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Parameter Space

Can exchange integrals over loop momenta for integrals over parameters 
  
Feynman Parametrisation 

 

 homogeneous polynomials of degree  and  

 arbitrary hyperplane* that bounds the integral in  for at least one  
*generally, integrate over positive projective simplex   

Many Other Parametrisations 
Schwinger 

Lee-Pomeransky Parametrisation 

Baikov & Loop-by-loop Baikov

J(s) =
Γ(ν − LD/2)
∏e∈G Γ(νe) ∫

∞

0
[dx] xνδ (1 − α(x)) [𝒰(x)]ν−(L+1)D/2

[ℱ(x; s) − iδ]ν−LD/2

𝒰, ℱ L L + 1

α(x) ℝN
>0 xi > 0

ℙN−1
>0

[dx] = ∏
e∈G

dxe

xe

xν = ∏
e∈G

xνe
e

Lee, Pomeransky 13; Gardi, Herzog, SJ, Ma, Schlenk 22;…

Baikov 96, 96, 05; Britto, Duhr, Hannesdottir, Mizera 24; Frellesvig 24; 
Correia, Giroux, Mizera 25;…
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Feynman Integrals in a Nutshell

  

Singularities 

1. UV/IR singularities when some  (or ) simultaneously 

2. Thresholds when  vanishes inside integration region,  gives causal 

(Feynman) prescription

J(s) ∼ ∫ℝN
≥0

[dx] xν [𝒰(x)]N−(L+1)D/2

[ℱ(x; s) − iδ]N−LD/2
δ(1 − α(x))

x → 0 x → ∞

ℱ lim
δ→0+
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Kinematic Regions

The signs of the monomials of  depend on kinematic invariants and masses 

If all signs are the same:                             manifestly same-sign regime 
If :                          same-sign (Euclidean) regime 
If :                          same-sign (Pseudo-Euclidean) regime 
Otherwise:                                                  mixed-sign (Minkowski) regime 

For fixed : 
The equation   (variety of ) defines a codim-1 hypersurface

ℱ

∀x ∈ ℝN
>0 : ℱ(x; s) > 0

∀x ∈ ℝN
>0 : ℱ(x; s) < 0

s = (s1, …, sM, m2
1 , …, m2

N)
ℱ(x; s) = 0 ℱ

𝒰(x) = ∑
T1

∏
e∉T1

xe,

ℱ0(x; s) = ∑
T2

(−s
T2) ∏

e∉T2

xe, ℱ(x; s) = ℱ0(x; s) + 𝒰(x)∑
e

m2
e xe,
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Landau Equations

Landau Equations (parameter space):  
Necessary, but not sufficient, conditions to have a singularity  

 

Leading: 

1) ℱ(x; s) = 0

2) xj
∂ℱ(x; s)

∂xj
= 0 ∀j

xj ≠ 0∀j

Can think of solutions of leading Landau equations as ``pinched’’ surfaces on 

which several hypersurfaces  intersect
∂ℱ(x; s)

∂xj
= 0

Method of Regions: Smirnov 91; Beneke, Smirnov 97; Jantzen, A. Smirnov, V. Smirnov 12 
Landau Discriminants: Mizera, Telen 22; Fevola, Mizera, Telen 23; Fevola, Mizera, Telen 23 
Unitarity Cuts/ Discontinuities: Hannesdottir, Mizera 22; Britto, Duhr, Hannesdottir, Mizera 24 
… (your favourite topic here)
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3-loop Crown Example

𝒰(α) = x0x2x4 + x0x2x5 + x0x2x6 + (29 terms)

= ∫
∞

0
dx0 …dx7

𝒰(x)4ϵ

ℱ(x; s)2+3ϵ
δ(1 − x7)

ℱ(x; s) = −s12 (x1x4 − x0x5) (x3x6 − x2x7) − s13 (x1x2 − x0x3) (x5x6 − x4x7),
∂ℱ(x; s)

∂x0
= s12 x5(x3x6 − x2x7) + s13 x3(x5x6 − x4x7),

⋮
∂ℱ(x; s)

∂x7
= s12 x2(x1x4 − x0x5) + s13 x4(x1x2 − x0x3)

Can have a leading Landau singularity with generic kinematics (arbitrary ) 
when each factor of  vanishes! 

Gives rise to new regions when this integral appears in an expansion

s12, s13
ℱ

p1 p3

p2 p4

(a) G••

p1 p3

p2 p4

(b) G•s

p1 p3

p2 p4

(c) G•t

p1 p3

p2 p4

(d) G•u

p1 p3

p2 p4

(e) Gss

p1 p3

p2 p4

(f) Gtt

p1 p3

p2 p4

(g) Guu

p1 p3

p2 p4

(h) Gst

p1 p3

p2 p4

(i) Gsu

p1 p3

p2 p4

(j) Gtu

Figure 2: All the four-point three-loop graphs with possibly hidden Landau singularities.

variables. Might be good to say something about the logic of inserting the derivative with the
imaginary part.]Einan

F(e↵) = F(↵) � i

X

j

⌧j
@F(↵)

@↵j
+ O(⌧

2
), ⌧j = �j↵j(1 � ↵j)

@F(↵)

@↵j
, (3.18)

– 12 –

Halliday 64; Landshoff 72; Botts, Sterman 89; Gardi, Herzog, Jones, Ma 24
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Landau Equations

Landau Equations (parameter space):  
Necessary, but not sufficient, conditions to have a singularity  

 

Leading: 

1) ℱ(x; s) = 0

2) xj
∂ℱ(x; s)

∂xj
= 0 ∀j

xj ≠ 0∀j

What happens when we satisfy only the first equation? 

Let’s consider this in the context of direct (numerical) integration in param. space
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Contour Deformation

5.3. Deformation of the integration contour

after having integrated out the loop momenta, see Ref. [300]. The leading Landau
singularity is again given by the solution to the system of equations assuming an empty
set of vanishing Feynman parameters.
How we deal with these singularities will be described in the following section.

5.3 Deformation of the integration contour

5.3.1 Cauchy theorem

Re(z)

Im(z)

10

Figure 5.2: Schematic picture of the closed contour avoiding poles on the real axis.

Unless the function F is of definite sign for all possible values of invariants and Feyn-
man parameters, the denominator of a multi-loop integral will vanish within the integra-
tion region on a hypersurface given by the solutions of the Landau equations. To avoid
the non-physical poles on the real axis, the Cauchy theorem

∮

c

N∏

j=1

dzjI(z⃗) =
∫ 1

0

N∏

j=1

dxjI(x⃗) +
∫ 0

1

N∏

j=1

dzjI(z⃗) = 0 (5.5)

can be exploited, where Re(z⃗) = x⃗. To be able to use the theorem, the original integrand,
depending only on the real coordinates xj, is analytically continued to the complex plane.
The coordinate transformation reads

∫ 1

0

N
∏

j=1

dxjI(x⃗) =
∫ 1

0

N
∏

j=1

dxj

∣
∣
∣
∣

(
∂zk(x⃗)
∂xl

)∣
∣
∣
∣
I(z⃗(x⃗)) , (5.6)

where the new complex coordinates z⃗ describe a path parametrized by the variables x⃗.
With a given description of the coordinates z⃗, the Cauchy theorem in Eq. (5.5) can be
formulated. It is valid in this form as long as the deformation is in accordance with
the causal iδ prescription of the Feynman propagators, as the region enclosed by the
integration contour then does not contain any singular points, compare Fig. 5.2. It is
important to keep in mind, that no poles should be crossed while changing the integration
path, otherwise Eq. (5.5) is no longer valid.

55

Feynman integral (after integrating -func.): δ

J(s) ∼ ∫
1

0
[dx] xν [𝒰(x)]N−(L+1)D/2

[ℱ(x; s) − iδ]N−LD/2

 tells us how to causally deform contour 
For numerics we need to explicitly pick a contour 

Let :    

Choose  with small  

Can also generalise  and train the deformation with a Neural Network

ℱ → ℱ − iδ

z = x − iτ ℱ(z; s) = ℱ(x; s) − i∑
j

τj
∂ℱ(x; s)

∂xj
+ 𝒪(τ2)

τj = λj xj(1 − xj)
∂ℱ(x; s)

∂xj
λj > 0

λj → λj(x)

Soper 99; Binoth, Guillet, Heinrich, Pilon, Schubert 05; Nagy, Soper 06; Anastasiou, Beerli, Daleo 07, 08; Beerli 08; 
Borowka, Carter, Heinrich 12; Borowka 14; Borinsky, Munch, Tellander 23; …

Winterhalder, Magerya, Villa, SJ, Kerner, Butter, Heinrich, Plehn 22

−i∑
j ( ∂ℱ

∂xj )
2

correct deformation sign
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Contour Deformation: Example

Re(z1)

Im
(z

1)

|ℱ |

Re(z1)

Im
(z

1)

Im(ℱ)

𝒰(x) = x1 + x2

ℱ(x, s) = −sx1x2 + (m2x1+m2x2) (x1 + x2)

= ∫
∞

0
dx1 dx2

𝒰(x)−2+2ϵ

ℱ(x; s)ϵ
δ(1 − x1 − x2) → ∫γ

dz1
𝒰(z1)−2+2ϵ

ℱ(z1; s, m)ϵ
= ∫

1

0
dx |Jz |

𝒰(z1(x))−2+2ϵ

ℱ(z1(x); s, m)ϵ
s

m

m

(a)

s

m1

m2

(b)

s

m

m

m

(c)

s m
m
m

m

(d)

Figure 5: The L-loop banana integrals resolved in this section (L 2 {1, 2, 3}): the equal
mass (5a) and unequal mass (5b) bubble integrals, the equal mass elliptic sunrise integral
(5c), and the 3-loop equal mass banana integral (5d).

4.2 Massive Examples

In this section, we present 1-, 2- and 3-loop examples of integrals with massive propagators.
Understanding the resolution of such integrals is important for applying the method to
the calculation of massive phenomenologically-relevant amplitudes, for example, involving
massive quarks, electroweak bosons or Higgs bosons. The primary complication in the
massive case is that the F polynomial gets modified by a term proportional to U such that
each Feynman parameter associated with a massive propagator may appear quadratically
in the monomials of F ,

F(x; s) = F0(x; s) + U(x; s)
NX

j=1

m2
jxj , (4.70)

where F0 is the polynomial corresponding to the massless version of the integral. We analyse
the 1-loop massive bubble and triangle initially in Sections 4.2.1, 4.2.2 and 4.2.3 before
applying the method to 2-loop elliptic and 3-loop hyperelliptic examples in Sections 4.2.4
and 4.2.5, respectively.

4.2.1 Equal Mass Bubble

To investigate how massive integrals can be resolved, we begin by considering the bubble
integral in Fig. 5a with internal propagators of equal (positive) mass, m2 > 0. In Feynman
parameter space, the integral can be written as,

Jbub(s) = � (✏) lim
�!0+

Ibub(s; �), (4.71)

Ibub(s; �) =

Z

R2
�0

dx1dx2
U(x)�2+2✏

(F(x; s) � i�)✏
� (1 � ↵(x)) . (4.72)

with the Symanzik polynomials,

U(x) = x1 + x2, (4.73)
F(x; s) = �sx1x2 + m2 (x1 + x2)

2 . (4.74)

Making the choice ↵(x) = x1 + x2, we can perform the x2 integral to obtain,

Ibub(s; �) =

Z 1

0
dx1

1

(�sx1 (1 � x1) + m2 � i�)✏
. (4.75)

– 23 –

sR = {s > 4m2, m2 > 0}

Jacobian det
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Contour Deformation

Downsides of contour deformation: 

 1. Real valued integrand  complex valued integrand (slower numerics) 

 2. Large and complicated Jacobian from  (can be optimised, dual numbers?) 

 3. Increases variance of function (integrand can be both  and ) 

 4. Arbitrary and sensitive to choice of contour 

 5. Sometimes fails analytically and/or numerically 

Summary: it is slow, arbitrary and can fail

→

x → z

> 0 < 0
Borinsky, Munch, Tellander 23; Suggestion by Hirschi

e.g. Janßen, Poncelet, Schumann 25



Positive Integrands
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Avoiding* Contour Deformation

Various efforts to avoid/mitigate contour deformation in numerical contexts

Kermanschah 21; Kermanschah, Vicini 24;  
Locally finite amplitudes: Anastasiou, Haindl, Sterman, Yang, Zeng 20; Anastasiou, Sterman 22; Anastasiou, Karlen, Sterman, Venkata 24; 

Pittau, Webber 22; Pittau 24; GLoop code

J = lim
δ→0 ∫

1

−1
dx

F(x)
x + iδ

→
−iπ
gδ ∫

1−δ/π

δ/π
dα (1 + i

x(α; δ)
δ ) F(x(α; δ)),

Finite  but flatten behaviour of integral near  with variable changesδ ≠ 0 δ → 0

x =
δ

tan [π(1 − α)]

Threshold subtraction (used in context of Loop-Tree Duality) 

Numerical integration of the double- and triple-box integrals using threshold subtraction Matilde Vicini

but they yield different algebraic representations (of the same expression). Their derivation exploits

that each (quadratic) propagator denominator

!! = "2
! − #2

! + i$ = ("0
! − %!) ("

0
! + %!) (7)

has two poles at positive and negative on-shell energies "0
! = ±%! . After the integration over the

energy component of the loop momenta, the integrand is given by

∫ "#
$

"∏
#=1

d&0
#

(2')
&'
(
G(") ({&!}) = (−i)" I(")

(
{"&!}

)
, (8)

where G(") denotes the integrand of ( (") . I(") is a rational function of the on-shell energies,

whose integral over the spatial loop momentum space we denote as ) (") . The remaining poles are

precisely the threshold singularities that are addressed in the next section.

