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Gravitational waves

Q@ 1915:from GR, Einstein predicts GWVs

Q@ 2015:first GW signal, GW 15091 4:
two black holes, each about 30 Mo, 1.5 107 ly away
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distance z=0.25 ~ 3.3-10% ly
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inspiral merger ringdown

PN, PM, SF expansions NR BHPT



Masses |n the Stellar Graveyard

EM Neutron Stars

observed for < 200 Mg so far

taxonomy from models, not from GWs



LISA

launch ~ 2035

f=01Hz = A=3-10m
f=104Hz = A=3-102m mass ~ 104 - 107 Mo (MBH) distance z=10 -~ 13.4-10%ly

Mi~10Me M2~ 10> Me (EMRI) distance z=4 -~ 12-10% Iy

inspiral with up to - |04 cycles



Binary system of SMBH
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Waveform

interested in modelling inspired phase
with analytic expansions
h

rs<<b " ringdown
inspiral merger

GWs carry info about the potential
of a BH binary system

Ji@)

Post Newtonian (PN) expansion: v2/c?2 \
L

(deals with 3-dim integrals in config. space) O

| PN: Lorentz Droste 1917; Einstein Infeld Hoffmann 1938

6 PN: Bini Damour Geralico 2020-2021
Blumlein Maier Marquard Schafer 2020-202 1

Potential



Q@

Caveat:
GR deals with bodies as finite-size objects
analytic expansions deal with point-like objects

EFT of point particles coupled to gravity
rs<< b  Goldberger Rothstein hep-th/0409156

use RG methods to organise log(rs/b)

Post Minkowskian (PM) expansion: G/r
ideal for eccentric orbits

matches loop expansion of amplitude:

| PM = O(G/r) = tree level
2 PM = O(G2/r?) = one loop, etc.

from the gravitational dynamics tha: governs the orbital
evalution and radiztion emission. [lsing the EFT for-
mulation, it is easy to show that the divergences which
arise at v? in the PN expansion can be attributed to the
existence of new operators in the effective poin: particle
description. However, these operators can be removed
via a point transiormation cf the metric tensor and thus
never contribute to physical quantities. This leads to the
conclusion that there are no finite size effects at order v°.
Practically, this means that whenever onz encounters a
log diwvergent integral at order v' in the potential, one
may stmply set it to zero. Its value cannot affect paysical
predictions.

o

2 PM:Westpfahl Goller 1979 ... Cheung Rothstein Solon 1808.02489

potential coefficients are obtained by matching EFT and full theory amplitudes
order by order in k (because EFT and full theory describe same IR dynamics)
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How classical is a quantum loop!?

@ put Aiback
Q@ 7 counting | /71 from vertex exp (% / d4flf£mt(so>)
i from (massless) propagator [¢(%),7(y)] = ihd* (% — )
4L 4 eik(ac—y)
get AlVH = AL OT @m0 = [ 5 e

Note that k is wavenumber, with p=fk

Q@ with masses Klein-Gordon is (D + %) p(z) =0

d*k  ihetk(@—y)

(2m)t k2 — Tg’—; — i€

OTe@)ew)0) = [

, effectivel
SO, errectively Boulware Deser 1975

e — e/Vh k — 1)V Gupta Radford 1980

Donoghue Holstein hep-th/0405239

massless momenta — I
° b Kosower Maybee O’Connell 1811.10950
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High-energy gravitational scattering and the general relativistic
two-body problem

Thibault Damour
Institut des Hautes Eiudes Scientifiques, 35 route de Charires, 91440 Bures-sur-Yvette, France

M (Received 29 October 2017; published 26 February 2018)

A technique for translating the classical scattering function of two gravitationally interacting bodies into
a corresponding (effective one-body) Hamiltonian description has been recently introduced [Phys. Rev. D
94, 104015 (2016)]. Using this technique, we derive, for the first time, to second-order in Newton’s
constant (i.e. one classical loop) the Hamiltonian of two point masses having an arbitrary (possibly
relativistic) relative velocity. The resulting (second post-Minkowskian) Hamiltonian is found to have a
tame high-energy structure which we relate both to gravitational self-force studies of large mass-ratio
binary systems, and to the ultra high-energy quantum scattering results of Amati, Ciafaloni and Veneziano.
We derive several consequences of our second post-Minkowskian Hamiltonian: (1) the need to use special
phase-space gauges to get a tame high-energy hmit; and (1) predictions about a (rest-mass independent)
linear Regge trajectory behavior of high-angular-momenta, high-energy circular orbits. Ways of testing
these predictions by dedicated numerical simulations are indicated. We finally indicate a way to connect
our classical results to the quantum gravitational scattering amplitude of two particles, and we urge
amplitude experts to use their novel techniques to compute the two-loop scattering amplitude of scalar
masses, from which one could deduce the third post-Minkowskian effective one-body Hamiltonian.



