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Introduction



Introduction

e The correct treatment of heavy quark masses is important for precision at the LHC
e Often we want to describe data in different kinematic regimes

(a) m? ~ Q?: low energies where power corrections are important

(b) m® < @”: high energies, where large logarithms are produced

= Heavy flavor effects need to be consistently treated over wide energy ranges.
In this talk:

e Heavy flavor production in deep-inelastic-scattering.

e Asymptotic heavy mass effects via operator matrix elements.

e | Treating more than one heavy quark.




Theory of Deep Inelastic Scattering

e Kinematic invariants:
2 2 Q2
Q =—-q, X = 2Pq

e The cross section factorizes into

leptonic and hadronic tensor:
d’c
d@2dx

e The hadronic tensor can be expressed through structure functions:
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e F, F>, g1 and g contain contributions from both, charm and bottom quarks.



Variable Flavor Number Scheme

e Idea: When Q2 > m? we can treat the heavy quark effectively as massless.

e Demand for the structure functions in the asymptotic limit:

Fi(ny, Qz) + ,_—icf,asymp(m7 Q2, mz) Q" >m F’_VFNS(nf 11, Qz)

e By comparing both sides of the equation we can define new parton densities, which
become dependent on the heavy quark mass.

e General-Mass VFNS: interpolate between fixed flavor number scheme and asymptotic
representation, e.g. (S)-ACOT, FONLL:

Ci=CY"™(ns +1,Q%) + [(C; (nr, Q%,m?) — C; (nf, @, m2)|Q2>>m2}



Two mass contributions

At high enough energies @ > m?2, m?, treat charm and bottom as massless:

Option 1: ‘ Q> > m? > m?

e Decouple charm, then decouple bottom while considering the charm as
massless.
e No new ingredients appear in the asymptotic representation.

e Universal power corrections in /7 = 2—; ~ 0.3 are not accounted for.
Option 2: | Q% > mi ~ m?

e Decouple charm and bottom together.

e New OMEs with both massive quarks present simultaneously appear.

[Ablinger, Bliimlein, De Freitas, Hasselhuhn, Schneider, WiBbrock '17]
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The Variable Flavor Number Scheme

Matching conditions for parton distribution functions:
2 2

fe(Ne +2) + fi(NE +2) = A} g (NF+2 = '"") fi(NF) + fe(Nr)]
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The Variable Flavor Number Scheme at

lllustration of two mass effects at NLO (Q? = 30GeV?, 50GeV?, 100GeV?, 1000GeV2):
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Massive Operator Matrix
Elements at O(a3)



Computing Massive Operator Matrix Elements

e We want to calculate massive operator matrix elements: A; = (i |O;| i), with the operators

- A
NS N—1 r
Ogrprn =1 S |V Dyp--- Dy 71/) — trace terms ,
s N—-1c 7
Of vy = 1" 8 [0 Dpsy - Dpuy )] — trace terms
S _ o;N=-2 a «,a
OF ripirypy = 200 °S [FMQDM...D#NF#N | — trace terms
and on-shell external partons i = q, g.

e The operator insertions introduce Feynman rules which depend on the Mellin variable N.




The OMEs are calculated using the QCD Feynman rules together with the following operator

insertion Feynman rules:
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Calculation methods

e Resum operator insertions into propagator insertions:

——— ~ (A.k)N — Zt Ak

Py P

l—tAk

e Diagram generation: QGRAF [Nogueira, 1993]

e Lorentz and Dirac algebra: Form [Vermaseren, 2000]

e 75 is treated in the Larin scheme: [Larin, 1993]

e Color algebra: Color [van Ritbergen, Schellekens, Vermaseren, 1999]
e |IBP reduction: Reduze 2 [von Manteuffel, Studerus 2009,2012]

= We obtain the amplitudes in terms of master integrals M and their associated system of
differential equations in t:




Relation between the different spaces

e f(t) = F(N): find ans solve a recurrence starting from the
differential equation in t

f =3 & F@v) e f(x) = f(N): find ans solve a recurrence starting from the
A differential equation in x

e 7(N) — f(x): find and solve a differential equations starting from
the recurrence in N

‘f(N — [dza®1 f(z)
0

‘f(x) ' ’f =N F(N)AN e f(t) — f(x): analytic continuation to t > 1.