We will implement our expressions as in ref. [2]. Since CFF, unlike LTD, has no spurious

singularities, it is more numerically stable and it is therefore our preferred representation for

numerical evaluation. On the other hand, the LTD representation is more compact and we use it for

the residues needed for the threshold counterterms presented below in eq. (17). We generate these

expressions using Form [29–32] and Python, as described in [2].

2.2 Subtraction of threshold singularities

For our scalar integrals, we find the threshold singularities listed as Cutkosky cuts [33] in

figs. 1 and 2. Alternatively, they can be determined from the denominator structure in the CFF or

LTD expression. The threshold singularities illustrated in fig. 1 are

*1 = %2 + %1 − +0
2 − +0

1 , *2 = %6 + %5 − +0
2 − +0

1 , (9)

*3 = %2 + %4 + %5 − +0
2 − +0

1 , *4 = %6 + %4 + %1 − +0
2 − +0

1 , (10)

*5 = %2 + %3 − +0
1 , *6 = %6 + %4 + %3 − +0

1 , (11)

*7 = %3 + %1 − +0
2 , *8 = %4 + %3 + %5 − +0

2 , (12)

*9 = %7 + %5 − "0
1 , *10 = %7 + %4 + %1 − "0

1 , (13)

*11 = %6 + %7 + "0
1 − +0

2 − +0
1 , *12 = %2 + %7 + %4 + "0

1 − +0
2 − +0

1 , (14)

+1 "2

+2 "1

&1 − +1 &2 − "1

&1 − +1 − +2

&1 &2

&2 − +1 − +2

&1 − &2

Figure 1: Cutkosky cuts of the double-box diagram with massive external legs.

3

Locate thresholds of integral/amplitude, 
subtract using local counterterms 

Dispersive/absorptive parts can be 
computed separately
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Picture in N-dimensions

𝒰(x) = x1 + x2

ℱ(x, s) = −sx1x2 + (m2x1+m2x2) (x1 + x2)= ∫
∞

0
dx1 dx2

𝒰(x)−2+2ϵ

ℱ(x; s)ϵ
δ(1 − x1 − x2)s

m

m

(a)

s

m1

m2

(b)

s

m

m

m

(c)

s m
m
m

m

(d)

Figure 5: The L-loop banana integrals resolved in this section (L 2 {1, 2, 3}): the equal
mass (5a) and unequal mass (5b) bubble integrals, the equal mass elliptic sunrise integral
(5c), and the 3-loop equal mass banana integral (5d).

4.2 Massive Examples

In this section, we present 1-, 2- and 3-loop examples of integrals with massive propagators.
Understanding the resolution of such integrals is important for applying the method to
the calculation of massive phenomenologically-relevant amplitudes, for example, involving
massive quarks, electroweak bosons or Higgs bosons. The primary complication in the
massive case is that the F polynomial gets modified by a term proportional to U such that
each Feynman parameter associated with a massive propagator may appear quadratically
in the monomials of F ,

F(x; s) = F0(x; s) + U(x; s)
NX

j=1

m2
jxj , (4.70)

where F0 is the polynomial corresponding to the massless version of the integral. We analyse
the 1-loop massive bubble and triangle initially in Sections 4.2.1, 4.2.2 and 4.2.3 before
applying the method to 2-loop elliptic and 3-loop hyperelliptic examples in Sections 4.2.4
and 4.2.5, respectively.

4.2.1 Equal Mass Bubble

To investigate how massive integrals can be resolved, we begin by considering the bubble
integral in Fig. 5a with internal propagators of equal (positive) mass, m2 > 0. In Feynman
parameter space, the integral can be written as,

Jbub(s) = � (✏) lim
�!0+

Ibub(s; �), (4.71)

Ibub(s; �) =

Z

R2
�0

dx1dx2
U(x)�2+2✏

(F(x; s) � i�)✏
� (1 � ↵(x)) . (4.72)

with the Symanzik polynomials,

U(x) = x1 + x2, (4.73)
F(x; s) = �sx1x2 + m2 (x1 + x2)

2 . (4.74)

Making the choice ↵(x) = x1 + x2, we can perform the x2 integral to obtain,

Ibub(s; �) =

Z 1

0
dx1

1

(�sx1 (1 � x1) + m2 � i�)✏
. (4.75)

– 23 –

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

ℱ = 0

ℱ = 0

δ(1 − x1 − x2)

Singularities: live on boundary hypersurface  -variety 
                                   (codim-1)                           (codim-1)

∩ ℱ

Re(z1)

Im
(z

1)

|ℱ |

sR = {s > 4m2, m2 > 0}
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Avoiding Contour Deformation

Idea: 
1. Construct transformations of the Feynman parameters which map  to 
boundaries of integration for a given kinematic region  

2. For transformations which make  non-positive, factor out overall minus sign 
(using the  prescription to generate the causally correct imaginary part) 

3. Stitch together the resulting integrals 

  

The individual integrals  have real non-negative integrands 

 no contour deformation, trivial analytic continuation, faster to integrate

ℱ(x; s) = 0
sR = {smin < s < smax}

ℱ
iδ

J(s) =
N+

∑
n+=1

J+,n+(s) + lim
δ→0+

(−1 − iδ)−(ν − LD/2)
N−

∑
n−=1

J−,n−(s)

{J+
n+

, J−
n−

}
⟹



Massless 1-loop On-Shell Box 

Kinematics: 

Resolution: 

Can bisect domain in a single variable  (Univariate Bisectable) 

 to :                                gives   

 to :   with      gives  

x1

ℱ(x; s) = 0 x1 = 0 x1 → y′�1 = x1 + f (x≠1) ℱ−(x; s) = s12x1x2,

ℱ(x; s) = 0 x1 → ∞ x1 → y1 =
x1

x1 + xj
f (x≠1) xj ≠ x1 ℱ+(x; s) =

(−s13)x3x2
4

x1 + x4
,

p1

p2

p3

p4

x1

x4

x2

x3

(a)

p1

p2

p3

p4

x1

x4

x2

x3

(b)

p1

p2

p5

p4

p3

x5

x4

x3

x2

x1

(c)

Figure 1: The massless box with all on-shell legs (1a), an off-shell leg (p1) (1b) and the
massless pentagon (1c).

In the remainder of this work we will focus on studying individual integrals involving
internal masses including integrals known to be elliptic and hyperelliptic. In these cases,
we will directly inspect the geometry of the variety of F and derive a valid decomposition,
demonstrating that this principle can be applied for a wide class of Feynman integrals.
With our current methods, we will find that, in contrast to Algorithm 1, we often need
more than one positive and one negative integrand, motivating the general decomposition
formula of Eq. (3.1). ]Stephen

4 Examples

4.1 Massless Examples

In this section, we provide examples of massless integrals which are resolved by the algorithm
presented in Section 3.2. We show that this procedure can be successfully applied to
several integrals with up to 3 loops (including non-planar integrals) and up to 5 legs. For
pedagogical reasons, we apply each step of the algorithm in detail to a simple massless box
with on-shell legs before presenting the remaining examples more succinctly.

4.1.1 1-Loop Box with On-Shell Legs

To clarify the application of the algorithm presented in Section 3.2, let us begin by analysing
the simple case of a 1-loop massless box with all external legs on-shell, shown in Fig. 1a.
Each step will be carried out in detail for this simple example in the hope that this illumi-
nates the abstract procedure.

The integral we wish to resolve can be written in Feynman parameter space as,

Jbox(s) = � (2 + ✏) lim
�!0+

Ibox(s; �), (4.1)

Ibox(s; �) =

Z

R4
�0

4Y

i=1

dxi
U(x)2✏

(F(x; s) � i�)2+✏ � (1 � ↵(x)) , (4.2)

where the U(x) and F(x; s) polynomials are given by

U(x) = x1 + x2 + x3 + x4, (4.3)

– 12 –
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A First Example

Jbox(s) = Γ (2 + ϵ) lim
δ→0+

Ibox(s; δ),

Ibox(s; δ) = ∫ℝ4
≥0

dx ℐ(x; s) δ(1 − α(x) = ∫ℝ4
≥0

4

∏
i=1

dxi
𝒰(x)2ϵ

(ℱ(x; s) − iδ)2+ϵ δ (1 − α(x))
𝒰(x) = x1 + x2 + x3 + x4

ℱ(x; s) = − s12x1x2 − s13x3x4

sij = (pi + pj)2,
sphys = {0 < s12 < ∞, − s12 < s13 < 0}

{ℱ(x; s) < 0} ∪ {0 < x} ∪ sR,
{−s12x1x2 − s13x3x4 < 0} ∪ {0 < x1, 0 < x2, 0 < x3, 0 < x4} ∪ sphys,

{
−s13x3x4

s12x2

f(x≠1)

< x1} ∪ {0 < x2, 0 < x3, 0 < x4} ∪ sphys solve for x1

x≠i = x∖{xi} = {x1, …, xi−1, xi+1, …xN}



Resulting integrands product of dim. reg. polynomials that are 

Positive in  & Homogeneous (by construction) 

1) 

2) 

Final Result

ℝN
>0
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A First Example (II)

𝒥−(x) = 1, 𝒰−(x) = x1 + x2 + x3 + x4 +
−s13x3x4

s12x2
, ℱ−(x; s) = s12x1x2

ℐ−
box(x; s) = 𝒥−(x)

𝒰−(x)2ϵ

ℱ−(x; s)2+ϵ
= x−2−ϵ

1 (s12x2)−2−3ϵ(s12x2 (x1 + x2 + x3 + x4) − s13x3x4)
2ϵ

𝒥+(x) =
(−s13)x3x2

4

s12x2(x1 + x4)2
, 𝒰+(x) =

x1

x1 + x4

(−s13)x3x4

s12x2
+ x2 + x3 + x4, ℱ+(x; s) =

(−s13)x3x2
4

x1 + x4

ℐ+
box(x; s) = 𝒥+(x)

𝒰+(x)2ϵ

ℱ+(x; s)2+ϵ
= (x1 + x4)−ϵ (s12x2)−1−2ϵ (−s13x3x2

4)−1−ϵ (s12x2 (x1 + x4) (x2 + x3 + x4) − s13x1x3x4)
2ϵ

Jbox(s) = Γ (2 + ϵ) lim
δ→0+

Ibox(s; δ)

Ibox(s; δ) = I+
box(s) + (−1 − iδ)−2−ϵ I−

box(s)
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Algorithm: Univariate Bisectable Integrals

For univariate bisectable in  integrals, we can formulate simple pseudo-algorithm 

Reduced system conditions: 

 

Transformations: 

 

Algorithm either finds bisection of  in  or shows that one does not exist

sR

{0 < xi < f (x≠i)} ∪ {0 < x≠i} ∪ sR, (1)

{f (x≠i) < xi} ∪ {0 < x≠i} ∪ sR, (2)

yi =
xi

xi + xj
f (x≠i), y′�i = xi + f (x≠i)

ℐ(x; s, δ) sR

Algorithm 1: Univariate Bisection (UB)
Input: I(x; s; �), sR
Output: I

+(x; s), I
�(x; s)

foreach xi 2 x do
Let r = Reduce[{F(x; s) < 0} [ {0 < x} [ sR, xi];
if r ⇠ (3.5) then

Let I
�(x; s) = J (x 6=i, yi) I(x 6=i, yi; �s; 0)

Let I
+(x; s) = J (x 6=i, y0i) I(x 6=i, y0i; s; 0)

return I
+(x; s), I

�(x; s)
else if r ⇠ (3.6) then

Let I
�(x; s) = J (x 6=i, y0i) I(x 6=i, y0i; �s; 0)

Let I
+(x; s) = J (x 6=i, yi) I(x 6=i, yi; s; 0)

return I
+(x; s), I

�(x; s)
end
return ¬UB in sR

The Reduce procedure attempts to solve the system of inequalities in the variable xi and
is implemented, for example, in the Mathematica computer algebra system. The forms of
the reduced system, r, for which a bisection is valid are given by,

{0 < xi < f (x 6=i)} [ {0 < x 6=i} [ sR, (3.5)
{f (x 6=i) < xi} [ {0 < x 6=i} [ sR, (3.6)

where f(x 6=i) is a rational function with unit degree of homogeneity. If a valid bisection
can be found then we construct a transformation for the bisection parameter, xi, that maps
the variety to an integration boundary. If the reduced system r is of form Eq. (3.5) then
we map F = 0 to xi ! 1 while keeping the boundary at xi = 0 fixed. If r is of the form
Eq. (3.6) then we instead map the variety F = 0 to xi = 0 while keeping the boundary at
xi ! 1 fixed. These mappings can be achieved by substituting xi with yi or y0i, given by

yi =
xi

xi + xj
f (x 6=i) , (3.7)

y0i = xi + f (x 6=i) . (3.8)

In the mapping of Eq. (3.7) the variable xj 6= xi appearing in the denominator is an arbitrary
Feynman parameter. The function J (x 6=i, yi) appearing in the algorithm is the Jacobian
determinant resulting from the change of variables from xi to yi. When defining I

�(x; s)

we factor a minus sign out of the F-polynomial, we indicate this in our algorithm by calling
I with argument �s, this is equivalent as only F initially depends on the kinematics and it
is linear in the squared kinematic parameters. If the algorithm succeeds then it will return
the non-negative integrands I

+(x; s) and I
�(x; s), the result for the original integral is

then given by,

J±(s) =
(�1)⌫ � (⌫ � LD/2)

QN
i=1 � (⌫i)

Z

RN
�0

dx I
±(x; s) �(1 � ↵±(x)) (3.9)

– 10 –

(1)

(2)

solve for xi
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Some Examples of (Massless) UB Integrals
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Figure 2: Massless non-planar 2-loop boxes with 6 (2a: BNP6) and 7 (2b: BNP7) propa-
gators respectively.

