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Overview

Background

Baryons are established particles of nature corresponding to bound states of
three quarks in the standard model

Their masses and widths are extracted from experiment with most if not all
having a finite lifetime

In the case of the proton it has yet to be fully determined if it is stable or
merely has an incredibly long lifetime

Some extensions of the standard model suggest that the proton may decay and
if so this could indicate new physics although current experiment only provides
a lower bound of around 10% years

Another application where baryon operators become important relates to light
cone distribution amplitudes which relate to hard exclusive processes with large
momentum exchange

To improve the extraction of lattice estimates matching to the high energy
behaviour of the matrix element is required as are the anomalous dimensions of
moments of the baryonic operators
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Overview

Anomalous dimensions for the basic 3-quark operator are available to three
loops in the MS scheme [Lepage & Brodsky; Peskin; Pivovarov & Surguladze;
Krankl & Manashov; JAG]

In parallel the relevant matrix elements, where the 3-quark operators are
inserted in a three quark Green’s function, have to be evaluated perturbatively
in the chiral limit and in a configuration which is the same as that used in
lattice computations

The two main configurations are where the operator is inserted at zero and
non-zero momentum [JAG; Kniehl & Veretin]

Recently the anomalous dimension of the first moment has been determined to
two loops [Bali et al]

With other applications of baryon operator anomalous dimensions to BSM
ideas, such as composite Higgs models based on Sp(4) studied on the lattice
there is now a need to extend results to four loops
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Baryons

Baryon operator

The basic baryon operators have the form

Oijdu _ e/JK75UI ((UJ)T CdK) 7 Oé}du — My ((UJ)T C’ySdK>
where C is the charge conjugation matrix and the gauge group has to be

SU(3) for the operators to be gauge invariant

More appropriate to carry out the renormalization in dimensional regularization
for the general 3-quark operator [Krankl, Manashov]

ijk UK il jd ) kK
Oagy = € Yatsyy
where i, j and k are flavour indices and the SU(3) group generators are T}

Dimensional regularization requires the extension of the «y-algebra to an infinite
dimensional space with the totally antisymmetric matrices

Fébnl)‘““” _ ,Y[m “.,.Yﬂn]

for 0 < n < o0, acting as the basis matrices
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Baryons

The operator anomalous dimension is deduced in the configuration on the left

AT

where the momentum configuration means FORCER is applicable together with
one of the 19061 four loop graphs on the right

Counting from the left there are 4, 8 and 4  matrices in the respective quark
lines

To carry out the renormalization one has to have a strategy that balances the
large amount of ~y-algebra associated with open spinor strings and the retention
of an integral representation that can be passed through FORCER
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Baryons

Four loop graphs are computed in the Feynman gauge with lower order ones
calculated with an arbitrary gauge parameter

At four loops there are at most 8 quark propagators and in order to apply
FORCER need to convert tensor integrals to scalars which is carried out by a
projection

A general rank 8 Lorentz tensor integral with one external momentum p
decomposes into 764 independent tensors built from 7., and p,

As the quarks are massless only even rank projectors are required but best to
partition the decomposition into a basis of independent tensors built from

PP PPy
Pu(p) = N — ;721/ v Luw(p) = -

P2

The ~-matrices are stripped off each integral and uncontracted from any

momentum before the ~-strings are converted to the Fé‘nl)‘““” basis
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Baryons

After the mapping of the Lorentz tensor integrals to scalars the I'(,-matrices
appear as triple tensor products

For the example of the earlier four loop graph the combination

— H1H2 1314 5 B 47 148
laga = r(4)#1uzu3u4 ® r(8) ® r(4) H5HEHTHE

Ceoasa = Tgas + Taga + Tass
appears, among others, and symmetric combinations always arise

In particular the only general structures that are present are

Cos¢ = Tgaq s Cogr = Tggr + Tgg + Tigg = Cryq
(qus = rqrs + rqsr + rrqs + rrsq + rsrq + rsqr
for distinct (even) g, r and s with the Cpq satisfying a complicated algebra

Any C,qr involving ') and I'(g) corresponds to an evanescent operator which
are not independent due to relations in d-dimensions

7/25



Baryons

Several relations are

Coso = — 12d(d —1)(2d — 1)Cooo — 3(d — 1)(7d — 24)Canp
1 3
— 6(2d — 5)Caao + 2(3d — 4)C3y — Ecgzo + 5C220Cas0 + 3Case
Cosz = 12d(d — 1)(2d — 7)Cono + 9(d* — 9d + 16)Caz0 + 2(2d — 5)Caso

1 1
— 2(3d — 10)Coy + E(ngo - 5@220(C440 —3Casa

that reduce the anomalous dimension to purely four dimensional Cpqr which are
Cooo, Ca20, Caso and Caas with

— [H1k2n3p s b

r444_r(41)234®r( eI

4) pqpn 4) p3peapis e

The integration of the scalar integrals is carried out with FORCER

The gauge parameter cancels to three loops and the four loop Feynman gauge
renormalization constant satisfies the lower loop prediction for the non-simple
poles
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Baryons

Transition to four dimensions
The Cpg, involving non-evanescent I'(,) matrices map to the following four
dimensional ~-matrices

Cooo‘ = IQIxI
d=4
C22o‘d:4 = [ Q0! + " R1Q0u + Q5" Qou]
Caw| =~ = 24[75®75®/+75®I®75 + 19707
Caaa = 0
d=4

