widetilde{2k})\hat{i})k_j} + S_{(\widetilde{1k})k_j} + S_{(\widetilde{1k})k_j} + S_{(\widetilde{2k})k_j} - S_{(\widetilde{1k})k(\widetilde{2k})_j} \\ &\times A_3^0(\widetilde{(1k)}_q, i_g, \widetilde{(2k)}_q) A_3^0(\widetilde{(1k)}_q, i_g, \widetilde{(2k)}_q)_q J_3^{30}(\widetilde{p_{1kj}}_i, p_j, \widetilde{p_{(2k)}}_i)\Big\} \end{split}$$

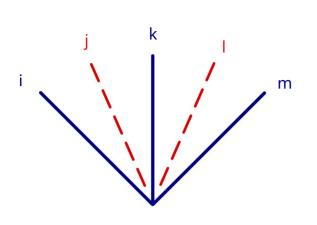
from e⁺e⁻→jjj @NNLO

Ideally we want:



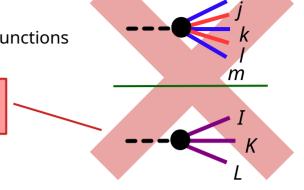
generalized three-hard-radiator antenna function

21/07/2025 Matteo Marcoli 19



Not possible with matrix element-based antenna functions

non-trivial function of the three-particle phase space



[Braun-White, Nigel, Preuss '22,'23]

With the **designer antenna algorithm**, it is possible to construct antenna functions with **more than two hard radiators: generalized antenna functions.**

Analytical integration made particularly simple thanks to a convenient choice of $5\rightarrow 3$ momentum mapping.

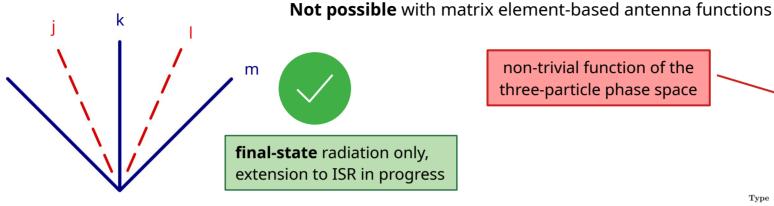
$$p_I = p_i + p_j - \frac{s_{ij}}{s_{ik} + s_{jk}} p_k$$

$$\max_{5 \to 3}: p_K = \left(1 + \frac{s_{ij}}{s_{ik} + s_{jk}} + \frac{s_{lm}}{s_{lk} + s_{mk}}\right) p_k$$
 iterated dipole mapping
$$p_M = p_l + p_m - \frac{s_{lm}}{s_{lk} + s_{mk}} p_k$$

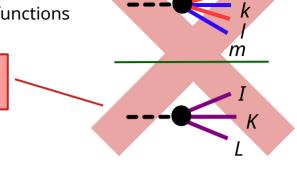
Type	Name and parton content	Reconstructed hard partons	$X_3^0\otimes X_3^0$
quark-antiquark-gluon	$A^0_{5,3}(i^h_q,j_g,k^h_g,l_g,m^h_{\bar{q}})$	$qgar{q}$	$D\otimes \overline{D}$
	$B^0_{5,3}(i^h_{ar{q}},j_g,k^h_{ar{Q}},l_{ar{Q}},m^h_q)$	$qgar{q}$	$A\otimes \overline{E}$
	$\widetilde{A}^0_{5,3}(i^h_{\bar{q}},j_\gamma,k^h_q,l_g,m^h_g)$	$\bar{q}qg$	$A\otimes D$
	$\widetilde{B}^0_{5,3}(i^h_{\bar{q}},j_{\gamma},k^h_q,l_{\bar{Q}},m^h_Q)$	$\bar{q}qg$	$A\otimes E$
${\it quark-antiquark-quark}$	$\widetilde{\widetilde{A}}_{5,3}^0(i_q^h, j_\gamma, k_{\overline{q}}^h, l_g, m_Q^h)$	$q\bar{q}Q$	$A\otimes A$
quark-gluon-gluon	$D^0_{5,3}(i^h_q,j_g,k^h_g,l_g,m^h_g)$	qgg	$D\otimes F$
	$E_{5,3}^{0(a)}(i_q^h,j_{\bar{Q}},k_Q^h,l_g,m_g^h)$	qgg	$E\otimes D$
	$E_{5,3}^{0(b)}(i_q^h, j_g, k_{\bar{Q}}^h, l_Q, m_g^h)$	qgg	$A\otimes \overline{G}$
	$E_{5,3}^{0(c)}(i_q^h,j_g,k_g^h,l_{\bar{Q}},m_Q^h)$	qgg	$D\otimes G$
	$E_{5,3}^{0,(d)}(i_Q^h,j_{\bar{Q}},k_q^h,l_g,m_g^h)$	gqg	$\overline{E}\otimes D$
	$K^0_{5,3}(i^h_q,j_{\bar{Q}},k^h_Q,l_{\bar{R}},m^h_R)$	qgg	$E \otimes E$
gluon-gluon-gluon	$F^0_{5,3}(i^h_g,j_g,k^h_g,l_g,m^h_g)$	ggg	$F\otimes F$
	$G_{5,3}^{0(a)}(i_{\bar{q}}^h,j_q,k_g^h,l_g,m_g^h)$	ggg	$\overline{G}\otimes F$
	$G_{5,3}^{0(b)}(i_g^h, j_{\bar{q}}, k_q^h, l_g, m_g^h)$	ggg	$G\otimes D$
	$H_{5,3}^{0(a)}(i_{\bar{Q}}^h,j_Q,k_g^h,l_{\bar{q}},m_q^h)$	ggg	$\overline{G}\otimes G$
	$H_{5,3}^{0(b)}(i_q^h, j_{\bar{O}}, k_O^h, l_{\bar{q}}, m_q^h)$	ggg	$G \otimes E$