4.1.4 2-Loop Non-Planar 6 Propagator Box

The non-planar box with six propagators (BNP6, see Fig. 2a) can be parameterised by the
Mandelstam invariants s12 = (p1 + p2)2 and s23 = (p2 + p3)2 after applying the momentum
conservation rule s12 + s23 + s13 = 0 to eliminate s13. The integral may be written as,

JBNP6(s) = � (2 + 2✏) lim
�!0+

IBNP6(s; �)

IBNP6(s; �) =

Z

R6
�0

6Y

i=1

dxi
U(x)3✏

(F(x; s) � i�)2+2✏ � (1 � ↵(x))
(4.39)

with the U and F polynomials,

U(x) = x1x2 + x1x3 + x1x4 + x1x5 + x2x3 + x2x4 + x2x6+

x3x5 + x3x6 + x4x5 + x4x6 + x5x6,

F(x; s) = � s12x2x3x6 � s23x1x2x4 + (s12 + s23)x1x3x5.

(4.40)

We restrict to the physical kinematic regime for massless 2 ! 2 scattering, sphys = {0 <

s12 < 1, �s12 < s23 < 0}. Applying the algorithm, we find that we can bisect the integral
with the parameter xi = x1, choosing xj = x6:

x1 ! y01 =
x1

x1 + x6
f(x 6=1), F

�(x; s) =
s12x2x3x2

6

x1 + x6
, (4.41)

x1 ! y1 = x1 + f(x 6=1), F
+(x; s) = x1 [(s12 + s23)x3x5 � s23x2x4] , (4.42)

with
f(x 6=1) =

s12x2x3x6

(s12 + s23) x3x5 � s23x2x4
, (4.43)

and we emphasise that (s12 + s23) > 0 and (�s23) > 0 in our restricted kinematic regime.
These transformations result in the resolved integrands,

I
�
BNP6 =

�
s12x2x3x

2
6

��1�2✏
(x1 + x6)

�✏ [(s12 + s23) x3x5 � s23x2x4]
�1�3✏

⇥ (4.44)
h
[(s12 + s23) x3x5 � s23x2x4] (x1 + x6) [(x3 + x4) (x2 + x5) + (x2 + x3 + x4 + x5) x6] +

s12x1x2x3x6 (x2 + x3 + x4 + x5)
i3✏

,
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p2 p4

x2 x6

x1

x4

x5

x8

x3 x7

Figure 3: Massless non-planar 3-loop box (the crown graph, G••)

I
+
BNP7 = x�3�2✏

1 [(s12 + s23) x4x7 � s23x5x6]
�4�5✏

⇥ (4.53)
h
s12 (x4 + x5 + x6 + x7) [x3x4x6 + x2x5x7 + x2x3 (x4 + x5 + x6 + x7)] +

[(s12 + s23)x4x7 � s23x5x6]
⇥
(x4 + x5) x6 + x3 (x4 + x5 + x6) + (x3 + x4 + x5) x7+

(x1 + x2) (x4 + x5 + x6 + x7)
⇤i1+3✏

.

Note that all factors in the integrands above are positive in this kinematic regime within
the integration domain (with zeroes only on the boundary), the algorithm demands this,
however, it may only be manifest after simplification of the transformed integrands.

Combining the positive and negative contributions appropriately gives us the resolution
of BNP7,

JBNP7(s) = �� (3 + 2✏) lim
�!0+

IBNP7(s; �)

IBNP7(s; �) = I+BNP7(s) + (�1 � i�)�3�2✏ I�BNP7(s).
(4.54)

4.1.6 3-Loop Non-Planar Box, G••

In this section, we consider a massless 3-loop 4-point example (G•• in the notation of
Ref. [53]) where a naive contour deformation in Feynman parameter space, as described in
Section 2.3, fails due to the presence of a leading Landau singularity within the domain
of integration. We show that, after first dissecting the integral on the parameter space
hypersurface associated with the Landau singularity, we can apply a combination of shifts,
rescalings, and rational transformations of the Feynman parameters to resolve the mixed-
sign integrals.

The non-planar crown graph, G••, see Fig. 3, depends on the Mandelstam invariants
s12, s13 and s23. We can use momentum conservation to eliminate s23 = �s12 � s13. The
integral can be written in parameter space as,

JG••(s) = � (2 + 3✏) lim
�!0+

IG••(s; �)

IG••(s; �) =

Z

R8
�0

8Y

i=1

dxi
U(x)4✏

(F(x, s) � i�)2+3✏ � (1 � ↵(x))
(4.55)

where the U and F polynomials for G•• are given by

U(x) = (x1 + x2) (x3 + x4) (x5 + x6) + (x1 + x2) (x3 + x4) (x7 + x8) +
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Figure 1: The massless box with all on-shell legs (1a), an off-shell leg (p1) (1b) and the
massless pentagon (1c).

In the remainder of this work we will focus on studying individual integrals involving
internal masses including integrals known to be elliptic and hyperelliptic. In these cases,
we will directly inspect the geometry of the variety of F and derive a valid decomposition,
demonstrating that this principle can be applied for a wide class of Feynman integrals.
With our current methods, we will find that, in contrast to Algorithm 1, we often need
more than one positive and one negative integrand, motivating the general decomposition
formula of Eq. (3.1). ]Stephen

4 Examples

4.1 Massless Examples

In this section, we provide examples of massless integrals which are resolved by the algorithm
presented in Section 3.2. We show that this procedure can be successfully applied to
several integrals with up to 3 loops (including non-planar integrals) and up to 5 legs. For
pedagogical reasons, we apply each step of the algorithm in detail to a simple massless box
with on-shell legs before presenting the remaining examples more succinctly.

4.1.1 1-Loop Box with On-Shell Legs

To clarify the application of the algorithm presented in Section 3.2, let us begin by analysing
the simple case of a 1-loop massless box with all external legs on-shell, shown in Fig. 1a.
Each step will be carried out in detail for this simple example in the hope that this illumi-
nates the abstract procedure.

The integral we wish to resolve can be written in Feynman parameter space as,

Jbox(s) = � (2 + ✏) lim
�!0+

Ibox(s; �), (4.1)

Ibox(s; �) =

Z

R4
�0

4Y

i=1

dxi
U(x)2✏

(F(x; s) � i�)2+✏ � (1 � ↵(x)) , (4.2)

where the U(x) and F(x; s) polynomials are given by

U(x) = x1 + x2 + x3 + x4, (4.3)

– 12 –

sR = {0 < s12, s34, s51 < ∞,
−∞ < s23, s45 < 0}

sp2
1>0 = {0 < p2

1 < ∞,
0 < s12 < ∞, − s12 < s13 < 0}

sphys = {0 < s12 < ∞, − s12 < s23 < 0}

sphys = {0 < s12 < ∞, − s12 < s13 < 0}

* after dissection  
Gardi, Herzog, SPJ, Ma 24



Massless 2-loop Non-planar Box 

Kin: 

Res: 

Bisect domain in a variable  (Univariate Bisectable) 

 to :    

 to :  

x1

ℱ(x; s) = 0 x1 = 0 ℱ+(x; s) = x1 [(s12 + s23) x4x7 − s23x5x6]
ℱ(x; s) = 0 x1 → ∞ ℱ−(x; s) =

s12x7 [x3x4x6 + x2x5x7 + x2x3 (x4 + x5 + x6 + x7)]
x1 + x7

,
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A Second Example
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Figure 2: Massless non-planar 2-loop boxes with 6 (2a: BNP6) and 7 (2b: BNP7) propa-
gators respectively.

4.1.4 2-Loop Non-Planar 6 Propagator Box

The non-planar box with six propagators (BNP6, see Fig. 2a) can be parameterised by the
Mandelstam invariants s12 = (p1 + p2)2 and s23 = (p2 + p3)2 after applying the momentum
conservation rule s12 + s23 + s13 = 0 to eliminate s13. The integral may be written as,

JBNP6(s) = � (2 + 2✏) lim
�!0+

IBNP6(s; �)

IBNP6(s; �) =

Z

R6
�0

6Y

i=1

dxi
U(x)3✏

(F(x; s) � i�)2+2✏ � (1 � ↵(x))
(4.39)

with the U and F polynomials,

U(x) = x1x2 + x1x3 + x1x4 + x1x5 + x2x3 + x2x4 + x2x6+

x3x5 + x3x6 + x4x5 + x4x6 + x5x6,

F(x; s) = � s12x2x3x6 � s23x1x2x4 + (s12 + s23)x1x3x5.

(4.40)

We restrict to the physical kinematic regime for massless 2 ! 2 scattering, sphys = {0 <

s12 < 1, �s12 < s23 < 0}. Applying the algorithm, we find that we can bisect the integral
with the parameter xi = x1, choosing xj = x6:

x1 ! y01 =
x1

x1 + x6
f(x 6=1), F

�(x; s) =
s12x2x3x2

6

x1 + x6
, (4.41)

x1 ! y1 = x1 + f(x 6=1), F
+(x; s) = x1 [(s12 + s23)x3x5 � s23x2x4] , (4.42)

with
f(x 6=1) =

s12x2x3x6

(s12 + s23) x3x5 � s23x2x4
, (4.43)

and we emphasise that (s12 + s23) > 0 and (�s23) > 0 in our restricted kinematic regime.
These transformations result in the resolved integrands,

I
�
BNP6 =

�
s12x2x3x

2
6

��1�2✏
(x1 + x6)

�✏ [(s12 + s23) x3x5 � s23x2x4]
�1�3✏

⇥ (4.44)
h
[(s12 + s23) x3x5 � s23x2x4] (x1 + x6) [(x3 + x4) (x2 + x5) + (x2 + x3 + x4 + x5) x6] +

s12x1x2x3x6 (x2 + x3 + x4 + x5)
i3✏

,
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s12 + s13 + s23 = 0,
sphys = {0 < s12 < ∞, − s12 < s23 < 0}

JBNP7 = − Γ (3 + 2ϵ) lim
δ→0+

IBNP7

IBNP7 = ∫ℝ7
≥0

7

∏
i=1

dxi
𝒰(x)1+3ϵ

(ℱ(x; s) − iδ)3+2ϵ δ (1 − α(x))
𝒰(x) = x1x4 + x1x5 + x1x6 + x1x7 + x2x4

+x2x5 + x2x6 + x2x7+
x3x4 + x3x5 + x3x6 + x3x7 + x4x6
+x4x7 + x5x6 + x5x7

ℱ(x, s) = −s12(x3x4x6 + x2x5x7 + x2x3x7

+x2x3x6 + x2x3x5 + x2x3x4)
−s23x1x5x6 + (s12 + s23)x1x4x7

No Euclidean region

{ℱ(x; s) < 0} ∪ {0 < x} ∪ sR,
{f (x≠1) < x1 ∪ {0 < x≠1} ∪ sphys,

f (x≠1) =
s12 [x3x4x6 + x2x5x7 + x2x3 (x4 + x5 + x6 + x7)]

(s12 + s23) x4x7 − s23x5x6
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What About Massive Integrals?

ℱ(x; s) = ℱ0(x; s) + 𝒰(x; s)
N

∑
j=1

m2
j xj,

Very easy to encounter non-UB integrals 

Solutions for  generically contain square roots 

Often more thresholds and therefore more distinct kinematic regions

ℱ(x; s)

Primary complication 

Linear in each xj Quadratic in each xj
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A First Massive Example
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Figure 5: The L-loop banana integrals resolved in this section (L 2 {1, 2, 3}): the equal
mass (5a) and unequal mass (5b) bubble integrals, the equal mass elliptic sunrise integral
(5c), and the 3-loop equal mass banana integral (5d).

4.2 Massive Examples

In this section, we present 1-, 2- and 3-loop examples of integrals with massive propagators.
Understanding the resolution of such integrals is important for applying the method to
the calculation of massive phenomenologically-relevant amplitudes, for example, involving
massive quarks, electroweak bosons or Higgs bosons. The primary complication in the
massive case is that the F polynomial gets modified by a term proportional to U such that
each Feynman parameter associated with a massive propagator may appear quadratically
in the monomials of F ,

F(x; s) = F0(x; s) + U(x; s)
NX

j=1

m2
jxj , (4.70)

where F0 is the polynomial corresponding to the massless version of the integral. We analyse
the 1-loop massive bubble and triangle initially in Sections 4.2.1, 4.2.2 and 4.2.3 before
applying the method to 2-loop elliptic and 3-loop hyperelliptic examples in Sections 4.2.4
and 4.2.5, respectively.