—100

[Behring, Bliimlein, Schénwald '23]

[f(x) = i Discf (t = %)} e algorithms implemented in public packages Sigma [Schneider,
'07,'13,...] and HarmonicSums [Ablinger, '09,'12,...]

BUT: Algorithmic solutions are only possible if the recurrences or

differential equations factorize to first order. 0



N-space calculations:

e Insert a formal power series into the differential equation

oo
M:Zat"

i=0
and obtain recurrences for the expansion coefficients.

e Method 1: Solve the recurrences directly with advanced methods implemented in Sigma
[Schneider, '07,'13] .

e Method 2: Obtain a large number of moments [Bliimlein, Schneider, '17] and guess a

recurrence [Kauers et al. '09] of the final quantity to compute and solve with Sigma.
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x-space calculations:

e Method 1: Solve the differential equation analytically in t and compute the Nth
derivative symbolically and do the inverse Mellin transform (algorithms implemented in
HarmonicSums [Ablinger '09-] ).

e Method 2: Use analytic series expansions and numerical matching to obtain semi-analytic
results for all values of t. The x-space solution can be found through the imaginary part
for t > 0.

12



Two mass contributions to Ay:’g) and Ag,)

K

e After introducing Feynman parameters the integrals can be represented as:
+ioco
|~ Cle. N) / donT {gl(s) +0,8(¢) + 0, 83(¢) + 0, 8a(e) — 0, 85(¢) — fr}
g(e) +0,81(c) — o '

—ioco

e The 7 and /V dependence completely factorizes, and after closing the integration contour
and summing residues a linear combination of hypergeometric 4 F3-functions is obtained

B o ai(e), a2(e), as(e), aa(e)
I—JZLJ( »/\/)4F3|: bl(s),bz(s),bg(s) 77I:|

e The c-expansion gives rise to (poly)logarithmic functions with argument 7, /7 and —,/7.

13
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Two mass contributions to A

e We use the following ratio to visualize the size of the two mass contributions:
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Two mass contributions to A
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[Ablinger, Bliimlein, De Freitas, Hasselhuhn, Schneider, WiBbrock '17] [Behring, Bliimlein, De Freitas, von Manteuffel, Schdnwald, Schneider '21]
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Two mass contribution to A'Z,i’(3)

e After introducing Feynman parameters the integrals can be represented as:

e Problem: the sums for the N-space solution are not first order factorizable
= Summation algorithms of Sigma cannot find the closed form solution

e Solution: aim directly for the solution in momentum fraction space, which is first order

factorizable

16



Details: AB)PS

(O]

e After introducing Feynman parameters the integrals can be represented as:

+ioco

I ~r(N /ldxx f(x / do &7 g(o)
0

—ioo

We now have two different cases for closing the contour:
o Case 1: £ = m
We can close the contour to the left, since £ > 4/n.
o Case 2: £ = m
We have to split the integration region into the three regions:

1: x € (0,7m—) : close to the left
2: x € (n—,n4): close to the right
3: x € (n4,1) : close to the left

with 74 :%(liw/l—n)

e This shows that in momentum fraction space functions with different support contribute.

17



(3),PS

Results: AQq

agc),’PS(N) _ /0' d X"’*{K(l}. x) + (9(77, —x)+0(x — 77+))xgo(n,x)

+00 =)0 =) |1 = [ oy (60) + L6010 + Zh0a) )]

Jn

s =2 [ v (a00)+ L) + i)

—0(x — 77+)/m dy (gl(n,y) + fgz(my) + ;gz(n,y))
+x ho(n, x) + '/Xl dy (h1(777y) + ghz(my) + ;ha(my))

+0(n+ — X)/’H dy (ﬂ(n,y) + L bny) + 77+§f3(77aY))

n_ +X
1 y x
+/ dy (gl(my) + > &(ny) + ;gz(n,y)> }
Jng

The function agc),"PS(x) is continuous.

The integrals qu, dy, j}: dy, j: dy, j;l dy and j”i dy arise from the absorption of N dependant

18
factors.