3 PM = O(G3/r3): Bern Cheung Roiban Shen Solon Zeng 1901.04424 & 1908.01493

2—7—3 Qvii 2
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) (6) (7) (8)
P k P4 Amati Ciafaloni Veneziano 1990
imi >>
o 0 Regge limit s It|

ImA® (s,t) ~ G3s3log(s/t) - (polesine)

DiVecchia Heissenberg Russo Veneziano 2008.12743

H diagram

ReA?) (s, 1)

12

1

~ log(s/t)

ImA® (s, t)



Heavy effective field theory (HEFT)

2PM: AW(s,t) = G*mim3 (my + ma) y*(1+ O(1/y?)

S— 1M1 — Mo

4= 2m1m2

(probe limit)
3 PM, 0 SF:

AR (5,1) = GPm3m32 (m? + m2) y>(1 + O(1/y?))

3 PM, | SF: (beyond the probe)

ReA\X (s, 1) ~ GPm3m3 o*(1 4+ O(1/y))
ImAG (5, 1) =~ G3mim3 y®(log(2y) + O(1/y))

radiation reaction needed
to cancel additional power of log(s/|t|)
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Brandhuber Chen Travaglini Wen 2108.04216
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Probe limit

P2

(L+1)-PM, 0 SF:  A{5). (s, 1) =~ G lm3mk ?(1 + O(1/?))

1+ O(1/y?) = 2(L + 1)—degree polynomial in 1/y2 o
Brandhuber Chen Travaglini VWen 2108.04216 conjectured polynomial form, with unknown coefficients

Sasank Chava (2023, MSc thesis unpublished)

obtained polynomial coefficients leveraging geometric info
from geodesic eq. for test particle in a Schwarzschild background

Cheung Shah Solon 2010.08568
Damour 1710.10599

next-to-probe

Q@ an analytic resummation of next-to-probe, or| SF, terms is not yet known
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Self force

@ Probe limit corresponds to Schwarzschild geometry:
static (infinitely heavy) black hole

@ in Self Force (SF) expansion,
one expands Einstein’s equation in powers of m/M
and solves them (numerically)

()

0 SF = Probe limit = Schwarzschild ~
| SF is known for generic orbits
2 SF is known for specific cases (e.g. quasi circular orbits)

I5



4 PM, O SF: AN (s,8) = Gim3m32 (m3 + m3) y* (1 + O(1/y?))

4 PM, | SF: A9 (5, 1) = Grm3m3 (my + ma) v* (log(2y) + O(1/y))

Bern Parra-Martinez Roiban Ruf Shen Solon Zeng 2101.07254 & 2112.10750
Dlapa Kalin Liu Neef Porto 2106.08276,2112.11296 & 2210.05541

5 PM, O SF: Agé)F(s, t) ~ G5m%m§ (miL + m;l) y2(1 + 0(1/y2))
5 PM, | SF: AL (s,1) ~ GOm3m3 (m? + m2) y®(log(2y) + O(1/y))

Driesse Jakobsen Mogull Plefka Sauer Usovitsch 2403.07781 & 2411.11846
Dlapa Kalin Liu Porto 2506.20665

mostly through world-line formulation

5=-3%5 [ dnglatr) ol (mer )

5 PM, 2 SF: A%)F(s, t) ~ G°mims y4(10g2(2y) +0(1/y)) ?

unknown yet
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Comparison to Numerical Relativity

scattering angle from NR data vs. PM
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[': highest and lowest energy in the NR simulation

comparison worsens as we approach strong-field regime
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Regge limit - Foreword

@ In the Regge limit, radiative corrections to 2—2 amplitudes display
iterative patterns of the evolution in rapidity y = log(s/|t|), either

if the evolution occurs in the t channel or in the s channel

Q@ In the Regge limit of QCD, the leading radiative corrections are
associated to a gluon ladder exchanged in the t channel,

the Reggeised or Glauber gluon. BEKL 1976-77
t channel two-gluon ladder and s channel terms are

logarithmically suppressed )
A ~ exp (ng + T?log <—_t>>

Q@ In the Regge limit of gravity, the leading radiative corrections are
due to the eikonal phase terms (VWeinberg’s soft gravitons).

t channel one-graviton ladder is power suppressed in t/s
Bartels Lipatov Sabio-Vera 1208.3423

Colour’-kinematics dualit)l Melville Naculich Schnitzer Whitel 306.6019
T s T? >t

@ s channel ladders win over t channel ladders
|18



Glauber EFT of gravity

@ Mimicking Glauber EFT of QCD  Rothstein Stewart 1601.04695

JM‘E—»Z =1 Z J{.’\fl) @ S('_M) & 'j(M)
M

Rothstein Saavedra 2412.04428 showed that the exchange of a t-channel two-graviton ladder
is ruled by a rapidity RGE, whose anomalous dimension is Lipatov gravity (BFKL-like) kernel

with graviton trajectory and graviton central-emission vertex (CEV) Lipatov 1982
d y v
v oB(N) = Ty @S — Sy @ ()
I o TR W