[Fox,Glover,MM '24]

20



non-trivial function of the three-particle phase space



[Braun-White, Nigel, Preuss '22,'23]

With the **designer antenna algorithm**, it is possible to construct antenna functions with more than two hard radiators: generalized antenna functions.

Analytical integration made particularly simple thanks to a convenient choice of 5→3 momentum mapping.

$$p_I = p_i + p_j - \frac{s_{ij}}{s_{ik} + s_{jk}} p_k$$

$$\max_{5 \to 3}: p_K = \left(1 + \frac{s_{ij}}{s_{ik} + s_{jk}} + \frac{s_{lm}}{s_{lk} + s_{mk}}\right) p_k$$
 iterated dipole mapping
$$p_M = p_l + p_m - \frac{s_{lm}}{s_{lk} + s_{mk}} p_k$$

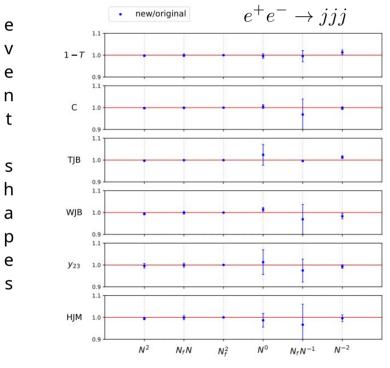
Туре	Name and $parton\ content$	Reconstructed hard partons	$X_3^0\otimes X_3^0$
quark-antiquark-gluon	$A^0_{5,3}(i^h_q,j_g,k^h_g,l_g,m^h_{\bar{q}})$	$qgar{q}$	$D\otimes \overline{D}$
	$B^0_{5,3}(i^h_{\bar{q}},j_g,k^h_Q,l_{\bar{Q}},m^h_q)$	$qgar{q}$	$A\otimes \overline{E}$
	$\widetilde{A}^0_{5,3}(i^h_{\bar{q}},j_{\gamma},k^h_q,l_g,m^h_g)$	$\bar{q}qg$	$A\otimes D$
	$\widetilde{B}_{5,3}^{0}(i_{\bar{q}}^{h}, j_{\gamma}, k_{q}^{h}, l_{\bar{Q}}, m_{Q}^{h})$	$\bar{q}qg$	$A \otimes E$
quark-antiquark-quark	$\widetilde{\widetilde{A}}_{5,3}^0(i_q^h,j_\gamma,k_{\bar{q}}^h,l_g,m_Q^h)$	$q\bar{q}Q$	$A\otimes A$
quark-gluon-gluon	$D^0_{5,3}(i^h_q,j_g,k^h_g,l_g,m^h_g)$	qgg	$D\otimes F$
	$E_{5,3}^{0(a)}(i_q^h,j_{\bar{Q}},k_Q^h,l_g,m_g^h)$	qgg	$E\otimes D$
	$E_{5,3}^{0(b)}(i_q^h, j_g, k_{\bar{Q}}^h, l_Q, m_g^h)$	qgg	$A\otimes \overline{G}$
	$E_{5,3}^{0(c)}(i_q^h,j_g,k_g^h,l_{\bar{Q}},m_Q^h)$	qgg	$D\otimes G$
	$E_{5,3}^{0,(d)}(i_Q^h,j_{\bar{Q}},k_q^h,l_g,m_g^h)$	gqg	$\overline{E}\otimes D$
	$K^0_{5,3}(i^h_q,j_{\bar{Q}},k^h_Q,l_{\bar{R}},m^h_R)$	qgg	$E \otimes E$
gluon-gluon-gluon	$F^0_{5,3}(i^h_g,j_g,k^h_g,l_g,m^h_g)$	ggg	$F\otimes F$
	$G_{5,3}^{0(a)}(i_{\bar{q}}^h,j_q,k_g^h,l_g,m_g^h)$	ggg	$\overline{G}\otimes F$
	$G_{5,3}^{0(b)}(i_g^h, j_{\bar{q}}, k_q^h, l_g, m_g^h)$	ggg	$G\otimes D$
	$H_{5,3}^{0(a)}(i_{\bar{Q}}^h,j_Q,k_g^h,l_{\bar{q}},m_q^h)$	ggg	$\overline{G}\otimes G$
	$H_{5,3}^{0(b)}(i_g^h,j_{\bar{Q}},k_Q^h,l_{\bar{q}},m_q^h)$	ggg	$G\otimes E$