4.2.1 Equal Mass Bubble

To investigate how massive integrals can be resolved, we begin by considering the bubble
integral in Fig. 5a with internal propagators of equal (positive) mass, m2 > 0. In Feynman
parameter space, the integral can be written as,

Jbub(s) = � (✏) lim
�!0+

Ibub(s; �), (4.71)

Ibub(s; �) =

Z

R2
�0

dx1dx2
U(x)�2+2✏

(F(x; s) � i�)✏
� (1 � ↵(x)) . (4.72)

with the Symanzik polynomials,

U(x) = x1 + x2, (4.73)
F(x; s) = �sx1x2 + m2 (x1 + x2)

2 . (4.74)

Making the choice ↵(x) = x1 + x2, we can perform the x2 integral to obtain,

Ibub(s; �) =

Z 1

0
dx1

1

(�sx1 (1 � x1) + m2 � i�)✏
. (4.75)
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ℱ = − sx1x2 + (x1 + x2) (m2
1 x1 + m2

2 x2)
ℱ̃ = x2

1 + x2
2 − 2

1 + β2

1 − β2
x1x2

β2 =
s − (m1 + m2)2

s − (m1 − m2)2 ∈ (0,1)
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x2 = ��x1I
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Figure 6: The variety of eF and the three regions of the integration domain which it
separates. In regions (I) and (II), eF > 0 whereas in region (III), eF < 0.

4.2.2 Unequal Mass Bubble

In our analysis of the equal mass bubble integral, we first made a specific choice of �-
functional and relied heavily on inspecting the analytic properties of the integrand. This
procedure can be generalised to the bubble integral with unequal masses, m1 and m2,
depicted in Fig. 5b. However, to illustrate the general principle from a different perspective
let us instead present an alternative way of resolving the massive bubble. In this case, we do
not specify the argument of the �-functional, ↵(x), and focus solely on the F polynomial,

F = �sx1x2 + (x1 + x2)
�
m2

1x1 + m2
2x2

�
. (4.86)

Analogously to the equal mass bubble, we define,

�2 =
s � (m1 + m2)

2

s � (m1 � m2)
2 2 (0, 1) , (4.87)

which reduces to Eq. (4.76) in the limit that m2 = m1 = m. In the next step, we rescale
the Feynman parameters x1 and x2 with the transformations xi !

xi
mi

such that we can
perform the resolution procedure on the dimensionless polynomial,

eF = x2
1 + x2

2 � 2
1 + �2

1 � �2
x1x2. (4.88)

In Fig. 6, we plot the variety of eF (that is to say, the set of points where eF = 0). We find
that it separates the integration domain into three regions defined by the sign of eF – in
regions (I) and (II) of Fig. 6 we have eF > 0, while in region (III) we have eF < 0.

The essential problem is to construct transformations of the Feynman parameters such
that we can convert the unequal mass bubble integral into three integrals each of which is
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γ± =
1
γ∓

=
1 ± β
1 ∓ β

I : x2 → y2 = x2 + γ+x1, ℱ̃+,1 = x2(x2 +
4β

1 − β2
x1),

II : x1 → y1 = x1 + γ+x2, ℱ̃+,2 = x1(x1 +
4β

1 − β2
x2),

III :
x2 → y2 = x2 + γ−x1,
x1 → y1 = x1 + γ−x2,

ℱ̃− = −
16β2

(1 − β)(1 + β)3
x1x2,

Ibub,m1≠m2
= I+,1

bub,m1≠m2
+ I+,2

bub,m1≠m2
+ (−1 − iδ)−ϵ I−

bub,m1≠m2
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A First Massive Example (II)

I+,1
bub,m1≠m2

= (m1m2)1−2ϵ(1 − β)2−2ϵ ∫ℝ2
≥0

dx1dx2 x−ϵ
2 (x2 +

4β
1 − β2

x1)
−ϵ

×

(m1(1 − β)x2 + [m1(1 + β) + m2(1 − β)]x1)−2+2ϵ δ (1 − ∑
2

i=1
αixi)

I+,2
bub,m1≠m2

= (m1m2)1−2ϵ(1 − β)2−2ϵ ∫ℝ2
≥0

dx1dx2 x−ϵ
1 (x1 +

4β
1 − β2

x2)
−ϵ

×

(m2(1 − β)x1 + [m2(1 + β) + m1(1 − β)]x2)−2+2ϵ δ (1 − ∑
2

i=1
αixi)

I−
bub,m1≠m2

= (4m1m2β)1−2ϵ(1 − β2)ϵ ∫ℝ2
≥0

dx1dx2 (x1x2)−ϵ ×

[(m1 + m2)(x1 + x2) − (m1 − m2)(x1 − x2)β]−2+2ϵ δ (1 − ∑
2

i=1
αixi) .

Resulting integrands are again positive & homogeneous (any  ok) 

Symmetry of  under simultaneous ( , ) manifest 

δ(1 − α(x))

I+,1
bub,m1≠m2

↔ I+,2
bub,m1≠m2

x1 ↔ x2 m1 ↔ m2
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Some Examples of Massive Integrals
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Figure 5: The L-loop banana integrals resolved in this section (L 2 {1, 2, 3}): the equal
mass (5a) and unequal mass (5b) bubble integrals, the equal mass elliptic sunrise integral
(5c), and the 3-loop equal mass banana integral (5d).

4.2 Massive Examples

In this section, we present 1-, 2- and 3-loop examples of integrals with massive propagators.
Understanding the resolution of such integrals is important for applying the method to
the calculation of massive phenomenologically-relevant amplitudes, for example, involving
massive quarks, electroweak bosons or Higgs bosons. The primary complication in the
massive case is that the F polynomial gets modified by a term proportional to U such that
each Feynman parameter associated with a massive propagator may appear quadratically
in the monomials of F ,

F(x; s) = F0(x; s) + U(x; s)
NX

j=1

m2
jxj , (4.70)

where F0 is the polynomial corresponding to the massless version of the integral. We analyse
the 1-loop massive bubble and triangle initially in Sections 4.2.1, 4.2.2 and 4.2.3 before
applying the method to 2-loop elliptic and 3-loop hyperelliptic examples in Sections 4.2.4
and 4.2.5, respectively.

4.2.1 Equal Mass Bubble

To investigate how massive integrals can be resolved, we begin by considering the bubble
integral in Fig. 5a with internal propagators of equal (positive) mass, m2 > 0. In Feynman
parameter space, the integral can be written as,

Jbub(s) = � (✏) lim
�!0+

Ibub(s; �), (4.71)

Ibub(s; �) =

Z

R2
�0

dx1dx2
U(x)�2+2✏

(F(x; s) � i�)✏
� (1 � ↵(x)) . (4.72)

with the Symanzik polynomials,

U(x) = x1 + x2, (4.73)
F(x; s) = �sx1x2 + m2 (x1 + x2)

2 . (4.74)

Making the choice ↵(x) = x1 + x2, we can perform the x2 integral to obtain,

Ibub(s; �) =

Z 1

0
dx1

1

(�sx1 (1 � x1) + m2 � i�)✏
. (4.75)
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Figure 7: Independent equal mass triangles with an off-shell leg (p2 > 0)

[(m1 + m2)(x1 + x2) � (m1 � m2)(x1 � x2)�]�2+2✏ �
⇣
1 �

X2

i=1
↵ixi

⌘
.

(4.97)

The symmetry of the integral Eq. (4.93) is manifest in the resolved integrals. The inte-
grands appearing in I+,1

bub,m1 6=m2
and I+,2

bub,m1 6=m2
are related by the simultaneous interchange

x1 $ x2 and m1 $ m2, while I�bub,m1 6=m2
is invariant under this exchange. These integrals

can be analytically evaluated by direct integration and match the known result for the un-
equal mass bubble order-by-order in the expansion in ✏. Again, the analytic continuation
of the result is manifest in Eq. (4.94) and the expansion in ✏ of the resolved integrals and
their numerical evaluation is straightforward.

4.2.3 1-Loop Triangle with an Off-Shell Leg

For our final 1-loop massive example, we consider the massive triangle with an off-shell
leg (the independent equal-mass configurations of which are shown in Fig. 7). For brevity,
we present the resolution of the fully massive triangle (Fig. 7e) in detail and remark that
the others may be similarly resolved using the procedure outlined here. We pick the fully
massive triangle for our exposition as it is the most difficult and the analysis of the other
examples is carried out almost identically. The integral we wish to consider is

Jtri = lim
�!0+

�� (1 + ✏) Itri

Itri =

Z

R3
�0

dx1dx2dx3
(x1 + x2 + x3)

�1+2✏

⇣
�p2x1x2 + m2 (x1 + x2 + x3)

2
� i�

⌘1+✏ �
⇣
1 �

X3

i=1
↵ixi

⌘
.

(4.98)
It is possible to make multiple choices to parameterise the projective integral and we note
that, for example, making different choices of hyperplane ↵(x) =

P
i ↵ixi can lead to dif-

ferent solutions of the problem. In our experience, being guided by the symmetry of the
problem where possible leads to the neatest solutions though one may choose e.g. � (1 � x1)

and successfully avoid contour deformation (although not necessarily easily avoiding square
roots involving the Feynman parameters). Following this philosophy, we make the symmet-
ric choice (here, � (1 � x1 � x2 � x3)) which is often the optimal choice at 1-loop as it sets
the U polynomial immediately to 1. Defining �2 = p2�4m2

p2 2 (0, 1) and using the �-function
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How about something a bit more interesting?
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Figure 5: The L-loop banana integrals resolved in this section (L 2 {1, 2, 3}): the equal
mass (5a) and unequal mass (5b) bubble integrals, the equal mass elliptic sunrise integral
(5c), and the 3-loop equal mass banana integral (5d).

4.2 Massive Examples

In this section, we present 1-, 2- and 3-loop examples of integrals with massive propagators.
Understanding the resolution of such integrals is important for applying the method to
the calculation of massive phenomenologically-relevant amplitudes, for example, involving
massive quarks, electroweak bosons or Higgs bosons. The primary complication in the
massive case is that the F polynomial gets modified by a term proportional to U such that
each Feynman parameter associated with a massive propagator may appear quadratically
in the monomials of F ,

F(x; s) = F0(x; s) + U(x; s)
NX

j=1

m2
jxj , (4.70)

where F0 is the polynomial corresponding to the massless version of the integral. We analyse
the 1-loop massive bubble and triangle initially in Sections 4.2.1, 4.2.2 and 4.2.3 before
applying the method to 2-loop elliptic and 3-loop hyperelliptic examples in Sections 4.2.4
and 4.2.5, respectively.

4.2.1 Equal Mass Bubble

To investigate how massive integrals can be resolved, we begin by considering the bubble
integral in Fig. 5a with internal propagators of equal (positive) mass, m2 > 0. In Feynman
parameter space, the integral can be written as,

Jbub(s) = � (✏) lim
�!0+

Ibub(s; �), (4.71)

Ibub(s; �) =

Z

R2
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dx1dx2
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(F(x; s) � i�)✏
� (1 � ↵(x)) . (4.72)

with the Symanzik polynomials,

U(x) = x1 + x2, (4.73)
F(x; s) = �sx1x2 + m2 (x1 + x2)

2 . (4.74)

Making the choice ↵(x) = x1 + x2, we can perform the x2 integral to obtain,

Ibub(s; �) =

Z 1

0
dx1

1

(�sx1 (1 � x1) + m2 � i�)✏
. (4.75)
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Consider something that involves functions 
beyond polylogarithms

Jsun = lim
δ→0+

− Γ (−1 + 2ϵ) Isun

Isun = ∫ℝ3
≥0

dx1dx2dx3

(x1x2 + x2x3 + x1x3)−3+3ϵ δ (1 − ∑3
i=1 αixi)

(−sx1x2x3 + (x1x2 + x2x3 + x1x3) m2 (x1 + x2 + x3) − iδ)
−1+2ϵ

 hypersurface for ℱ(x; s) = 0 s > 9m2

Figure 11: The F = 0 surface of the equal mass sunrise in R3
>0 with the caveat that this

should properly be understood projectively.

) )

Figure 12: Remapping the simplex integration region of the elliptic sunrise (in green) to
the positive unit square in R2

�0 then exploiting the symmetry about x2 = 1
2 . Here, F is

to be understood as F after the �-function has been integrated out and in the second and
third panels, after their respective remapping transformations as well.

immediately 2/3 more digits than just defining the sunrise via psd.LoopIntegralFromGraph]Tomwhere,
by direct inspection of (4.110), the integrand can be seen to enjoy a symmetry under
x2 ! 1 � x2 (analogously to the equal-mass bubble in Section 4.2.1). This allows us to in-
tegrate x2 from 0 to 1

2 instead and then double the result. We remap this halved integration
domain back to the positive unit square (as shown in the transition between the second
and third panels of Fig. 12) and benefit from exploiting this symmetry which reduces the
number of regions we will need to resolve. Of course, were this symmetry not present, we
would still be able to resolve the integral with more regions. Noting that the Jacobian
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Figure 5: The L-loop banana integrals resolved in this section (L 2 {1, 2, 3}): the equal
mass (5a) and unequal mass (5b) bubble integrals, the equal mass elliptic sunrise integral
(5c), and the 3-loop equal mass banana integral (5d).

4.2 Massive Examples

In this section, we present 1-, 2- and 3-loop examples of integrals with massive propagators.
Understanding the resolution of such integrals is important for applying the method to
the calculation of massive phenomenologically-relevant amplitudes, for example, involving
massive quarks, electroweak bosons or Higgs bosons. The primary complication in the
massive case is that the F polynomial gets modified by a term proportional to U such that
each Feynman parameter associated with a massive propagator may appear quadratically
in the monomials of F ,

F(x; s) = F0(x; s) + U(x; s)
NX

j=1

m2
jxj , (4.70)

where F0 is the polynomial corresponding to the massless version of the integral. We analyse
the 1-loop massive bubble and triangle initially in Sections 4.2.1, 4.2.2 and 4.2.3 before
applying the method to 2-loop elliptic and 3-loop hyperelliptic examples in Sections 4.2.4
and 4.2.5, respectively.