7E/M)NZWG(%‘)IL(M-1)+ Z ’CGR(QiaQﬁQ)IL(M—m

J Pairs 7,7 1 ko ~ Pa
. . . a | 2 b >
through A counting, easy to see that trajectory is quantum, o | . ‘ o1l
in fact the whole two-graviton ladder is quantum, 2 S a3
except for one graviton CEV emission: the H diagram T
$ . 3
71.+1 2 3 S n G 9 i . ;
tm M5 (s,07) ~ *log ()" 7 Gl (Ga.)"
- q.l_ Un+1 ! Kn+1 _ vq’,l+l
« T >

19 2 Pa



Glauber EFT of gravity

Rothstein Saavedra 2412.04428 showed that the exchange of a t-channel multi-graviton ladder

is ruled by a rapidity RGE, whose anomalous dimension is a convolution of gravity
BFKL-like kernels

St BEEEEEEE - --- - R #---mm - 4---
n j n . .
/Sﬁt‘h”‘\’?x :
o 3 .
e = see | PTTTTTTTTT coe
e 3 . ‘ A
‘r'{,_‘—g}"f i "
n : ! n
e SEEEEEE R $--- = $--mmeme- R s +---

Expanding the rapidity RGE to second order in G

, J ! | )

e sl o clossal | Mo Secoud Tr puodiuw

through 71 counting, easy to see that the whole three-graviton ladder is quantum,
except for the convolution of two graviton CEVs

3
% G ImA® (s,t) ~ G®s*log®(s/t) - (polesin¢)

In fact, a t-channel ladder with (n+2) gravitons in the s channel features a classical term
of (2n+3)-PM order, and provides a correction of O((G?2 s log(s/[t]))") to the H diagram

270



s-channel discontinuities

Revisiting the H diagram  Amati Ciafaloni Veneziano 1990

) : : p
in MRK the light-cone dof’s decouple from <
the transverse dof’s o
D (o 2y 2 '
Disce My, 5(5,¢°) ~ ——log(s)H1(g”),
&7 %@
Y
H1(q2) =/ / }CGR(QlaQQQQ) <P2
Y Mg Je, @8, (@ @) (a2 q2)?

gravity (BFKL-like) kernel

2 2 2 2 12
: 93,495, +4a7,4;
K" (q1, 423 43,94) = [(QI_ +q3,) (g2, +qa,) — 2L L]

k2
4
+ |4t 95, 95,95, — 43,95, (@, -92,)° — 4t 43, (a3, - qa,)?
k
1

. * . . 2
in momentum space  Disc MY, (s,¢%) = 8G%s% log(s) ( — 612 o+ G+ O(eo))

Fourier transforming in impact parameter space

1

Mz p(8,0) = o / dlq, €9 Mya(s, —g2) = F.T.[ Maos)(s, b)

~ Y3 gd 1
DiS(:JMgQ_),.z(s,b) = 8(;,,‘; log(s)( ——+24 0(60))
) 3

21




HZ diagram

@ through iterated s-channel discontinuities h-ml¢ @y -
. k10g1 . I — g2 Yt
Disc? M _}2(s q°) =~ ¢ 12 l()g(s)zHg(q_zL) as | ‘ 12— gs
with H; the convolution of two gravity kernels
the result is reduced to bubbles and a kite integral é{/
in momentum space /

10 4 2\ 4 ‘ q ‘ . .
2) o o8 2 _1 (N |_3_3_27 6, 6
Disc? .M2_+2(s,q ) ~ Ca53 log (s) )8 (c’lw) [ 33 I ECz I GCJ FO(1)

i.e.an O(G> s* log(s/|t|)?) term
Alessio VDD Gonzo Rosi Rothstein Saavedra 25xx.yyyyy

in impact parameter space

h.mé% , () 4..[3 3 16 15

3
Disc2 M5 5(5,6%) = C o2 108()° a2y e " eT 2t 1662 = 4G +0(e)
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Conclusions

@ It has been shown that the non-resummed PM-expanded scattering angles demonstrate
poor convergence towards NR.This motivates the exploration of resummation strategies...
... in particular we focus on the approach to the high-energy limit for equal-mass non-
spinning binaries, which proves to be challenging for all resummation schemes considered ...”

Pratten Schmidt Swain 2411.09652

Q@ In the Regge limit, at leading logarithmic accuracy, there is an s channel
sequence of classical corrections of O((G?2 s log(s/|t]))") to the H diagram

@ Those terms are (2n+3)-PM and (n+1)-SF order, i.e. maximal SF order
within a fixed PM order

@ Using EFT and iterated s-channel discontinuities, we computed the

H?Z diagram, which is an O(G> s* log(s/|t])?) term,i.e.a 5 PM, 2 SF term
and represents the first correction to the H diagram
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