[Fox,Glover,MM '24]

Generalized antenna functions: validation and applications

NNLO correction to event shapes in e⁺e⁻ annihilation:

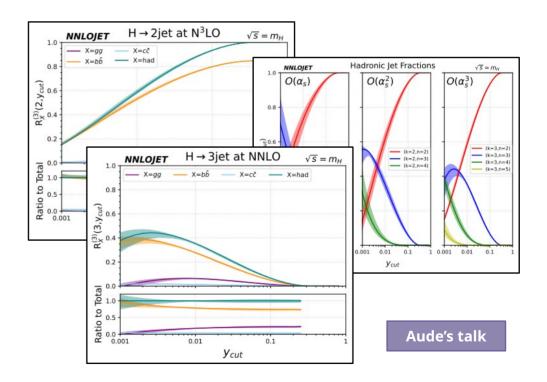
- perfect agreement with original method
- simpler subtraction terms
- up to 5-10x faster



[Fox,Glover,MM '24]

Hadronic Higgs decays:

- differences between H→bb and H→gg
- jet rates at order α_s³ (3jet @NNLO, 2jet @N³LO)



[Fox,Gehrmann-De Ridder,Gehrmann,Glover,MM,Preuss '25]

22

FIRST STEPS AND RESULTS AT N³LO WITH ANTENNA SUBTRACTION

Jet production at lepton colliders: e⁺e⁻→jj @N³LO

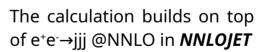
[Chen,Jakubcik,MM,Stagnitto '25]

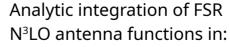
Simple process:

- only \mathbf{q} - \mathbf{q} N³LO antenna functions;
- only dipole-like correlations at N³LO;

Goals:

- definition of N³LO antenna functions;
- exploration of numerical challenges (IR stability of loop amplitudes);
- preparation of computational framework for more complicated processes;





[Gehrmann,Glover,Huss, Nieuhes,Zhang '17]

[Jakubcik,MM,Stagnitto '22] [Chen,Jakubcik,MM,Stagnitto '23]

standard matrix-element based antenna functions

Local subtraction at N³LO

Subtraction at N³LO:

$$\mathrm{d}\sigma_{N^3LO} = \int_n [\mathrm{d}\sigma^{VVV} - \mathrm{d}\sigma^W] + \int_n [\mathrm{d}\sigma^{RVV} - \mathrm{d}\sigma^U] + \int_{n+1} [\mathrm{d}\sigma^{RRV} - \mathrm{d}\sigma^T] + \int_{n+2} [\mathrm{d}\sigma^{RRR} - \mathrm{d}\sigma^S]$$

$$\text{triple-virtual subtraction term}$$

$$\text{double-real-virtual subtraction term}$$

$$\text{double-real-virtual subtraction term}$$

with:
$$\mathrm{d}\sigma^S=\mathrm{d}\sigma^{S_1}+\mathrm{d}\sigma^{S_2}+\mathrm{d}\sigma^{S_3} \qquad \mathrm{d}\sigma^U=\mathrm{d}\sigma^{V_2S_1}-\int_1\mathrm{d}\sigma^{V_1S_1}-\int_2\mathrm{d}\sigma^{S_2} \qquad \text{[Chen,Jakubcik,MM,Stagnitto '25]} \\ \mathrm{d}\sigma^T=\mathrm{d}\sigma^{V_1S_1}+\mathrm{d}\sigma^{V_1S_2}-\int\mathrm{d}\sigma^{S_1} \qquad \mathrm{d}\sigma^W=-\int\mathrm{d}\sigma^{V_2S_1}-\int\mathrm{d}\sigma^{V_1S_2}-\int\mathrm{d}\sigma^{S_3}$$