4.2.1 Equal Mass Bubble

To investigate how massive integrals can be resolved, we begin by considering the bubble
integral in Fig. 5a with internal propagators of equal (positive) mass, m2 > 0. In Feynman
parameter space, the integral can be written as,

Jbub(s) = � (✏) lim
�!0+

Ibub(s; �), (4.71)
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with the Symanzik polynomials,

U(x) = x1 + x2, (4.73)
F(x; s) = �sx1x2 + m2 (x1 + x2)

2 . (4.74)

Making the choice ↵(x) = x1 + x2, we can perform the x2 integral to obtain,

Ibub(s; �) =

Z 1

0
dx1

1
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2-Loop Elliptic SunriseFigure 11: The F = 0 surface of the equal mass sunrise in R3
>0 with the caveat that this

should properly be understood projectively.

) )

Figure 12: Remapping the simplex integration region of the elliptic sunrise (in green) to
the positive unit square in R2

�0 then exploiting the symmetry about x2 = 1
2 . Here, F is

to be understood as F after the �-function has been integrated out and in the second and
third panels, after their respective remapping transformations as well.

immediately 2/3 more digits than just defining the sunrise via psd.LoopIntegralFromGraph]Tomwhere,
by direct inspection of (4.110), the integrand can be seen to enjoy a symmetry under
x2 ! 1 � x2 (analogously to the equal-mass bubble in Section 4.2.1). This allows us to in-
tegrate x2 from 0 to 1

2 instead and then double the result. We remap this halved integration
domain back to the positive unit square (as shown in the transition between the second
and third panels of Fig. 12) and benefit from exploiting this symmetry which reduces the
number of regions we will need to resolve. Of course, were this symmetry not present, we
would still be able to resolve the integral with more regions. Noting that the Jacobian
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Figure 13: The integration domain of the elliptic sunrise separated into one negative and
three positive regions.

factor of 1
2 in this second transformation cancels the doubling from the symmetry, we have

Isun = 42�✏

✓
1 � �2

m2

◆�1+2✏Z 1

0
dx1dx2

(1 � x1)
�1+✏ (4x1 + (1 � x1) (2 � x2) x2)

�3+3✏

((1 � �2 � 9x1) (1 � x1) (2 � x2) x2 + 4 (1 � �2) x1 � i�)�1+2✏ .

(4.111)

We can define a set of three positive regions where the denominator of (4.111), which
we will loosely refer to as F (even though we have factored out 1 � x1), is positive (i.e.
F > 0) and one where it is negative (i.e. F < 0) which we show in Fig. 13. We will resolve
the negative region in detail once more as it plays the special role in solely generating the
imaginary part of the full integral and quote the resolutions of the positive regions in the
appendix.

In order to resolve the negative region, we first must map the sides of the variety F = 0

to the boundary. Using the intersection of the variety with the boundary at x2 = 1 to find
the associated x1-values as in the case of the massive triangle in Section 4.2.3, we find the
relevant transformation to be

x0
1

!
=

x1 �
1
6

⇣
2 + �2

� �
p

8 + �2
⌘

1
6

⇣
2 + �2 + �

p
8 + �2

⌘
�

1
6

⇣
2 + �2 � �

p
8 + �2

⌘

+

x1 !
1

6

⇣
2 + �2

� (1 � 2x1) �
p

8 + �2
⌘

.

(4.112)

The effect of this transformation is shown in the transition from the first to the second
panel in Fig. 14. It is clear from this geometric picture what the next (and final) step of the
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Encounter algebraic (square-root) transformations 

Singular structure can still be factorised  can use 
standard techniques (for examples considered)

⟹

Isun =
3

∑
n+=1

I+,n+
sun + (−1 − iδ)1−2ϵ I−

sun



28

2-Loop Elliptic Sunrise (II)

Carelessly integrating out -functional yields… 
inelegant results

δ

I−
sun = 27−6ϵ3 1

2 −ϵ (β2)2−2ϵ (8 + β2)2−2ϵ ( 1 − β2

m2 )
−1+2ϵ

∫
1

0
dx1dx2 (1 − x1) 3

2 −2ϵx
3
2 −2ϵ
1 x1−2ϵ

2 R−
sun (x1, x2; β)

singularities
x1, x2 → 0
x1 → 1

finite/regular

R−
sun (x1, x2; β) = R1(x2; β)R2(x1; β)R3(x1; β)R4(x1, β)R5(x1, x2; β),

R1(x2; β) = x̄1−2ϵ
2 ,

R2(x1; β) = [−β2 + ββ̄x̃1 + 4] 3ϵ−2,

R3(x1; β) = [4 − β (2β (β2 + 1) − 3ββ̄2x1x̄1 + 2β̃β̄x̃1)] 3
2 −ϵ,

R4(x1; β) = [β2β̄2x1x̄1 (−11β2 + 3ββ̄x̃1 + 20) + 4β̃2 (β2 − ββ̄x̃1 + 4)] 1−2ϵ,

R5(x1, x2; β) = [β2β̄2x1x̄1 (x2x̄2 (−β2 + ββ̄x̃1 + 4) + 4β (3β − β̄x̃1)) + 4β̃ (β4 + 7β2 − (β2 + 3) ββ̄x̃1 + 4)]3ϵ−3,

x̄1 = 1 − x1, x̃1 = 1 − 2x1, x̄2 = 2 − x2, β̄ = 8 + β2, β̃ =1 − β2

Proof that resolution of elliptic integrals is possible, not an optimal/elegant 
implementation of this resolution
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Numerical Performance

Goal: simplify/accelerate the numerical integration 

Let’s benchmark this using pySecDec (Sector Decomposition, Quasi Monte Carlo) 
Note: code strongly optimised for contour deformed integrals, many possible optimisations possible for the type of integrals we obtain 
here (real, positive, compact)
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Figure 1: The massless box with all on-shell legs (1a), an off-shell leg (p1) (1b) and the
massless pentagon (1c).

In the remainder of this work we will focus on studying individual integrals involving
internal masses including integrals known to be elliptic and hyperelliptic. In these cases,
we will directly inspect the geometry of the variety of F and derive a valid decomposition,
demonstrating that this principle can be applied for a wide class of Feynman integrals.
With our current methods, we will find that, in contrast to Algorithm 1, we often need
more than one positive and one negative integrand, motivating the general decomposition
formula of Eq. (3.1). ]Stephen

4 Examples

4.1 Massless Examples

In this section, we provide examples of massless integrals which are resolved by the algorithm
presented in Section 3.2. We show that this procedure can be successfully applied to
several integrals with up to 3 loops (including non-planar integrals) and up to 5 legs. For
pedagogical reasons, we apply each step of the algorithm in detail to a simple massless box
with on-shell legs before presenting the remaining examples more succinctly.

4.1.1 1-Loop Box with On-Shell Legs

To clarify the application of the algorithm presented in Section 3.2, let us begin by analysing
the simple case of a 1-loop massless box with all external legs on-shell, shown in Fig. 1a.
Each step will be carried out in detail for this simple example in the hope that this illumi-
nates the abstract procedure.

The integral we wish to resolve can be written in Feynman parameter space as,

Jbox(s) = � (2 + ✏) lim
�!0+

Ibox(s; �), (4.1)

Ibox(s; �) =

Z

R4
�0

4Y

i=1

dxi
U(x)2✏

(F(x; s) � i�)2+✏ � (1 � ↵(x)) , (4.2)

where the U(x) and F(x; s) polynomials are given by

U(x) = x1 + x2 + x3 + x4, (4.3)

– 12 –

Speed-up of  esp. close to singular/pinched points, promising for >1-loop> 104 ×

(s23, s34, s45, s51) = (−3,2.5, − 3,5)
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Numerical Performance (II)
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Figure 2: Massless non-planar 2-loop boxes with 6 (2a: BNP6) and 7 (2b: BNP7) propa-
gators respectively.

4.1.4 2-Loop Non-Planar 6 Propagator Box

The non-planar box with six propagators (BNP6, see Fig. 2a) can be parameterised by the
Mandelstam invariants s12 = (p1 + p2)2 and s23 = (p2 + p3)2 after applying the momentum
conservation rule s12 + s23 + s13 = 0 to eliminate s13. The integral may be written as,

JBNP6(s) = � (2 + 2✏) lim
�!0+

IBNP6(s; �)

IBNP6(s; �) =

Z

R6
�0

6Y

i=1

dxi
U(x)3✏

(F(x; s) � i�)2+2✏ � (1 � ↵(x))
(4.39)

with the U and F polynomials,

U(x) = x1x2 + x1x3 + x1x4 + x1x5 + x2x3 + x2x4 + x2x6+

x3x5 + x3x6 + x4x5 + x4x6 + x5x6,

F(x; s) = � s12x2x3x6 � s23x1x2x4 + (s12 + s23)x1x3x5.

(4.40)

We restrict to the physical kinematic regime for massless 2 ! 2 scattering, sphys = {0 <

s12 < 1, �s12 < s23 < 0}. Applying the algorithm, we find that we can bisect the integral
with the parameter xi = x1, choosing xj = x6:

x1 ! y01 =
x1

x1 + x6
f(x 6=1), F

�(x; s) =
s12x2x3x2

6

x1 + x6
, (4.41)

x1 ! y1 = x1 + f(x 6=1), F
+(x; s) = x1 [(s12 + s23)x3x5 � s23x2x4] , (4.42)

with
f(x 6=1) =

s12x2x3x6

(s12 + s23) x3x5 � s23x2x4
, (4.43)

and we emphasise that (s12 + s23) > 0 and (�s23) > 0 in our restricted kinematic regime.
These transformations result in the resolved integrands,

I
�
BNP6 =

�
s12x2x3x

2
6

��1�2✏
(x1 + x6)

�✏ [(s12 + s23) x3x5 � s23x2x4]
�1�3✏

⇥ (4.44)
h
[(s12 + s23) x3x5 � s23x2x4] (x1 + x6) [(x3 + x4) (x2 + x5) + (x2 + x3 + x4 + x5) x6] +

s12x1x2x3x6 (x2 + x3 + x4 + x5)
i3✏

,
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gators respectively.

4.1.4 2-Loop Non-Planar 6 Propagator Box

The non-planar box with six propagators (BNP6, see Fig. 2a) can be parameterised by the
Mandelstam invariants s12 = (p1 + p2)2 and s23 = (p2 + p3)2 after applying the momentum
conservation rule s12 + s23 + s13 = 0 to eliminate s13. The integral may be written as,

JBNP6(s) = � (2 + 2✏) lim
�!0+

IBNP6(s; �)
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Z
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6Y
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U(x)3✏

(F(x; s) � i�)2+2✏ � (1 � ↵(x))
(4.39)

with the U and F polynomials,

U(x) = x1x2 + x1x3 + x1x4 + x1x5 + x2x3 + x2x4 + x2x6+

x3x5 + x3x6 + x4x5 + x4x6 + x5x6,

F(x; s) = � s12x2x3x6 � s23x1x2x4 + (s12 + s23)x1x3x5.

(4.40)

We restrict to the physical kinematic regime for massless 2 ! 2 scattering, sphys = {0 <

s12 < 1, �s12 < s23 < 0}. Applying the algorithm, we find that we can bisect the integral
with the parameter xi = x1, choosing xj = x6:

x1 ! y01 =
x1

x1 + x6
f(x 6=1), F

�(x; s) =
s12x2x3x2

6

x1 + x6
, (4.41)

x1 ! y1 = x1 + f(x 6=1), F
+(x; s) = x1 [(s12 + s23)x3x5 � s23x2x4] , (4.42)

with
f(x 6=1) =

s12x2x3x6

(s12 + s23) x3x5 � s23x2x4
, (4.43)

and we emphasise that (s12 + s23) > 0 and (�s23) > 0 in our restricted kinematic regime.
These transformations result in the resolved integrands,

I
�
BNP6 =

�
s12x2x3x

2
6

��1�2✏
(x1 + x6)

�✏ [(s12 + s23) x3x5 � s23x2x4]
�1�3✏

⇥ (4.44)
h
[(s12 + s23) x3x5 � s23x2x4] (x1 + x6) [(x3 + x4) (x2 + x5) + (x2 + x3 + x4 + x5) x6] +

s12x1x2x3x6 (x2 + x3 + x4 + x5)
i3✏

,
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Gardi, Herzog, SPJ, Ma, Schlenk 22

Although free of leading Landau singularities, 
extremely challenging to evaluate using contour 
deformation, much easier after resolution

s23 = − 1

s23 = − 1

Fairly difficult to integrate with contour 
deformation (even after some tricks) 

Speed-ups for more challenging points> 102 ×
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Numerical Performance (III)

In  limit integral develops  
poles  end-point singularities 

Contour is ``pinched’’ against the 
boundary of integration 

Speed-up  

m2 → 0 1/ϵ2

⟹

> 104 ×

p2

m

(a)

p2

m

(b)

p2

m
m

(c)

p2

mm

(d)

p2

m
mm

(e)

Figure 7: Independent equal mass triangles with an off-shell leg (p2 > 0)

[(m1 + m2)(x1 + x2) � (m1 � m2)(x1 � x2)�]�2+2✏ �
⇣
1 �

X2

i=1
↵ixi

⌘
.