E.g. we find:

b(ny) = —64P197(;/j(3y_2y);§/)/ ({ ‘/7‘[} (1 ))

+G( ! y(l—y)>{1§8(1_) <{;ﬁﬁ}ﬁ)
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165 512 n 2560 B %
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e For numerical evaluations we calculated a long list of iterated integrals as HPLs at
involved and complex arguments, i.e.:

¢ <{ = %} @) = w1 (=4 - 41n(2) +21n (461)) +In° (1 - 1) — 2 In’ (41)
—4In(1—wi)—2In(2)In (1 —wi) + 2In (4&1) + 2In(2) In (4&1) — 2Liz (1 = w1> +4—1n?(2),

G ({l vi—dr 1“/‘F},§1> = — (In(1 - w1) (21n (461) — 4) — In* (4€1) ) In(2)

T T T

— (2= 2In(1 — wy) + In (461)) In3(2) — In® (1 — w1) (=5 1n (4€1) — 6) — (8 — 4Ly (1 ;w1>

— w1

— 8wy + 81n (481) + 21n? (4&1) + 4@) In(1—w)— (-4 + 2Ly (1

1 1-—
72<747Li3( +“’1>+2L12( Wl)+4w1+4gl)
wp —1 2

= ? In® (1 — w)+ é In® (4€1) + 21n? (4&1)

) + 4wy — 2@) In (4&;)

with w; = /1 — 4&;.
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Result: A(3C), PS

me = 1.59GeV,
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[Ablinger, Bliimlein, De Freitas, Schneider, Schénwald '17]
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Two mass contribution to AG)

gg,Q
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e 203)
Details: Agg’Q

e In general the structures in N and 7 do not factorize:

+oo
: £ _gl e—0, — _ 3¢ _ 2 —_£44
I ~ C(e, N) / n° T (2+2 o0),e—o0,—0,0 27(2 e+o), N 3+
N+2+5,44+¢—20,4—2c+20

—oo

e The gluonic Feynman rules introduce large numerator structures

— single diagrams can lead to big expressions after taking all residues, the most involved
diagram 11b amounts to ~ 100MB disk space
e Our approach to tackle these sums:

1. Crunch the expressions to a few master sums using SumProduction.

2. Solve these master sums independently using the refined algorithms implemented in
EvaluateMultiSums using HarmonicSums for limiting procedures.

3. Reduce the occurring sums from the master sums to a smaller set of independent sums.

e This way the summation of diagram 11b can be tackled in ~ 78 days and ~ 33 days are
needed to reduce the occurring sums to a basis

e The full summation amounted to around 5 months of calculation.

23



. 23
Results: Agg’Q
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e 203)
Details: Agg’Q

e The Mellin-inversion of the binomial sum structures can be handled with an improved
algorithm implemented in HarmonicSums.

e The general idea is based on deriving a differential equation for the x-space solution nad
subsequently solve it in terms of iterated integrals.

e We find i.e.
N 2~ 2/1(2"11) 1 a2 2 4
’.12:1 i =1 (2'2) 13 iy= 17
1‘
[t = =D [ o ({virvm 2} on) s ({Vim7va) o) - 2]

+/1d><XN -1 [’2“2 G e ({VI=Fvr vI=7v7} %)
0

1—x 12

—5x° +8x° — 4x* 1 1
+X x +2X x G<{1 },x>+l6G ({\/177ﬁ,\/177ﬁ,17},x)
-7 -7

727r2|n(2) —7(36 ({\/ﬁﬁ} ,x)]

T
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e 203)
Details: Agg’Q

e The Mellin-inversion of the binomial sum structures can be handled with an improved
algorithm implemented in HarmonicSums.

e The general idea is based on deriving a differential equation for the x-space solution nad
subsequently solve it in terms of iterated integrals.

o For AL, we find the alphabet:

1 1 1 1 1
= o s x(1— ) )
X 1+x ° 1-—x X x) x+n(1—x) 1—x(1-m)

1 Vx(1 = x) Vx(1 = x) x(1 —x)
n+x(l—n) = 1-x(1-n)  x+nl-x)  n+x(1-n)

e Rational prefactors in NN have to be included by convolution integrals.

e For numerical evaluations we calculated all occurring iterated integrals as HPLs at
involved and complex arguments.
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Two mass

(3)
Ryoa

contribution to A
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Two mass contributions to A

(3)
Qg

The calculation of /Z\gé), is the biggest challenge:

° A(gg) in the single mass case is already elliptic, the function space gets more complicated
including a second mass.

e However, the physical value of m./mj; ~ 0.3 provides a natural expansion variable.