Rescue-system to trigger quadruple precision

one-loop double-unresolved quantities

two-loop single-unresolved quantities

Rescue-system to trigger **Taylor expansions** of

25

Challenge: numerical stability of

special functions 21/07/2025 Matteo Marcoli

Results

Basic checks: inclusive cross section

N³LO coefficient

$$\sigma^{(3)} = \sigma_0 \left(\frac{\alpha_s}{2\pi}\right)^3 \left(-105 \pm 11\right)$$

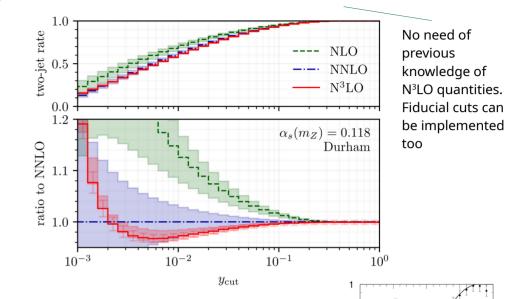
Monte Carlo error.

Not so small for inclusive quantities due to large cancellations: not the most clever way to compute inclusive XS.

$$\sigma_{\text{exact}}^{(3)} = \sigma_0 \left(\frac{\alpha_s}{2\pi}\right)^3 \left(-102.14...\right)$$

[Chetyrkin,Künn,Kwiatkowski '95]

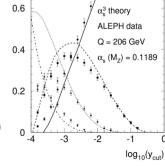
Two-jet rate at order $O(\alpha_s^3)$ (direct calculation)



Full agreement with indirect calculation of

[Gehrmann-De Ridder, Gehrmann, Glover, Heinrich '08]

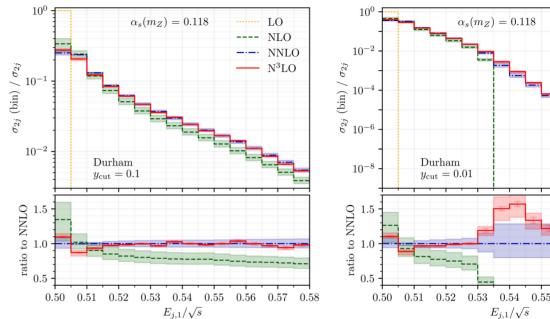
$$R_n^{(3)}(y_{\text{cut}}) = \frac{\Gamma_{\gamma^* \to \text{n jets}}^{(3)}(y_{\text{cut}})}{\Gamma_{\gamma^* \to \text{hadrons}}^{(3)}}$$
$$R_2^{(3)}(y_{\text{cut}}) = 1 - \sum_{n=3}^{5} R_n^{(3)}(y_{\text{cut}})$$

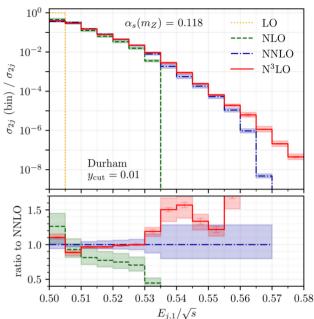


Results

Leading-jet energy:

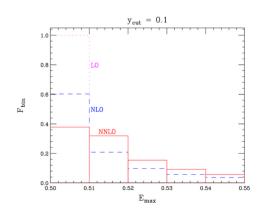
- defined on 2-jet events, bin-integrated;
- lower orders vanish quickly at large E_{i1} for smaller y_{cut} because energetic jets recoil against multiple emissions which are more likely to be clustered as three or more jets;
- again, the whole distribution can be obtained by combining e⁺e⁻→jjj @NNLO with the N3LO inclusive XS. It's a proof-of-principle application.



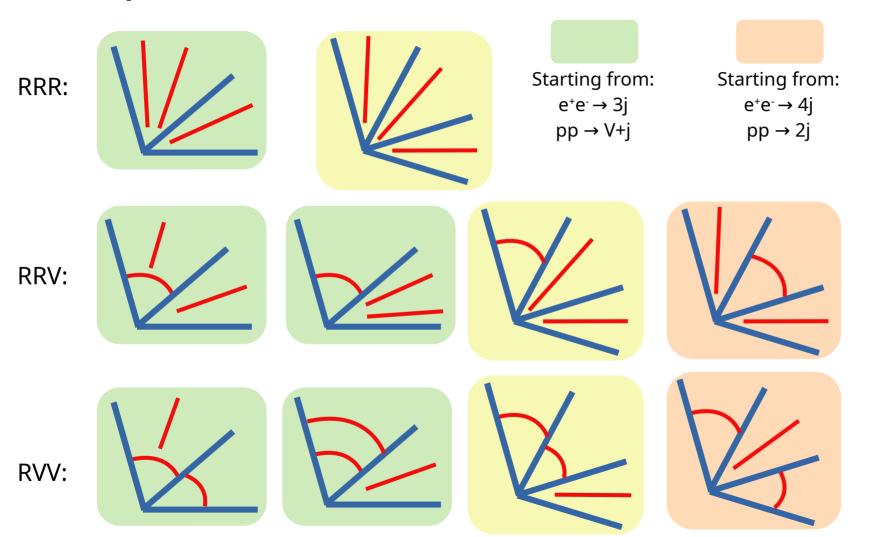


Full agreement up to NNLO with

[Anastasiou, Melnikov, Petriello '04]