(4.97)

The symmetry of the integral Eq. (4.93) is manifest in the resolved integrals. The inte-
grands appearing in I+,1

bub,m1 6=m2
and I+,2

bub,m1 6=m2
are related by the simultaneous interchange

x1 $ x2 and m1 $ m2, while I�bub,m1 6=m2
is invariant under this exchange. These integrals

can be analytically evaluated by direct integration and match the known result for the un-
equal mass bubble order-by-order in the expansion in ✏. Again, the analytic continuation
of the result is manifest in Eq. (4.94) and the expansion in ✏ of the resolved integrals and
their numerical evaluation is straightforward.

4.2.3 1-Loop Triangle with an Off-Shell Leg

For our final 1-loop massive example, we consider the massive triangle with an off-shell
leg (the independent equal-mass configurations of which are shown in Fig. 7). For brevity,
we present the resolution of the fully massive triangle (Fig. 7e) in detail and remark that
the others may be similarly resolved using the procedure outlined here. We pick the fully
massive triangle for our exposition as it is the most difficult and the analysis of the other
examples is carried out almost identically. The integral we wish to consider is

Jtri = lim
�!0+

�� (1 + ✏) Itri

Itri =

Z

R3
�0

dx1dx2dx3
(x1 + x2 + x3)

�1+2✏

⇣
�p2x1x2 + m2 (x1 + x2 + x3)

2
� i�

⌘1+✏ �
⇣
1 �

X3

i=1
↵ixi

⌘
.

(4.98)
It is possible to make multiple choices to parameterise the projective integral and we note
that, for example, making different choices of hyperplane ↵(x) =

P
i ↵ixi can lead to dif-

ferent solutions of the problem. In our experience, being guided by the symmetry of the
problem where possible leads to the neatest solutions though one may choose e.g. � (1 � x1)

and successfully avoid contour deformation (although not necessarily easily avoiding square
roots involving the Feynman parameters). Following this philosophy, we make the symmet-
ric choice (here, � (1 � x1 � x2 � x3)) which is often the optimal choice at 1-loop as it sets
the U polynomial immediately to 1. Defining �2 = p2�4m2

p2 2 (0, 1) and using the �-function
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Figure 5: The L-loop banana integrals resolved in this section (L 2 {1, 2, 3}): the equal
mass (5a) and unequal mass (5b) bubble integrals, the equal mass elliptic sunrise integral
(5c), and the 3-loop equal mass banana integral (5d).

4.2 Massive Examples

In this section, we present 1-, 2- and 3-loop examples of integrals with massive propagators.
Understanding the resolution of such integrals is important for applying the method to
the calculation of massive phenomenologically-relevant amplitudes, for example, involving
massive quarks, electroweak bosons or Higgs bosons. The primary complication in the
massive case is that the F polynomial gets modified by a term proportional to U such that
each Feynman parameter associated with a massive propagator may appear quadratically
in the monomials of F ,

F(x; s) = F0(x; s) + U(x; s)
NX

j=1

m2
jxj , (4.70)

where F0 is the polynomial corresponding to the massless version of the integral. We analyse
the 1-loop massive bubble and triangle initially in Sections 4.2.1, 4.2.2 and 4.2.3 before
applying the method to 2-loop elliptic and 3-loop hyperelliptic examples in Sections 4.2.4
and 4.2.5, respectively.

4.2.1 Equal Mass Bubble

To investigate how massive integrals can be resolved, we begin by considering the bubble
integral in Fig. 5a with internal propagators of equal (positive) mass, m2 > 0. In Feynman
parameter space, the integral can be written as,

Jbub(s) = � (✏) lim
�!0+

Ibub(s; �), (4.71)

Ibub(s; �) =

Z

R2
�0

dx1dx2
U(x)�2+2✏

(F(x; s) � i�)✏
� (1 � ↵(x)) . (4.72)

with the Symanzik polynomials,

U(x) = x1 + x2, (4.73)
F(x; s) = �sx1x2 + m2 (x1 + x2)

2 . (4.74)

Making the choice ↵(x) = x1 + x2, we can perform the x2 integral to obtain,

Ibub(s; �) =

Z 1

0
dx1

1

(�sx1 (1 � x1) + m2 � i�)✏
. (4.75)
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Proves that we can resolve and 
numerically evaluate elliptic integrals 

By far not optimal implementation 

Speed-up of only 10 − 100 ×

s = 1

s = 1
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General Picture (Work in Progress)

Can we always perform this procedure? 

Trying to find sign-invariant decomposition of 
  

Borrow technique from real algebraic geometry 
Generic Cylindrical Algebraic Decomposition

{ℱ(x; s) < 0} ∪ {0 < x} ∪ sR,

Good: Guaranteed to work, constructive 
Bad: Complexity doubly exponential in #vars, root degrees

• A cell is a connected region of Rn.

• A decomposition of a space X is a collection of disjoint cells whose union is X.

• A cell is cylindrical with respect to the variable ordering x1 � · · · � xn if, for any i < n, it can
be described as

{(x1, . . . , xn) | gi,1(x1, . . . , xi)  xi+1  gi,2(x1, . . . , xi)},

where gi,1 and gi,2 are continuous functions.

• Furthermore, a cell is algebraic if gi,1 and gi,2 are polynomials, and is called a j-cell if it is
homeomorphic to Rj , for 0  j  n.

• A decomposition is cylindrical with respect to the variable ordering x1 � · · · � xn if, for any
i  n, the projections of any two cells into R[x1, . . . , xi] are either disjoint or identical.

• A CAD is a cylindrical decomposition whose cells are cylindrical and algebraic.

A CAD will only be useful if its cells satisfy some property of interest. We focus on sign-invariance,
where each input polynomial maintains a constant sign (positive, negative, or zero) within a cell. This
invariance means it is su�cient to test a representative sample point for each cell to determine the
signs of the input polynomials.

Definition 1 (Cylindrical Algebraic Decomposition).
For Fn a set of polynomials in variables x1, . . . , xn, an Fn-invariant CAD of Rn

(or colloquially ‘a

CAD of Fn’), denoted CAD(Fn), is a cylindrical decomposition of Rn
whose cells are cylindrical and

algebraic, and over which the polynomials in Fn have constant sign.

!

Figure 2: The graph of F = {x2 + y2 � 1} and its associated sign-invariant CAD of R2. This CAD
consists of 13 cells: five 2-cells (the coloured regions), six 1-cells (the lines between them) and two
0-cells (the two red points where the lines meet). The black crosses represent the sample points for
each cell. These cells stack in cylinders over the five cells of the CAD of R1 (the two points at the

bottom and the regions between them). Each cell is described by constraints on x and y.

For example, the collection of cells in Figure 2 form a CAD of F = {x2 + y2 � 1}, with sample points
(�2, 0), (�1, 1), (�1, 0), (�1,�1), (0, 2), (0, 1), (0, 0), (0,�1), (0,�2), (1, 1), (1, 0), (1,�1) and (2, 0).

2.3 CAD construction

We will also use the term ‘CAD’ to refer to the algorithm that generates a sign-invariant CAD for a
given set of polynomials. Collins’ original algorithm (sometimes referred to as a projection-and-lifting

CAD algorithm) uses a projection operator on the input polynomials to produce a set of polynomials
in one fewer variable, whose properties enable a CAD of the input polynomials to be constructed from
a CAD of their projection.

In one dimension, constructing a sign-invariant CAD is straightforward: its cells are the collection of
roots of the polynomials and the regions either side of them. Each sign-invariant cell defines a region
where the number of real roots (the ‘root structure’) does not change.

3

In higher dimensions, we treat the polynomials in Fn as univariate in the greatest variable with respect
to the ordering, written as Fn ⇢ R[x1, . . . , xn�1][xn]. To find changes in the root structure in xn, we
construct a set of projection polynomials Fn�1 in one fewer variable, whose roots indicate when changes
occur (referred to as ‘projecting with respect to xn’, or ‘projecting away’ xn). This process is repeated,
with each Fk obtained by projecting Fk+1 with respect to xk+1, until we reach F1 ⇢ R[x1] whose
roots and intervals make up a CAD of R1.

Due to the nature of the projection polynomials, the root structure of Fk does not vary over a cell of
the CAD of Rk�1. We can continue the process and decompose the space above the cell into a new
set of sign-invariant cells. The full collection of these cells forms the CAD of Rk.

This algorithm follows a two-phase approach:
• Projection: Repeatedly apply the projec-
tion operator to produce a chain of projection
polynomial sets, each in one variable fewer
than the previous, until reaching a univariate
set of polynomials.

• Lifting: Starting with the univariate set,
construct a CAD of the polynomials. Above
this, one can create a new CAD in one di-
mension greater via lifting, made possible by
Theorem 2.1.

This recursive approach ultimately leads to a com-
plete CAD for the original polynomial set.

Fn CAD(Fn)?yproj
x?Lift

Fn�1 CAD(Fn�1)?yproj
x?Lift

...
...?yproj
x?Lift

F2 CAD(F2)?yproj
x?Lift

F1
find roots���������!

split into cells
CAD(F1)

Theorem 2.1 ([Col75], Theorem 5).
Let F be a non-empty set of non-zero real polynomials in n � 2 real variables. Let S be a connected

subset of Rn�1
. If every element of the projection of F is sign-invariant on S, then the polynomials

in F are delineable over S.

Definition 2.

A set of polynomials is delineable over S if the number of distinct collective roots remains constant,

i.e., their roots do not intersect or disappear (see Figure 3).

Figure 3: Illustration of delineability, from [Bro04].

This theorem allows us to obtain an n-dimensional sign-invariant CAD by studying a finite set of
sample points for the cells in an (n � 1)-dimensional decomposition. For example, the sign-invariant
CAD of F = {x2+y2�1} seen in Figure 2 can be obtained by studying a point over each sign-invariant
cell of the CAD of the projection polynomials {x� 1, x+ 1}.

2.4 Choices made for the package

Certain decisions have been made in designing the CAD algorithm to best suit this package. These
decisions are explained below.

4

However, we are interested in a rather special case,  homogeneous, linear 
(quadratic) in massless (massive) variables… in practice, often much simpler

ℱ(x; s)

Lee, del Río, Rahkooy 25

Collins 75; Davenport, Heintz 88; Lazard 94; McCallum 19

codim 0 projection 
of cells 
either 
disjoint or 
identical

cell 
boundaries 
are roots of 
polynomials

union of disjoint 
cells is ℝN
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General Picture: Example (Work in Progress)

Consider again the 2-loop sunrise before integrating -funcδ
s

m

m

(a)

s

m1
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(b)
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s m
m
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Figure 5: The L-loop banana integrals resolved in this section (L 2 {1, 2, 3}): the equal
mass (5a) and unequal mass (5b) bubble integrals, the equal mass elliptic sunrise integral
(5c), and the 3-loop equal mass banana integral (5d).

4.2 Massive Examples

In this section, we present 1-, 2- and 3-loop examples of integrals with massive propagators.
Understanding the resolution of such integrals is important for applying the method to
the calculation of massive phenomenologically-relevant amplitudes, for example, involving
massive quarks, electroweak bosons or Higgs bosons. The primary complication in the
massive case is that the F polynomial gets modified by a term proportional to U such that
each Feynman parameter associated with a massive propagator may appear quadratically
in the monomials of F ,

F(x; s) = F0(x; s) + U(x; s)
NX

j=1

m2
jxj , (4.70)

where F0 is the polynomial corresponding to the massless version of the integral. We analyse
the 1-loop massive bubble and triangle initially in Sections 4.2.1, 4.2.2 and 4.2.3 before
applying the method to 2-loop elliptic and 3-loop hyperelliptic examples in Sections 4.2.4
and 4.2.5, respectively.

4.2.1 Equal Mass Bubble

To investigate how massive integrals can be resolved, we begin by considering the bubble
integral in Fig. 5a with internal propagators of equal (positive) mass, m2 > 0. In Feynman
parameter space, the integral can be written as,

Jbub(s) = � (✏) lim
�!0+

Ibub(s; �), (4.71)

Ibub(s; �) =

Z

R2
�0

dx1dx2
U(x)�2+2✏

(F(x; s) � i�)✏
� (1 � ↵(x)) . (4.72)

with the Symanzik polynomials,

U(x) = x1 + x2, (4.73)
F(x; s) = �sx1x2 + m2 (x1 + x2)

2 . (4.74)

Making the choice ↵(x) = x1 + x2, we can perform the x2 integral to obtain,

Ibub(s; �) =

Z 1

0
dx1

1

(�sx1 (1 � x1) + m2 � i�)✏
. (4.75)
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GCAD

I−
sun = 23−3ϵc3−4ϵ

1 c4 ∫R3
≥0

x1−2ϵ
3 R1(x1, x2) 3

2 −2ϵR2(x1, x2, x3)−1+ϵR3(x1, x2, x3)−3+3ϵ,

R1(x1, x2) = x1x2 (c3x1x2 + 4c2(x2
1 + x2

2)),
R2(x1, x2, x3) = x3 + (x1 + x2)c5,

R3(x1, x2, x3) = − c1 R1(x1, x2) (−x3 + (x1 + x2)c5) − R2(x1, x2, x3) ((x2
1 + x2

2)c6 + x1x2c7)
: algebraic functions of  (not depending on ) 

Dramatically simpler and more numerically stable than previous resolution

c1, …, c7 s/m x1, x2, x3

4 positive cells + 
1 negative cell
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A Final Example

Can apply these techniques to integrals of more phenomenological interest
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2L ggHH - Integration Time vs. Relative Error

No CD s = 2.2

No CD s = 3.0

No CD s = 3.9

No CD s = 3.999

CD s = 2.2

CD s = 3.0

CD s = 3.9

CD s = 3.999

(Work in Progress)

 amplitude @ 2-loops (406 MI) pySecDec & Contour Def: ~90 seconds/PSgg → HH
T. Stone

Speedup 10 − 103 ×

sR = {4m2
H < s < 4m2

t ,
−t < s < 0,
m2

H > 0, m2
t > m2

H}

Example

Contour deformation is (the?) bottleneck for  @ 2-loop,  @ 3-loop 
What is possible once we avoid contour deformation?