= |dea: Obtain results in an expansion around 77 — 0!

27



Two mass contributions to Agg): n<Kl

Use 7 = m2/m? as expansion parameter similar do € = d — 4.

Calculate a large number of moments (O(3000)) of the master integrals with the methods
of arbitrary high moments utilizing the differential equation.

Boundary conditions at fixed N, which can be computed for arbitrary 7.

e Use guessing techniques to reconstruct the all-/V solution of the amplitude.

Unpolarized case

Coefficient # moments | rec. order | rec. degree | Ny | poles
CaT? 2622 26 513 | 2

CaT2n 2080 23 400 | 4 2
CaT2r? 1548 20 311 | 4 2
CaT2r® 1457 17 324 | 6 2.4

28



Two mass contributions to Agg): n<Kl

e Use guessing techniques to reconstruct the all-/V solution of the amplitude.

Unpolarized case

Coefficient # moments | rec. order | rec. degree | Np | poles
CaT? 2622 26 513 | 2

CaT?n 2080 23 400 | 4 2
CaTE? 1548 20 311 | 4

CaTE® 1457 17 324 | 6 2,4

29



Two mass contributions to Agg): n<Kl

e Use guessing techniques to reconstruct the all-/V solution of the amplitude.

Unpolarized case

Coefficient # moments | rec. order | rec. degree | Ny | poles
CaT? 2622 26 513 | 2

CaT?n 2080 23 400 | 4 2
CaTE0? 1548 20 311 | 4
CaTE? 1457 17 324 | 6 2,4

Problems:

e Closed solutions only for
e [y increases with higher orders in the expansion in 7.

e More poles appear for N < Ny leading to an unphysical behavior of the x-space solution.

29



e Inspiration from [Fael, Schénwald, Steinhauser '21] :

e Expansion in m./my < 1 very complicated.

e Expansion in 6 =1 — mc/m, much simpler and good convergence for physical point.

e Expand master integrals in § = 1 — m./my, using the differential equation in m..

e The boundaries for the expansion are the masters for m. = my:
We can reuse the solution of the master integrals in the single mass case.

30



e Inspiration from [Fael, Schénwald, Steinhauser '21] :

e Expansion in m./my < 1 very complicated.
e Expansion in 6 =1 — mc/m, much simpler and good convergence for physical point.

e Expand master integrals in § = 1 — m./my, using the differential equation in m..

e The boundaries for the expansion are the masters for m. = my:
We can reuse the solution of the master integrals in the single mass case.

Success! We can find solutions, which can approximate the OMEs over all x!

30



Convergence of the expansion (setting m, = 4.78, m:/m, = 1/3, Q? = 30GeV?):

AS) (N = 10) = —74.215863973188462672...
~ 4.69095...—52.87648...x — 13.51460...x° — 5.77578...x°> — 2.91093...x*
— 1.58651...x° — 0.90329...x° — 0.52844...x7 — 0.31488...x® — 0.19014...°
—0.11599...x1% — 0.07134...x'* — 0.04417...x'? — 0.02750...x** — 0.01720...x**
—0.01081...x*° — 0.00681...x'° — 0.00431...x'" — 0.00273...x*¥—0.00174...x*° + ...
= —74.212774664755273018...

setting 0 = 2/3x.
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Convergence of the expansion (setting m, = 4.78, m:/m, = 1/3, Q? = 30GeV?):

AS) (N = 10) = —74.215863973188462672...
~ 4.69095...—52.87648...x — 13.51460...x° — 5.77578...x°> — 2.91093...x*
— 1.58651...x° — 0.90329...x° — 0.52844...x7 — 0.31488...x® — 0.19014...°
—0.11599...x1% — 0.07134...x'* — 0.04417...x'? — 0.02750...x** — 0.01720...x**
—0.01081...x*° — 0.00681...x'° — 0.00431...x'" — 0.00273...x*¥—0.00174...x*° + ...
= —74.212774664755273018...

setting 0 = 2/3x. Using one step of the sum acceleration we get:

3),approx
AS) 2P\ = 10) ~ —74.215816598482...