How to proceed? Generalized antenna functions at N³LO



Special case for: $e^+e^- \rightarrow 3j$ $pp \rightarrow V+j$ General case for: $e^+e^- \rightarrow 4j$ $pp \rightarrow 2j$

SUMMARY AND OUTLOOK

NNLO may be **solved**, but still not so accessible. Several ongoing efforts towards automation and generalization. N³LO is very challenging, but (more than) first steps made in this direction already.

Generalized antenna functions yield a simpler and more efficient formulation of final-state IR subtraction. Outlook: extension to hadronic processes.

First application of antenna subtraction to a fully-differential **N³LO** calculation. Outlook: gradual extension to more complicated processes.

Thank you very much for your attention!

BACKUP SLIDES

Fixed-order calculations in QCD

pp → jjj event shapes with STRIPPER

Leading Order (LO)

Next-to-Leading Order (NLO) Next-to-Next-to Leading Order (NNLO) Next-to-Next-to-Next-to Leading Order (N³LO)

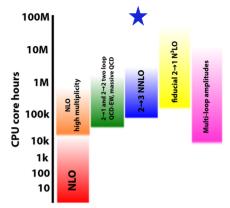
O(10%) - O(100%)

O(1%) - O(10%)

≤ O(1%)

>> accuracy, reduction of theory uncertainties

>>> complexity, manpower, computational cost



[Febres Cordero, von Manteuffel, Neumann '22]

Fixed-order calculations in QCD

pp → jjj event shapes with STRIPPER

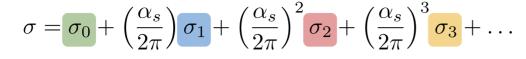
100Mi

10M

10k

100

CPU core hours 100k



Leading Order (LO)

Next-to-**Leading Order (NLO)**

Next-to-Next-to Leading Order (NNLO)

>>> complexity, manpower, computational cost

Next-to-Next-to-Next-to Leading Order (N3LO)

O(1%) - O(10%)

≤ O(1%)

NLO

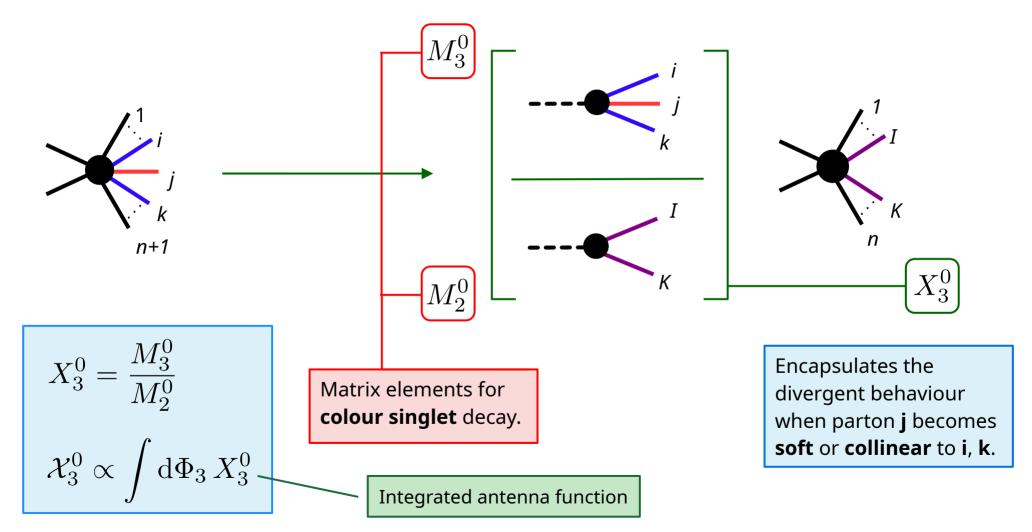
>> accuracy, reduction of theory uncertainties

Conditions to claim that infrared subtraction is **solved** at a N^kI O?