2 → 3 2 → 2

T. Stone
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Do These Integrals Have Any Meaning?

𝒜 ∼ ∑
i

ci I+ + ∑
j

lim
δ→0

cj(δ) I−

Presumably, can express entire amplitudes as sums of these positive integrals

Would be very useful to have efficient IBPs available for parametrised integrals
Bitoun, Bogner, Klausen, Panzer 19; Chen 19, 19; Artico, Magnea 24;

These integrals are related to discontinuities/
generalised cuts:

 Discs[ℱλ] = (ℱ − iδ)λ − (ℱ + iδ)λ = − θ[−ℱ][−ℱ]λ2isin(πλ)

Maximal cuts: only  as boundary 

Non-maximal cuts: combination of  and 
coordinate hyper-planes as boundary

ℱ = 0

ℱ = 0

Figure 11: The F = 0 surface of the equal mass sunrise in R3
>0 with the caveat that this

should properly be understood projectively.

) )

Figure 12: Remapping the simplex integration region of the elliptic sunrise (in green) to
the positive unit square in R2

�0 then exploiting the symmetry about x2 = 1
2 . Here, F is

to be understood as F after the �-function has been integrated out and in the second and
third panels, after their respective remapping transformations as well.

immediately 2/3 more digits than just defining the sunrise via psd.LoopIntegralFromGraph]Tomwhere,
by direct inspection of (4.110), the integrand can be seen to enjoy a symmetry under
x2 ! 1 � x2 (analogously to the equal-mass bubble in Section 4.2.1). This allows us to in-
tegrate x2 from 0 to 1

2 instead and then double the result. We remap this halved integration
domain back to the positive unit square (as shown in the transition between the second
and third panels of Fig. 12) and benefit from exploiting this symmetry which reduces the
number of regions we will need to resolve. Of course, were this symmetry not present, we
would still be able to resolve the integral with more regions. Noting that the Jacobian

– 32 –

Relations

Britto 23

Interpretation



Summary: 
• For several massless integrals up to 3-loop 4-point it is rather straightforward to avoid contour 

deformation 
• Massive integrals up to 3-loop 2-point (elliptic, hyperelliptic) can also be addressed, as well as 

integrals with a mix of massless/massive propagators 
• Trivial algorithm works for many simple cases 
• Generic Cylindrical Algebraic Decomposition seems to provide a general algorithm 

Next Steps 
• Implement algorithm for massless (UB and non-UB) in public codes 
• Investigate use of and optimisation of Cylindrical Algebraic Decomposition for the special case of 

Feynman integrals 

Outlook 
• Can we automate and use this at scale for entire amplitudes? 
• Can we further connect this picture to e.g. cuts or other approaches to studying amplitudes?

36

Conclusion

Thank you for listening!
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Cancellations
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Figure 30: Magnitude of the real part of the positive and negative contributions compared
to the total integral for the all massive 1-loop triangle at orders ✏�1, ✏0, ✏3 and ✏4. � =

lim�!0+(�1�i�)�1�✏. The 1, 2, 3 indices corresponds to the different positive regions shown
in Figure 9. B 2 (0.01, 0, 99) and m = 1 fixed.
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Cancellations
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Figure 31: Magnitude of the real part of the positive and negative contributions compared
to the total integral for the elliptic sunrise at orders 1, 2, 3, 4 in the ✏ expansion. � =

lim�!0+(�1 � i�)�1�2✏. The 1, 2, 3 indices corresponds to the different positive regions
shown in 13. � 2 (0.01, 0.9) and m = 2.
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Sector Decomposition in a Nutshell

  

 

Normal vectors incident to each extremal vertex define a local change of variables* 

  

  

*If , need triangulation to define variables (simplicial normal cones  )

I ∼ ∫ℝN
>0

[dx] xν (ci xri)t

𝒩(I) = convHull(r1, r2, …) = ⋂
f∈F

{m ∈ ℝN ∣ ⟨m, nf⟩ + af ≥ 0}

xi = ∏
f∈Sj

y⟨nf ,ei⟩
f

I ∼ ∑
σ∈ΔT

𝒩

|σ | ∫
1

0
[dyf] ∏

f∈σ

y⟨nf ,ν⟩−taf
f ci∏

f∈σ

y⟨nf ,ri⟩+af
f

t

|Sj | > N σ ∈ ΔT
𝒩

Singularities Finite

Kaneko, Ueda 10
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Sector Decomposition in a Nutshell

Calculation of Multi-Loop Integrals with SecDec-3.0 Johannes Schlenk

is performed in sector j. The vectors ei denote the orthonormal basis of RN−1, the set Sj contains
the facets incident to the vertex j. In cases where the set Sj contains more than N− 1 elements,
an additional triangulation of the sector is needed. In SECDEC the triangulation algorithm imple-
mented in NORMALIZ is used for this purpose.

Compared to the other strategies implemented in SECDEC, strategy G2 is the fastest method
and it usually produces the smallest number of sectors.

As an example we decompose the two-loop vacuum integral with one massive and two mass-
less propagators using strategy G2. After employing the Cheng-Wu theorem to integrate out the
massive Feynman parameter x3, the Feynman integral becomes

I =

m

=−Γ(−1+2ε)
(

m2
)1−2ε

∫ ∞

0

dx1dx2
(

x11x
0
2+ x11x12+ x01x12

)2−ε . (3.4)

The exponent vectors

v1 =

(

1
0

)

,v2 =

(

1
1

)

,v3 =

(

0
1

)

(3.5)

can be read off from the polynomial in the denominator of Eq. (3.4) and the associated Newton
polytope Δ is shown in Fig. 1.

1

2

1

0
1
v1

v2v3

n3
n1

n2

Figure 1: Newton polytope Δ associated to the two loop vacuum integral of Eq. (3.4)

The facet normal vectors

n1 =

(

−1
0

)

n2 =

(

0
−1

)

n3 =

(

1
1

)

a1 = 1 a2 = 1 a3 = −1
(3.6)

together with Eq. (3.2) specify the facet representation of the polytope Δ. The sets Sj associated to
the three extremal vertices v1 to v3 are S1 = {3,1}, S2 = {1,2} and S3 = {2,3}. In this case no
additional triangulation is necessary since the size of the sets already equals N−1. The change of
variables defined in Eq. (3.3) can then be written as

x1 = y−11 y3,
x2 = y−12 y3

(3.7)

4
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the facets incident to the vertex j. In cases where the set Sj contains more than N− 1 elements,
an additional triangulation of the sector is needed. In SECDEC the triangulation algorithm imple-
mented in NORMALIZ is used for this purpose.

Compared to the other strategies implemented in SECDEC, strategy G2 is the fastest method
and it usually produces the smallest number of sectors.

As an example we decompose the two-loop vacuum integral with one massive and two mass-
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polytope Δ is shown in Fig. 1.
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together with Eq. (3.2) specify the facet representation of the polytope Δ. The sets Sj associated to
the three extremal vertices v1 to v3 are S1 = {3,1}, S2 = {1,2} and S3 = {2,3}. In this case no
additional triangulation is necessary since the size of the sets already equals N−1. The change of
variables defined in Eq. (3.3) can then be written as

x1 = y−11 y3,
x2 = y−12 y3

(3.7)
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is performed in sector j. The vectors ei denote the orthonormal basis of RN−1, the set Sj contains
the facets incident to the vertex j. In cases where the set Sj contains more than N− 1 elements,
an additional triangulation of the sector is needed. In SECDEC the triangulation algorithm imple-
mented in NORMALIZ is used for this purpose.

Compared to the other strategies implemented in SECDEC, strategy G2 is the fastest method
and it usually produces the smallest number of sectors.

As an example we decompose the two-loop vacuum integral with one massive and two mass-
less propagators using strategy G2. After employing the Cheng-Wu theorem to integrate out the
massive Feynman parameter x3, the Feynman integral becomes
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Schlenk 2016

For each vertex make the local change of variables  

e.g.  :  ,   : ,   : r1 x1 = y−1
1 y1

3 , x2 = y0
1 y1

3 r2 x1 = y−1
1 y0

2 , x2 = y0
1 y−1

2 r3 x1 = y0
2 y1

3 , x2 = y−1
2 y1

3
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leading to the decomposed form of the vacuum integral

I =−Γ(−1+2ε)
(

m2
)1−2ε

∫ 1

0
dy1dy2dy3

y−ε1 y−ε2 y−1+ε3

(y1+ y2+ y3)2−ε
[δ (1− y2)+δ (1− y3)+δ (1− y1)] ,

(3.8)
where the δ -distributions correspond to the sets S1 to S3.

3.2 Complex Masses

In certain applications, especially in the electroweak context, the width of unstable particles
can be important. A consistent treatment is provided by the complex-mass scheme [24, 25], where
the width Γ is included as a negative imaginary part of the mass via the replacement

m2 → m2c ≡ m2
(

1− i
Γ
m

)

. (3.9)

The graph polynomial F then has the form

F = F0+U∑
j
x j
(

m2j − im jΓ j
)

, (3.10)

i.e. the widths induce a negative imaginary part:

ImF =−U∑
j
x jm jΓ j (3.11)

In general, for zero widths, F will exhibit kinematic-dependent zeros even after sector de-
composition, which can be avoided by a suitable deformation of the integration contour [26–28].
Similarly, a non-zero width can help to avoid these singular regions as well, but one cannot expect
this to lead to a stable numerical integration in all cases. Thus it makes sense to try to combine the
two in a consistent way, which should be possible since both the contour deformation and the com-
plex masses are required to produce only negative imaginary parts in order to fulfill the Feynman
+iδ prescription. For SECDEC-3.0 we have chosen

z⃗(⃗x) = x⃗− i⃗τ (⃗x), (3.12a)

τk = λxk(1− xk)
∂ReF
∂xk

, (3.12b)

i.e. to set the widths to zero in the definition of the deformation. For small deformations we then
have

F (⃗z(⃗x)) = ReF (⃗x)+ i ImF (⃗x)− iλ∑
k
xk(1− xk)

[

(

∂ReF
∂xk

)2
+ i

∂ ReF
∂xk

∂ ImF

∂xk

]

−
λ 2

2 ∑k,l
xk(1− xk)xl(1− xl)

∂ReF
∂xk

∂ReF
∂xl

[

∂ 2 ReF
∂xk∂xl

+ i
∂ 2 ImF
∂xk∂xl

]

+O(λ 3). (3.13)

Up to order λ , the imaginary parts induced by the widths and the contour deformation are both
negative as they should. The term involving ∂ ImF

∂xk does no harm because it is purely real. At order
λ 2, however, ImF leads to an imaginary part of indefinite sign, which would otherwise have been

5
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Neural Networks for Contour Deformation

Normalizing Flows consist of a series of (trainable) bijective mappings for which we 
can efficiently compute the Jacobian

Procedure
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Figure 5: Schematic illustration of our workflow.

invertible network (INN) variant [61–63]. Even if we are not interested in this symmetric
evaluation, normalizing flows have the considerable advantage of a tractable Jacobian. A
simple realization are stacked coupling layers [62,64], where we split the input vector x in
x1 and x2 and use an element-wise multiplication � and sum to define the mapping

y1 = x1 � es1(x2) + t1(x2) x1 = (y1 � t1(x2)) � e�s1(x2)

y2 = x2 � es2(y1) + t2(y1) x2 = (y2 � t2(y1)) � e�s2(y1) , (20)

where s1, s2, t1 and t2 are parametrized by neural networks. The Jacobian of such a
coupling block is [62]

J =

 
0

@y2
@y1

diag(es2(y1))

!✓
diag(es1(x2)) @y1

@x2

0

◆
. (21)

While J is not triangular, we will only be interested in the log-determinant, which can be
calculated e�ciently as

log (det J) = log

 
dimx2Y

i=1

es1(x2)i

!
+ log

 
dim y1Y

i=1

es2(y1)i

!

=
dimx2X

i=1

s1(x2)i +
dim y1X

i=1

s2(y1)i .

(22)

For all examples we employ a normalizing flow consisting of these a�ne coupling
blocks, where each coupling block describes a bijective mapping RN

$ RN . To map the
Feynman parameters x 2 [0, 1]N from the unit-hypercube to RN bijectively we apply the
logit function

y = logit(x) ⌘ log

✓
x

1 � x

◆
, with (Jlogit)jk =

�jk
xj � x2j

, (23)

11

Loss:    constructed to minimise variance without crossing polesL = LMC + Lsign
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Neural Networks for Contour Deformation

Applied to several 1 & 2-loop Feynman Integrals with multiple masses/thresholds 
using tensorflow

Proof of principle that Machine Learning can help to find improved contours and 
reduce variance, still a tradeoff between training time/ integrating time
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Figure 8: Relative integration error for sector one of the triangle2L (left) and elliptic2L
(right) integrals using the standard pySecDec algorithm (green), the ⇤-glob algorithm
(blue) and ⇤-glob with additional normalizing flow (red). The lower panel shows the ratios
to the standard method.

