

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Precise predictions for hadronic Higgs decay observables

Aude Gehrmann-De Ridder

In collaboration with E. Fox, T. Gehrmann, N. Glover, M. Marcoli, C. Preuss

[arXiv: 2502.17333 (PRL)]

Loop Summit 2, Cadenabbia, Italy, 23.07.2025

Introduction: The Higgs boson in the Standard Model

- Higgs boson H: prediction of Brout-Englert-Higgs mechanism (1964, Nobel Prize 2013) of electroweak symmetry breaking for mass generation of Standard Model (SM) particles
- Discovered in 2012 the H→γγ channel [ATLAS: 1207.7214, CMS:1207.7235]
- Present data compatible with a scalar particle with spin 0 and even parity (as predicted by the SM) of mass $m_H \sim 125.2$ GeV

CMS Nature (2022) 2207.00043

- Couplings
 - fermions (f): g_{Hff} ~ m_f/v (largest for top-quarks)
 - EW gauge bosons (V): $g_{HVV} \sim m_V^2/v^2$ (no direct γ -coupling)
 - Higgs (H): $g_{HHH} \sim m_H^2/v$, $g_{HHHH} \sim m_H^2/v$ (Ultimate test of Higgs potential)
- Couplings probed in Higgs production or decay channels
- No deviation from SM observed so far at LHC

Introduction: Higgs decays at a lepton collider

- FCC_{ee}: Higgs factory at ZH production threshold: (expect: 10⁶ events at \sqrt{s} =240 GeV)
 - Number of Higgs bosons produced: comparable to the number of Z-bosons at LEP
- e⁺e⁻→ZH (leptonic Z-decays): Ideal for precision studies of Higgs properties and couplings
 - clean environment : free from QCD initial state radiation
 - Expected experimental uncertainty for (most) Higgs couplings @ per-mille level
- Require precise theory
 - computations in perturbative QCD with higher order corrections
 - Focus on hadronic Higgs decay observables for dominant decay channels

 $H \rightarrow bb$ (or: $H \rightarrow cc$) and $H \rightarrow gg$

Hadronic Higgs decays: main decay modes

- H→bb: main Higgs decay channel
 - essential for precise determination of $\Gamma_{\rm H}$
 - already accessible at LHC via ZH production and leptonic Z-decay
 - direct (Yukawa induced) coupling at $\alpha_{\rm s}^{\rm o}$: $y_b(\mu_R)=\sqrt{2}m_b(\mu_R)/{
 m v}$

- H→gg: accessible only at lepton colliders (fixed energy, low QCD background)
 - no direct coupling: loop induced coupling at $\alpha_{\mathrm{s}}{}^{\scriptscriptstyle 1}$

- Both processes included using $\mathcal{L}_{\mathrm{Higgs}} = -\frac{\lambda(M_t,\mu_R)}{4}HG^a_{\mu\nu}G^{a,\mu\nu} + \frac{y_b(\mu_R)}{\sqrt{2}}H\bar{\psi}_b\psi_b$
 - with H→gg decay computed in HEFT with an effective Hgg coupling:
 - top quark Wilson coefficient C(M_t) known to four-loops
 - no interference between both categories for $m_q=0$ (except in y_b)

Hadronic Higgs decay observables: theory status beyond NLO

Inclusive branching fractions: known analytically @N⁴LO

[F.Herzog, B. Ruijl, T.Ueda, J.Vermaseren, A.Vogt, '17]

- $H \rightarrow bb$: for $m_q = 0$ (except in y_b)
- H→gg: in HEFT, i.e with infinite top mass limit)
- Exclusive observables: Jet rates: (known only for $H \rightarrow bb$ decay mode)
 - H → bb: known @N³LO [R.Mondini, M.Schiavi, C.Williams, '19](MCFM)
 - H → bb +jet: known @NNLO [R.Mondini, C.Williams, '19](MCFM)
- Implicit infrared pole cancellations: dealt with N-jettiness slicing method [R.Boughezal, X.Liu, F.Petriello; J.Gaunt, M.Stahlhofen, F.Tackmann, J.Walsh, '15]
 - Split the phase space into singular/non-singular regions using $au_{\rm N}$: the distance from an N-jet configuration

$$\tau_3 = \sum_{j=1,m} \min_{i=1,2,3} \left\{ \frac{2q_i \cdot p_j}{Q_i} \right\}$$