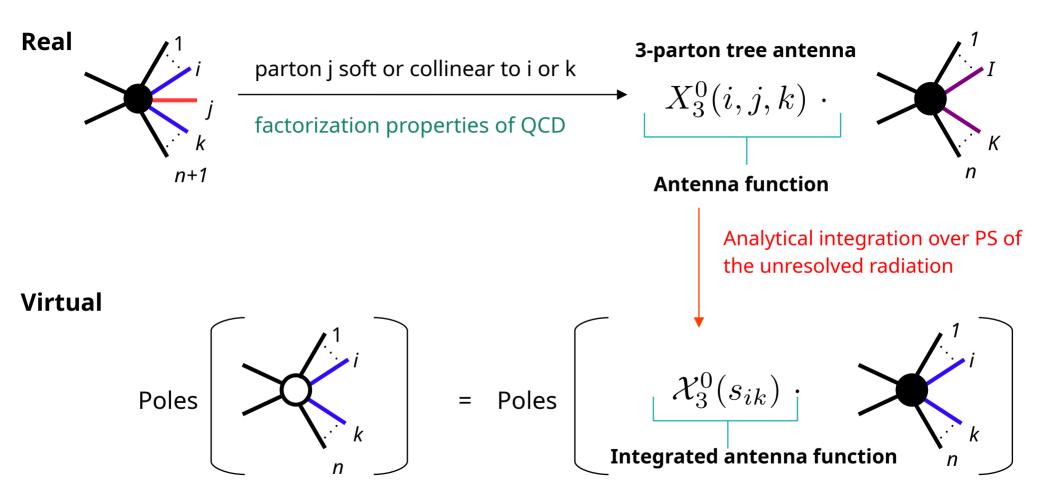
- Given matrix elements and resources, the N^kLO correction can be computed
- New N^kI O calculations are streamlined
- Different groups/approach available (validations, efficiency, ...)
- N^kLO calculations can be easily reproduced and performed by anyone
- N^kLO event generation is possible

21/07/2025 Matteo Marcoli 33

NLO: three-parton tree-level antenna functions

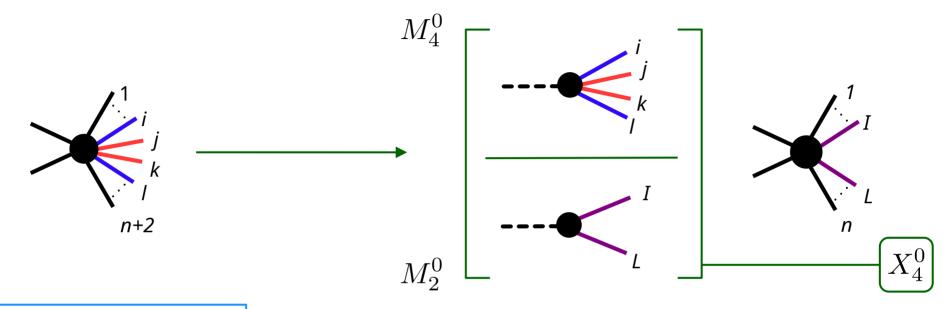


Antenna subtraction at NLO



[Gehrmann-De Ridder,Gehrmann,Glover '05] [Currie,Glover,Wells '13]

NNLO: four-parton tree-level antenna functions

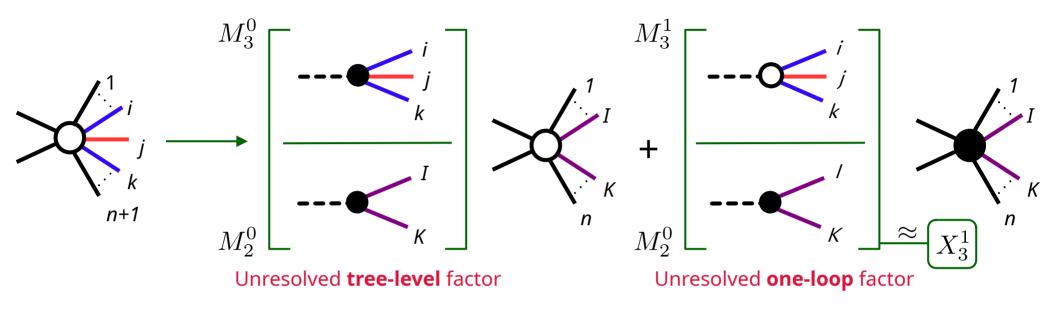


$$X_4^0 = \frac{M_4^0}{M_2^0}$$
 $\mathcal{X}_4^0 \propto \int d\Phi_4 \, X_4^0$

Four-parton tree-level antenna functions are extracted analogously to the three-parton ones