Performance

Finally, we illustrate the performance gain achieved by applying both, the ⇤-glob algorithm
only and its combination with the normalizing flow.

In Figure 8 we show results for the triangle2L (left) and the elliptic2L (right) integral.
For both integrals we consider the first sector integral after sector decomposition. We
sample 100 phase space points varying over 4-5 orders of magnitude in the squared center-
of-mass energy s ⌘ (p1 + p2)2. For both processes, we intentionally consider points below
and above threshold, to compare the performance when no contour deformation is needed.
We normalized the kinematic invariants using m2 = 1. For the triangle2L integral, shown
in the left panel of Figure 8, the average integration error over all phase-space points is
reduced by a factor two for the ⇤-glob algorithm and by a factor of 5 for our ML-approach.
In the low-energy regime the error reduction stays around the average value. For increasing
energies towards threshold at s/m2 = 1, the absolute integration error of the standard
pySecDec method and the pure ⇤-glob algorithm increase, while absolute integration
error of our ML-approach keeps decreasing. This results in a relative performance gain by
a factor of up to 30 close to the threshold. The threshold being located at s/m2 = 1 is a
consequence of considering sector one, which e↵ectively corresponds to a topology where
one of the massive triangle propagators connecting to p3 is pinched. In contrast, in the
elliptic2L sector 1 integral, shown in the right panel of Figure 8, the importance sampling
through the normalizing flow reduces the integration error by a factor of 20 and does not
show the rising profile towards the threshold. The average integration error is reduced by
a factor of 7 or 2 depending on whether the additional mapping of the normalizing flow is
used or not. The kinematic points for this diagram are chosen to have varying values of
t = (p1 + p3)2 and p24.

In general, for energies close but above threshold the performance gain is less pro-
nounced, as the contour deformation in this regime has less freedom for optimization and
the e↵ect of modifying the real parts is diminished.
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Figure 1: Feynman diagrams for our four example integrals, which we call pentagon1L,
ladder2L (first line) and triangle2L, elliptic2L (second line). The blue lines denote massive
lines, green lines denote massive or o↵-shell external legs (with a mass di↵erent from m).

Example diagrams

The Feynman diagrams we use to develop and benchmark our approaches are shown in
Figure 1.

The top left diagram is a one-loop pentagon integral as it occurs in the production
of a top quark pair in association with another massive particle and depends on four
independent Mandelstam invariants as well as the top quark mass and the invariant mass
of p5. Analytically it depends on logarithms and dilogarithms of ratios of kinematic
invariants, leading to a complicated branch-cut structure. After Feynman parametrization
the corresponding integral is described by 4 independent Feynman parameters.

The top right diagram is a two-loop box diagram with one massive on-shell leg and
one o↵-shell leg. This diagram is a topology occurring for example in tt̄V production at
two loops, where the boson V is radiated o↵ an external top quark. It is close to the
configuration of a 2-loop gluon ladder diagram where the exchange of gluons between
two top quark lines gives rise to a Coulomb singularity. The analytic expression for this
type of diagram is not known, but it is anticipated that it will contain elliptic functions.
This integral depends on 6 Feynman parameters and is the most complicated example we
consider in terms of dimensionality.

The diagram on the lower left of Figure 1 is a two-loop three-point function with
a massive sub-triangle occurring, for instance, in NLO corrections to Higgs production
in gluon fusion. It is the easiest 2-loop diagram we consider and serves as a stepping
stone towards more complicated 2-loop diagrams. Analytic results for this diagram can
be found in Refs. [49–51]. Depending on 5 Feynman parameters this integral is in between
the previous two examples in terms of dimensionality of the integration.

The diagram on the lower right is a topology occurring in Higgs+jet production in
gluon fusion at two loops. Its analytic expression contains elliptic functions and therefore
is cutting edge for integrals that are currently accessible analytically. It has been calculated
(semi-)analytically in Refs. [52,53] and also served as a benchmark for the development of
the program pySecDec [45], where it is contained in the list of examples. This integral is
5-dimensional, so it has the same number of Feynman parameters as the triangle diagram,
but it depends on four kinematic invariants rather than two.
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two top quark lines gives rise to a Coulomb singularity. The analytic expression for this
type of diagram is not known, but it is anticipated that it will contain elliptic functions.
This integral depends on 6 Feynman parameters and is the most complicated example we
consider in terms of dimensionality.

The diagram on the lower left of Figure 1 is a two-loop three-point function with
a massive sub-triangle occurring, for instance, in NLO corrections to Higgs production
in gluon fusion. It is the easiest 2-loop diagram we consider and serves as a stepping
stone towards more complicated 2-loop diagrams. Analytic results for this diagram can
be found in Refs. [49–51]. Depending on 5 Feynman parameters this integral is in between
the previous two examples in terms of dimensionality of the integration.

The diagram on the lower right is a topology occurring in Higgs+jet production in
gluon fusion at two loops. Its analytic expression contains elliptic functions and therefore
is cutting edge for integrals that are currently accessible analytically. It has been calculated
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Method of Regions



Can split integral into two subdomains  and  then remap 

 :     (for first domain) 

Before split: only hard region found  
After split: also potential region found 

α1 ≤ α2 α2 ≤ α1
α1 = α′�1/2
α2 = α′�2 + α′�1/2

ℱbub,1 →
q2

4
α′ �22 + y(α′�1 + α′ �2)2

(α1 ∼ y0, α2 ∼ y0)
(α1 ∼ y0, α2 ∼ y1/2)

47

Regions due to Cancellation

Jantzen, A. Smirnov, V. Smirnov 12

What happens if  have different signs?ci

Consider a 1-loop massive bubble at threshold y = m2 − q2/4 → 0

  

 

I = Γ(ϵ)∫ dα1dα2
δ(1 − α1 − α2)(α1 + α2)−2+2ϵ

(ℱbub(α1, α2; q2, y))
ϵ

ℱbub =
q2

4
(α1 − α2)2 + y(α1 + α2)2

q
→
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Method of Regions

Consider expanding an integral about some limit: 
  ,    or   for  

Issue: integration and series expansion do not necessarily commute 

Method of Regions 

  

1. Split integrand up into regions ( ) 
2. Series expand each region in  
3. Integrate each expansion over the whole integration domain 
4. Discard scaleless integrals (= 0 in dimensional regularisation) 
5. Sum over all regions 

p2
i ∼ λQ2 pi ⋅ pj → λQ2 m2 ∼ λQ2 λ → 0

I(s) = ∑
R

I(R)(s) = ∑
R

T (R)
t I(s)

R
λ

Smirnov 91; Beneke, Smirnov 97; Smirnov, Rakhmetov 99; Pak, Smirnov 11; Jantzen 2011; … 
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Finding Regions

Assuming all  have the same sign we rescale  

 

Normal vectors w/ positive  component define change of variables  

  

Example 
 

Original integral  may then be approximated as  

ci s → λωs

I ∼ ∫ℝN
≥0

[dx] xν (ci xri)t → ∫ℝN
≥0

[dx] xν (ci xriλri,N+1)t → 𝒩N+1

λ nf = (v1, …, vN,1)

x = λnf y , λ → λ

p(x, λ) = λ + x + x2

I I = ∑
f∈F+

I( f ) +…

Pak, Smirnov 10; Semenova, 
A. Smirnov, V. Smirnov 18

1,2 ∈ F+

3 ∉ F+

(0, 1)

(1, 0) (2, 0)

pt

px

v2

v1

v3
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Additional Regulators/ Rapidity Divergences

MoR subdivides   new (internal) facets  

New facets can introduce spurious singularities not regulated by dim reg 

Lee Pomeransky Representation: 

If  have  need analytic regulators 

𝒩(I) → {𝒩(IR)} ⟹ Fint.

f ∈ Fint af = 0 ν → ν + δν

𝒩(I(R)) = ⋂
f∈F

{m ∈ ℝN ∣ ⟨m, nf⟩ + af ≥ 0}

I ∼ ∑
σ∈ΔT

𝒩

|σ | ∫ℝN
≥0

[dyf] ∏
f∈σ

y⟨nf ,ν⟩+ D
2 af

f ci∏
f∈σ

y⟨nf ,ri⟩+af
f

− D
2

Heinrich, Jahn, SJ, Kerner, Langer, Magerya, Põldaru, Schlenk, Villa 21; Schlenk 16



Integrals with Pinch Singularities
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Looking for Trouble: Algorithm

Generally, solutions of the Landau equations depend on .  
Let us restrict our search to solutions with generic kinematics 

 

Algorithm (finds integrals which potentially have a pinch in the massless case) 

Much more sophisticated algorithms for solving Landau equations exist

s

ℱ = − ∑
i

si [fi(α) − gi(α)] = ∑
i

ℱi,− + ℱi,+

ℱi,− = − si fi(α), ℱi,+ = si gi(α), fi(α), gi(α) ≥ 0

For each : 

1) Compute  

2) If  or   Exit (no cancellation) 

3) If  or  set   Goto 1 

     Else  Exit (potential cancellation)

si

ℱi,−, ℱi,+

ℱi,− = 0 ℱi,+ = 0 →

∂ℱi,−/∂αj = 0 ∂ℱi,+/∂αj = 0 αj = 0 →

→

(E.g.) Mizera, Simon Telen 21; Fevola, Mizera, Telen 23 
(See also) Gambuti, Kosower, Novichkov, Tancredi 23
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Interesting Example

𝒰(α) = α0α2α4 + α0α2α5 + α0α2α6 + (29 terms)

= ∫
∞

0
dx0 …dx7

𝒰(x)4ϵ

ℱ(x; s)2+3ϵ
δ(1 − x7)

ℱ(α; s) = −s12 (α1α4 − α0α5) (α3α6 − α2α7) − s13 (α1α2 − α0α3) (α5α6 − α4α7),
∂ℱ(α; s)

∂α0
= s12 α5(α3α6 − α2α7) + s13 α3(α5α6 − α4α7),

⋮
∂ℱ(α; s)

∂α7
= s12 α2(α1α4 − α0α5) + s13 α4(α1α2 − α0α3)

Can have a leading Landau singularity with generic kinematics (arbitrary ) 
when each factor of  vanishes!

s12, s13
ℱ

p1 p3

p2 p4
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(e) Gss

p1 p3

p2 p4

(f) Gtt

p1 p3

p2 p4

(g) Guu

p1 p3

p2 p4

(h) Gst

p1 p3

p2 p4

(i) Gsu

p1 p3

p2 p4

(j) Gtu

Figure 2: All the four-point three-loop graphs with possibly hidden Landau singularities.

variables. Might be good to say something about the logic of inserting the derivative with the
imaginary part.]Einan

F(e↵) = F(↵) � i

X

j

⌧j
@F(↵)

@↵j
+ O(⌧

2
), ⌧j = �j↵j(1 � ↵j)

@F(↵)

@↵j
, (3.18)
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Interesting Example

Let’s try to compute this with sector decomposition (pySecDec)

Fails to find contour…
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Contour Deformation

But for this class of examples  and all  vanish at the same point inside 
the integration domain 

 pinch singularity 

ℱ(α) ∂ℱ(α)/∂αi

→

ℱ(α; s) = −s12 (α1α4 − α0α5) (α3α6 − α2α7) − s13 (α1α2 − α0α3) (α5α6 − α4α7),
∂ℱ(α; s)

∂α0
= s12 α5(α3α6 − α2α7) + s13 α3(α5α6 − α4α7),

⋮
∂ℱ(α; s)

∂α7
= s12 α2(α1α4 − α0α5) + s13 α4(α1α2 − α0α3)

vanish for

α2 =
α0α3

α1
, α4 =

α0α5

α1
, α6 =

α0α7

α1
.

Example
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Resolution

The problem is that we have monomials with different signs… 

Asy2.1 PreResolve->True

Correctly identifies that iterated linear changes of variables are not sufficient to 
resolve the singularity and reports that pre-resolution has failed 
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Resolution

ℱ(α; s) = −s12 (α1α4 − α0α5) (α3α6 − α2α7) − s13 (α1α2 − α0α3) (α5α6 − α4α7)

1) Rescale parameters to linearise singular surfaces

ℱ(α; s) = α1α3α5α7 [−s12(α4 − α0)(α6 − α2) − s13(α2 − α0)(α6 − α4)]

α0 → α0α1, α2 → α2α3, α4 → α4α5, α6 → α6α7

2) Split the integral by imposing αi ≥ αj ≥ αk ≥ αl

α0 → α0 + α2 + α4 + α6,
α2 → α2 + α4 + α6,
α4 → α4 + α6,
α6 → α6

+perms

ℱ1(α; s) = α1α3α5α7 [−s12(α0 + α2)(α2 + α4) − s13(α0)(α4)]
ℱ2(α; s) = α1α3α5α7 [−s12(α2)(α0 + α2 + α6) + s13(α0)(α6)]

⋮
ℱ24(α; s) = α1α3α5α7 [−s12(α2 + α4)(α4 + α6) − s13(α2)(α6)]

All coefficients of 
 now have 

definite sign
s12, s13