Subtraction at NNLO

Parton level NNLO cross section with m-jets in the final state

$$\mathrm{d}\hat{\sigma}_{NNLO} = \int_{\mathrm{d}\phi_{m+2}} \left[\mathrm{d}\hat{\sigma}_{NNLO}^{RR} \, - \, \mathrm{d}\hat{\sigma}_{NNLO}^{S} \right] + \int_{\mathrm{d}\phi_{m+1}} \left[\mathrm{d}\hat{\sigma}_{NNLO}^{RV} \, - \, \mathrm{d}\hat{\sigma}_{NNLO}^{T} \right] + \int_{\mathrm{d}\phi_{m}} \left[\mathrm{d}\hat{\sigma}_{NNLO}^{VV} \, - \, \mathrm{d}\hat{\sigma}_{NNLO}^{U} \right]$$

- Unintegrated subtraction terms
 - Reproduce double real (RR) and real-virtual (RV) contributions in all infrared limits
- Integrated subtraction terms in $\mathrm{d}\hat{\sigma}_{NNLO}^T, \, \mathrm{d}\hat{\sigma}_{NNLO}^U$
 - Cancel explicit infrared poles in real-virtual (RV) and double virtual (VV)
- Terms in square brackets are
 - finite, well-behaved in all infrared regions
 - evaluated numerically with a parton-level event generator
- Challenges: Construction and convergence of subtraction terms
 - Integrated subtraction terms

Hadronic Higgs decay jet observables: NNLOJET

- Focus: $H \rightarrow 3$ -jets @NNLO, $H \rightarrow 2$ -jets@N³LO for both Higgs decay categories
- Matrix-elements known at all levels: for $H \to gg+jet$, from pp $\to H+jet$ @NNLO (NNLOJET)
- IR behaviour of real emission matrix-elements: new designer antenna formalism @NNLO [E. Fox, N. Glover, M. Marcoli, '24] → See talk by Matteo Marcoli
- Implementation:
 - H → bb+jet: identical infrared structure of QCD corrections as e⁺e⁻ → 3-jets (used for validation of new formalism), agrees with MCFM [C.Williams, R.Mondini, '19]
 - $H \rightarrow gg+jet$: New derivation and implementation in NNLOJET
- Jets defined with the IR–safe k_T algorithm : partons i,j clustered if $y_{ij} < y_{cut}$

Antenna subtraction: Conventional formalism

[T. Gehrmann, N. Glover, AG, '05; J. Currie, N. Glover, S. Wells, '13]

- Building blocks of subtraction terms (here: final-final, @NLO, 1 unresolved parton)
 - Antenna functions: built with physical matrix-elements, capturing all unresolved radiation between a pair of hard partons

• Phase space factorization and mapping: $(i, j, k) \rightarrow (I, K)$

$$d\Phi_{m+1}(p_1 \cdots, p_i, p_j, p_k, \cdots, p_{m+1}) = d\Phi_m(p_1, \cdots, p_I, p_K, \cdots, p_{m+1}) d\Phi_{X_{ijk}}(p_i, p_j, p_k, p_I, p_K)$$

- Analytically integrated subtraction term involve $\;\mathcal{X}_{ijk}=\int d\Phi_{X_{ijk}}X_{ijk}$
- @NNLO: X_3^0 supplemented by X_4^0 , X_3^1 and X_3^0 * X_3^0 and their integrated forms

Double Real Subtraction: $d\sigma_{NNLO}^{S}$

- Distinct configurations for m+2 partons $\rightarrow m$ jets : Colour connections
- one unresolved parton: (a)
 - three parton antennae: X⁰₃ :(NLO-type)
- two colour-connected unresolved partons: (b)
 - four-parton antennae: X⁰₄: (genuine NNLO)
- two almost colour-unconnected partons: (c)
 - product of two non-independent three-parton antennae X⁰₃ (common radiator)
 - radiation shared between five partons

- two colour-unconnected unresolved partons: (d)
 - product of two independent three-parton antennae X⁰₃

Designer antenna formalism: almost colour-unconnected case

[E.Fox, N.Glover, M.Marcoli, '24]

- Antennae constructed with an iterative algorithm [O.Braun-White, N.Glover, C.Preuss, '23]
 - from the desired IR limits (not from physical matrix-elements)
 - using projectors (up-down) to connect full phase space (antennae) and subspace (IR limits)
 - can be integrated analytically (as in conventional method)
- Subtraction terms: Considerably more compact
 - → See talk by Matteo Marcoli
- First new (final-state radiation) application : Hadronic Higgs decay observables

Hadronic Higgs decay observables : Results

Normalised 3-jet rates in Higgs decay up to order $lpha_{ m s}^3$

• Jet rates
$$(k=1,2,3 \text{ ; n=3})$$
 $R_X^{(k)}(n,y_{\mathrm{cut}}) = \frac{\Gamma_{H\to X}^{(k)}(n,y_{\mathrm{cut}})}{\Gamma_{H\to X}^{(k)}}, \text{ with } X=gg, \, b\bar{b}$