36

NNLO: three-parton one-loop antenna functions

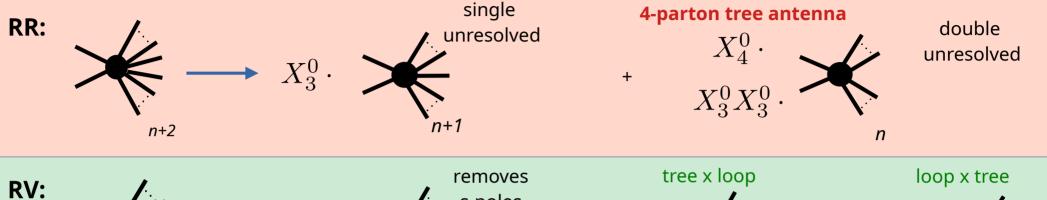


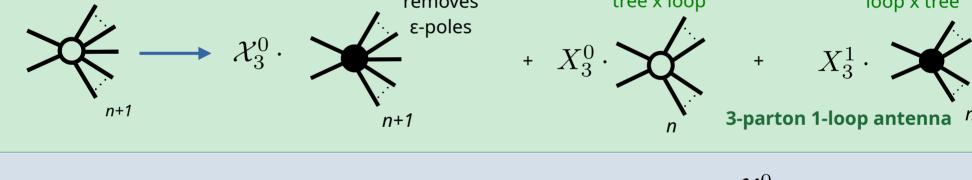
Three-parton one-loop antenna defined removing from the one-loop decay matrix element the unresolved tree-level configuration:

$$X_3^1 = \frac{M_3^1}{M_2^0} - X_3^0 \frac{M_1^2}{M_2^0}, \quad \mathcal{X}_3^1 \propto \int \mathrm{d}\Phi_3 \, X_3^1$$

Antenna subtraction at NNLO

[Gehrmann-De Ridder, Gehrmann, Glover '05] [Currie, Glover, Wells '13]



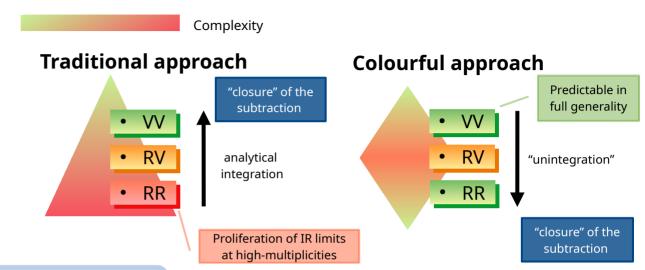


3-parton 1-loop antenna nVV:

Colourful antenna subtraction

Ultimate goal: combine **generalized antenna functions** with the **colourful antenna subtraction** method

[Chen,Gehrmann,Glover,Huss,MM '22] [Gehrmann,Glover,MM '23]



$$\mathrm{d}\sigma^T = \mathcal{N}_V \int \frac{\mathrm{d}x_1}{x_1} \frac{\mathrm{d}x_2}{x_2} \mathrm{d}\Phi_n \, J^n_n(\Phi_n) \, \left[2 \, \langle A^0_{n+2} | \mathcal{J}^{(1)} | A^0_{n+2} \rangle \right]$$
 one loop

$$d\sigma^{U} = \mathcal{N}_{VV} \int \frac{dx_{1}}{x_{1}} \frac{dx_{2}}{x_{2}} d\Phi_{n} J_{n}^{n}(\Phi_{n})$$

$$\times 2 \left\{ \langle A_{n+2}^{0} | \mathcal{J}^{(1)} | A_{n+2}^{1} \rangle + \langle A_{n+2}^{1} | \mathcal{J}^{(1)} | A_{n+2}^{0} \rangle - \frac{\beta_{0}}{\epsilon} \langle A_{n+2}^{0} | \mathcal{J}^{(1)} | A_{n+2}^{0} \rangle - \langle A_{n+2}^{0} | \mathcal{J}^{(1)} \otimes \mathcal{J}^{(1)} | A_{n+2}^{0} \rangle + \langle A_{n+2}^{0} | \mathcal{J}^{(2)} | A_{n+2}^{0} \rangle \right\}$$

Exploit **universal** IR singularity structure in virtual corrections to **systematically** construct real-radiation counterterms

39

two loops

Mapping (in)dependence

[Fox,Glover,MM '24]

Let's consider:

- **n**_p momenta {**p**} involved in an unresolved configuration
- **n**_q spectator momenta {**q**}

mapping to absorb the recoil of unresolved radiation:

$$\{p\} \, \to \, \{\widetilde{p}\}$$

$$\begin{array}{lll} & & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\$$

The mapping is chosen to induce a **factorization of the phase space**

$$\mathrm{d}PS_{n_p+n_q}(\{p\},\{q\}) = \frac{\mathrm{d}PS_X(\{p\}/\{\widetilde{p}\})}{\mathrm{d}PS_{n_{\widetilde{p}}+n_q}(\{\widetilde{p}\},\{q\})}$$
 unresolved phase-space