Difference: 0.00006%
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Two mass contributions to Agg): Results

AGEt(N) — AGe (W)
Ag (V)

(A)r(N) =

N | AZGEN) | r(N[%] | N | AAZEN) | Ar(N)[%]

2 | -4236.5 | 0.00004 | 1 0| (0.00004)
6 | -3091.6 | 0.00005 | 5 2988.0 |  0.00008

12 -1970.7 | 0.00005 | 11 -2026.4 0.00008
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Two mass contributions to Agg): Results
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Summary and Outlook

Summary

e Two mass corrections can make up of the respective color factors of the OMEs.

e Massive operator matrix elements are important for phenomenology.
They can be used for:

e the interpretation of DIS precision data.
e the precise determination of parton distribution functions.

e At 3-loop order all OMEs for unpolarized and polarized scattering have been calculated.

e Together with the massless Wilson coefficients we can describe heavy quark production in
DIS at large Q2.

e The variable-flavor-number-scheme at 3-loop is completed.

e During the project new methods and tools have been developed.

mec

e Also power corrections in o can be considered.
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Summary and Outlook

Outlook

e All results will be implemented in a numerical program and released soon.
e The analytic solution of Ag, depends on two elliptic sectors and is work in progress.
e The analytic solution of the two mass contributions to Aq, is even more involved.

e A fully consistent NNLO precision analysis of the DIS World Data to determine as and m.
can now be carried out.
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Summary and Outlook

Outlook

e All results will be implemented in a numerical program and released soon.
e The analytic solution of Ag, depends on two elliptic sectors and is work in progress.
e The analytic solution of the two mass contributions to Aq, is even more involved.

e A fully consistent NNLO precision analysis of the DIS World Data to determine as and m.
can now be carried out.

= Polarized results are directly applicable for EIC analysis in the future.
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Factorization of the Structure Functions

At leading twist the structure functions factorize in terms of a Mellin convolution

Q2 m2 5
Fo,u(x, @) Z C a1 X EE ® fi(x, 1)

nonpert.

perturbative

into (pert.) Wilson coefficients and (nonpert.) parton distribution functions (PDFs).
® denotes the Mellin convolution

F(x) ® g(x) = / dy / dz 6(x — y2)F(y)g(2)

The subsequent calculations are performed in Mellin space, where ® reduces to a
multiplication, due to the Mellin transformation

1
:/ dxfolf(x)
0



Factorization of the Structure Functions

At leading twist the structure functions factorize in terms of a Mellin convolution

Q2 m2 . 5
F.n(N, Q%) Z G ) o i)

perturbative

nonpert.

into (pert.) Wilson coefficients and (nonpert.) parton distribution functions (PDFs).
® denotes the Mellin convolution

F(x) ® g(x) = / dy / dz 6(x — y2)F(y)g(2)

The subsequent calculations are performed in Mellin space, where ® reduces to a
multiplication, due to the Mellin transformation

1
:/ dxfolf(x)
0



Wilson coefficients:

Q2 m2 Q2 Q2 m2
Cj2.0) (N»F,F = G 2,0 N,? + Hj 2,0 N,?»F ]

At Q2 > m? the heavy flavor part

QZ m2 Q2 m2 m2
Hj (2,0 <N7F’F :ZCI,(Z,L) N,? Ajj F’N +0 o8

[Buza, Matiounine, Smith, van Neerven (Nucl.Phys.B (1996))]
factorizes into the light flavor Wilson coefficients C and the massive operator matrix elements
(OMEs) of local operators O; between partonic states j

m2 . .
A; (7“’) = lolj) -



Inverse Mellin transform via analytic continuation

[based on: Behring, Bliimlein, Schénwald (JHEP (2023))]

Fy =S Fmer =Y / dx' NN () = / dx' T f(x)
= 0 0

N=1 N=1

Setting t = % we obtain:




Inverse Mellin transform via analytic continuation

[based on: Behring, Bliimlein, Schénwald (JHEP (2023))]

F() = S F(N)eN = Z/dx’ NN () = /dx’ ﬁf(x’) I ]
= / / 5

N=1 N=1

0 ’ x—1i 1
Setting t = % we obtain: I_
x’
L /
/
1?<1> = /dx/ ) 0 e~ 1
X x —x'
0

3

Therefore: ~ .
0 zu 1




Inverse Mellin transform via analytic continuation

The discussion before used some implicit assumptions.
The x-space representation

1. has no (—1)N term.
2. is regular and has now contributions from distributions.

3. has a support only on x € (0, 1).



Inverse Mellin transform via analytic continuation

The discussion before used some implicit assumptions.
The x-space representation

1. has no (—1)N term.
2. is regular and has now contributions from distributions.

3. has a support only on x € (0, 1).

For physical examples:

/dxx - f(x + (-1)Vg(x) + (ﬁ;—o—(—l)Ng(;) 6(1—x)] +/dx%

0

All of this can be lifted, but the discussion is more involved.



Variable Flavor Number Scheme

FFNS VFNS
e Fixed order in perturbation theory and e Define a threshold above which the heavy
fixed number of light partons in the quark is treated as light, thereby obtaining
proton. a parton density.
e The heavy quarks are produced e Absorb mass singular terms from the
extrinsically only. asymptotic heavy quark coefficient
e The large logarithmic terms in the heavy functions and absorb them into parton
quark coefficient functions entirely densities.
determine the charm component of the e Resum large logarithms involving the mass.
i 2 . C
structure function for large values of Q<. e Provide heavy flavor initial state parton

desities for the LHC, e.g. for c5 — W.
Important:
e The VFNS is derived from the FFNS directly.

e New parton densities for the heavy quarks appear, which are now treated as light.
e Only universal (not power-supressed) terms are absorbed into the parton densities.



(3).NS
qq9,Q

Results: A

5 NS L[4 3N? + 3N +2 3,3
; - CT -5 — = ) |=24(L L Lily +2 5) (L1 + L
FF{(gl ON(N 1 1) (L + L2” + (Lil2 +2¢2 +5) (L1 + L2) )

+7;j/21 (57]2 +22n + 5) (7% In2(n) In (i t \\/ﬁ;’) + 2In(n)Liy (v/7) — 4Lis (\/ﬁ)>

7+ 1)? ) , 64
+(\g773/2) (—107,3/2 + 50 + 421 — 10/7 + 5) [Lis () — In(n)Li> (n) ] + 36
16 (4057 — 32381 + 405) =

729n !

2
+§ In*(n) — 161n?(n) In(1 — 1) + 107 ; ! In(7]):| +

L4 <3N4 + 6N3 + 47N? + 20N — 12
3

40 4 ,
- =5 S: - L L
3NZ(N 1 1) 5 1+ 8 z) [3C2+(1+ 2)}

8 [ 130N* + 84N> — 62N? — 16N +24 52 80
+— ( 7?51+?5271653 (L1 + L)

9 3N3(N +1)3
+ [— 18N2(I’\71+ 1%n + 2 (5772 ;727] 9 S+ 3—9252} |n2(77) - m
e, g o)
The R;'s are polynomials in N and 7. For 5(;7)@ and 539°N5 T one finds similar expressions.



(3),PS

Details: AQq

e The residue sums can be done with Sigma, EvaluateMultiSums and HarmonicSums in
terms of generalized iterated integrals and there special values

G ({A(r), A7), -+ ()}, 2) = /0 dr fi(1)G ({f(7), - -+ fa(T)}, 71)

e Rational prefactors in N can be absorbed via integration by parts identities or convolution

integrals, i.e.
Lo B ) f e [y fO)
—_— dx x"7HF(x) = /dyi—/dxer*l/dy—.
N+1J, N+1J, yl+1 y/+1
a a
e The alphabet of the occurring iterated integrals contains only two new letters:
1 1 1 vi—4a
— VE—xVx, ul
— X X

x’ 1+ x’
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