- Size and shape of jet rates: y_{cut} dependence
 - Size of NNLO corrections:
 - large y_{cut}: good perturbative convergence, largest corrections in Hgg mode (25 % at y_{cut} =0.1)
 - small y_{cut}: significant and negative, resummation needed
 - Differences in shape:
 Peak of distributions at low y_{cut} shifted @NNLO
 - H \rightarrow bb (peak at y_{cut} =0.002), H \rightarrow gg (peak at y_{cut}=0.007)

0.01

 y_{cut}

12

Normalised 3-jet rates @NNLO

- Total hadronic 3-jet rate @ α_s^3 : $R_X^{(3)}(n,y_{\mathrm{cut}})$ with $X=gg,\,b\bar{b},c\bar{c},had$
- Normalisation and ratio: Total decay rate to hadrons

$$\Gamma_{H \to \text{had}}^{(3)} = \Gamma_{H \to b\bar{b}}^{(3)} + \Gamma_{H \to c\bar{c}}^{(3)} + \Gamma_{H \to gg}^{(3)}$$

- Shape and size: dominated by H → bb:
 - in accordance with the highest inclusive branching ratio
- Highest sensitivity to the decay mode H → gg:
 - in hard 3-jet final state kinematical region
 - for large y_{cut} values

Fractional jet rates up to order $lpha_{ m s}^3$

- Hadronic jet fractions: Perturbative QCD at work
 - 5-jets@LO, 4jets@NLO, 3-jets@NNLO, 2-jets@N³LO
- dependence on y_{cut}: Inclusion of higher orders
 - Lowering y_{cut}: Opening of higher mutiplicity channels with -visible shape changes for n-jet rates (n ≥ 3)
 -need for resummation (at small y_{cut})
- Shape dominated by behaviour of H → bb mode:
 - Similar as in Z-decay: colour singlet decay to a fermion pair

$H \rightarrow 2$ -jets @ N³LO: Individual hadronic contributions

- Computational ingredients:
 - Higgs total decay rate (known @N⁴LO)
 - n-jet fractional rates (with n=3,4,5) @ $O(\alpha_s^3)$
- Size of individual contributions (inclusive):
 - 85 %: H \rightarrow bb, 11.5 %: H \rightarrow gg, 4%: H \rightarrow cc
 - 2-jet rates yield inclusive values for $y_{cut} > 1/3$

Event shapes for $H \rightarrow 3$ particles @ NNLO

- Classical QCD observables as testing ground for QCD
 - perturbative theory, power corrections and resummation
- Thrust variable (T): Measure of isotropy of multi-particle final states

$$T = \max_{\vec{n}} \left(\frac{\sum_i |\vec{p_i} \cdot \vec{n}|}{\sum_i |\vec{p_i}|} \right)$$
 T \rightarrow 1: 2-particle limit, 2-jet (back-to-back configuration) T=1/2 : Spherical event

- Observables widely used at LEP: Precise determination of α_s [G. Dissertori@al '09]
 - with Z-decay event shape computation at NNLO [T. Gehrmann, N. Glover, G. Heinrich, AG, '09]
- Hadronic Higgs decays: 3-jet like event-shape observables known at NLO [J. Gao, Y.Gong, W-.Ju, L.L. Yang, '19 (Thrust); G. Coloretti, C. Preuss, AG, '22]
- Used as discriminators between both Higgs decay modes

Event shapes in hadronic Higgs decay: 1-T at NNLO

- Observable: $\tau \frac{1}{\Gamma^{(2)}} \sum_{X} \frac{\mathrm{d}\Gamma(s,\mu_R)_{H \to X}}{\mathrm{d}\tau}$, with $X = b\bar{b}, c\bar{c}, gg, \mathrm{total}$ (1-T= τ)
 - Behaviour dominated by 2-jet region (and H → bb mode)
 - Observable \rightarrow 0 as $au \rightarrow$ 0 (H \rightarrow gg negative below au_{min} = 0.015)
 - Forbidden region at LO : $\tau > 1/3$
- Shape (τ dependence):
 - Small τ : Sharp decrease for $H \rightarrow gg$ mode (Peak shift)
 - Large τ : (above $\tau = 1/3$): Sizeable NNLO corrections
 - phase space restrictions lifted
 - Scale uncertainty band: NLO-like

Conclusions and Outlook

- Predictions for hadronic Higgs decay observables related to H→n-jets
 - NNLO for 3-jet rates, N³LO for 2-jet rates
 - first application of the new designer antenna formalism @NNLO to a decay process
- Distinct signatures
 - Rates largest for the H→bb decay mode
 - Corrections largest for H→gg (HEFT)
 - Highest sensitivity for gluonic Higgs decay mode: by selecting hard three jet final states
- Work in progress: 3-jet like Higgs decay event-shape observables @ NNLO
- Inclusion of higher order QCD corrections crucial for precise Higgs phenomenology at lepton colliders

Thank you!