resolved phase-space: the measurement function acts on it

$$\mathrm{d}\sigma^{S} \propto \int \mathrm{d}P S_{n_{\widetilde{p}}+n_{q}}(\{\widetilde{p}\},\{q\}) \left[\int X(\{p\}) \mathrm{d}P S_{X}(\{p\}/\{\widetilde{p}\}) \right] M(\{\widetilde{p}\},\{q\}) J_{n_{jets}}^{(n_{\widetilde{p}}+n_{q})}(\{\widetilde{p}\},\{q\}) \right]$$

$$= \int \mathrm{d}P S_{n_{\widetilde{p}}+n_{q}}(\{\widetilde{p}\},\{q\}) \mathcal{X}(\{\widetilde{p}\}) M(\{\widetilde{p}\},\{q\}) J_{n_{jets}}^{(n_{\widetilde{p}}+n_{q})}(\{\widetilde{p}\},\{q\})$$

integrated unresolved factor

two mappings are equivalent if the yield the same $\mathcal{X}(\{\tilde{p}\})$

Mapping (in)dependence [Fox,Glover,MM '24]

two hard radiators: $n_{\widetilde{p}} = 2$, $\{p_1, \dots, p_{n_n}\} \to \{\widetilde{p}_A, \widetilde{p}_B\}$

$$s_{1...n_p} \equiv (p_1 + \dots + p_{n_p})^2 = (\widetilde{p}_A + \widetilde{p}_B)^2 \equiv s_{AB}$$

$$\mathcal{X}\left(\{\widetilde{p}_A,\widetilde{p}_B\}\right) = C(\epsilon)(s_{AB})^{\alpha} \text{ any momentum-conserving mapping gives same result}$$

three hard radiators: $n_{\widetilde{p}} = 3$, $\{p_1, \dots, p_{n_n}\} \to \{\widetilde{p}_A, \widetilde{p}_B, \widetilde{p}_C\}$

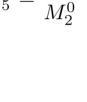
$$s_{1...n_p} \equiv (p_1 + \dots + p_{n_p})^2 = (\widetilde{p}_A + \widetilde{p}_B + \widetilde{p}_C)^2 \equiv s_{ABC}$$

$$\mathcal{X}\left(\{\widetilde{p}_A, \widetilde{p}_B, \widetilde{p}_C\}\right) = \sum_i C_i(\epsilon)(s_{AB})^{\alpha_i}(s_{AC})^{\beta_i}(s_{BC})^{\gamma_i} + \dots$$

many "unfixed" scales, different result for different mappings

N³LO antenna functions

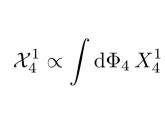
$$X_5^0 = \frac{M_5^0}{M_2^0}$$
 $\mathcal{X}_5^0 \propto \int \mathrm{d}\Phi_5 \, X_5^0$



Antenna

$$-X_4^0$$

$$X_4^1 = \frac{M_4^1}{M_2^0} - X_4^0 \frac{M_2^1}{M_2^0}$$



$$---\bullet$$

$$-X_3^0 \cdot \frac{---\bullet}{---\bullet} -X_3^1 \cdot \frac{---\bullet}{---\bullet} X_3^2 = \frac{M_3^2}{M_2^0} - X_3^0 \frac{M_2^2}{M_2^0} - X_3^1 \frac{M_2^1}{M_2^0}$$

$$X_3^2 = \frac{M_3^2}{M_2^0} - X_3^1 \frac{M_2^1}{M_2^0} X_3^2 = \int d\Phi_3 X_3^2$$

Integrated

antenna

Analytic integration of final-state N³LO antenna functions

Integration of renormalized matrix elements for colour-singlet decay over the fully inclusive phase

space:

$$\int d\Phi_5 M_5^0, \quad \int d\Phi_4 M_4^1, \quad \int d\Phi_3 M_3^2, \quad \int d\Phi_2 M_2^3$$

[Jakubcik,MM,Stagnitto '22] [Chen, lakubcik, MM, Stagnitto '23] **Two-parton three-loop**, for validation:

$$\int {\rm d}\Phi_5 M_5^0 + \int {\rm d}\Phi_4 M_4^1 + \int {\rm d}\Phi_3 M_3^2 + \int {\rm d}\Phi_2 M_2^3 = \begin{array}{c} \text{finite N}^3 \text{LO} \\ \text{inclusive XS} \end{array}$$

Master integrals from

[Gituliar, Magerya, Pikelner '18] [Magerya, Pikelner '19]

Reverse unitarity:

$$2\pi i \delta^+(p^2)
ightarrow rac{1}{p^2-i0} - rac{1}{p^2+i0}$$
 [Cutkosky '60] [Anastasiou, M

[Anastasiou, Melnikov '02,'03]

- Phase space and (genuine) loop integrals addressed simultaneously;
- Systematic treatment of all four layers within a common framework;