Their eigenvalues have been computed for the four core baryons that arise in
nucleon matrix elements [Krankl, Manashov]

) 1
O(E,O) = MRyl ((wi)Tcwf) , 029 _ Mk ((¢i)TC1/)f>

3 1
02" = M ppipuipul 082 = Rl sl sl
where A? =0, ¥ = (1 +°)¢ and ¥ = 3(1 —+°)¥
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Baryons

The respective eigenvalues are deduced from the C,q- eigenvalues for each Cpqr

object via
Spin | Chirality || Cooo | Co20 | Caso | Casa
(3,0) + 1 12 [ 72 0
(3,0) - 1 12 | -24] 0
(3,0) + 1 | -12| 72 0
()) - 1 —4 | —24| 0
1 _
75»2 ’0)(3) = 45 + ng — w 32
| 9 3
10784 160 112 ] 3
+ |:160Nf 32<3 T TC?,Nf 7ij| a
4928575 86600 58972
+ {528(4 + 848(aNf — 162 o7 Cs — 57 C3 V¢
29195  , 320,53 160 » 64 . .3 320 2
243 Nt 8l Nz 3 CalNf + 27C3/Vf t 5 ¢y
18880 63670 379232 4 5
+ 9 GsNr + >7 G+ ol Nf] a + 0(a)
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Baryons

All four operator dimensions have been computed in the MS scheme to four
loop

Numerically for Nf = 3

v(é’o)(a) = 4.0000a — 36.0000a° — 986.3505a° — 16397.0035a" + O(a")
7(_%’0)(a) = 4.0000a — 22.6667a> — 976.7735a° — 16302.4012a" + O(a°)
vg’(’)(a) = —4.0000a — 96.0000a" — 1074.2363a° — 16594.0230a" + O(a")
v(f’%)(a) = —1.33332 — 66.2222a° — 1188.4358a" — 15092.0709a" + O(a")

The critical exponents derived from the anomalous dimension in the conformal
window, 9 < N¢ < 16, respect their respective unitarity bounds at successive
loop orders
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Baryons

Banks-Zaks expansion

The Banks-Zaks expansion is a purely four dimensional perturbative expansion
in the distance from the upper bound of the conformal window defined by the
location of the Banks-Zaks fixed point a*

It is defined as the non-trivial zero of 3(a*) = 0 closest to the origin where

,B(a) = — HCA,ETFN)( 327 3f4C§74TFCFNf7§TFNfCA a3
3 3 3 3
Setting
11 4
Agz = —Ca — ZTEN
BZ 3 A 3 FINf
and replacing Nf with Agz then a* is
. Agz [924C? + 1208CaCr — 287C3] Agy 3
= A
S T Yo Ton B 216[11Cr + 7CAPP + O(Agz)

Can examine the N¢ dependence of the critical exponents of the baryon
operators in the conformal window
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Baryons

For instance

1

GOy = & 19379 2

T+ (3 ) - 107 Bz + 7350258ABZ

314021069 12224 , \
{1009837246104 131079601C3} sz + O(Ae2)

or
(3.0 i L,
727 (a") = 3.738318 x 1077 Az + 2.636506 x 10™° A%

+ 1.988627 x 10~ * AL, + 7.358447 x 107> Ay + O(ARz)

noting that the respective range of Agz in the conformal window,
9< Np<16,is5> Agz > 3

For example when Nf = 9
1
429(2%) = 0.186816 + 0.065663 + 0.024856 + 0.045090 + ...

where the convergence can be better gauged graphically
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Baryons

For spin—% operators we have

0.4]
0.3
0.2
0.19
8 9 10 11 12 13 14 15 16 8 9 10 11 12 13 14 15 16
NF Nf
— 1O NLO NNLO——NNNLO| [ LO NLO NNLO —— NNNLO|
gamma(1/2,0,+) gamma(1/2,0,-)

Perturbative reliability valid down to around Nf = 12
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Baryons

For other two operators we have

Nf Nf
8 9 10 11 12 13 14 15 16 8 9 10 11 12 13 14 15 16

—0.02q
—0.14
—0.04q

—0.29 .7 ~0.06{

—0.08
—0.31
—0.10q
0.4
0.124
[ LO NLO NNLO——NNNLO] [ LO NLO NNLO——NNNLO
gamma(3/2,0,+) gamma(1,1/2,-)

Again perturbative reliability valid down to around Nf = 12
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Baryons

Can refine the behaviour towards the lower end of the conformal window by
using Padé approximants

0.35{

0.304
0.25¢

0.20] -,

8 9 10 11 12 13 14 15 16

----- Lo 1,11 1,21—12,21 - LO 1,11 1,21—12,2]
gamma(1/2,0,+) gamma(1/2,0,-)

Estimates for Nf < 10 may be reliable if the conformal window remains around
N =8

Padé approximants for other two operators are not as conclusive
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Baryons

Exponent | N Py Py P,

1
2% | 8 || 0352858 | 0.359503 | 0.352504
12 || 0.142246 | 0.142800 | 0.142201
16 | 0.012761 | 0.012761 | 0.012760

2% | 8 || 0499833 | 0.413023 | 0.472006
12 | 0161375 | 0.155779 | 0.159019
16 | 0012898 | 0.012894 | 0.012895

3
2% | 8 || —0.749623 | —0.226711 | —0.389838
12 || —0.180829 | —0.139684 | —0.155322
16 || —0.013010 | —0.012980 | —0.012982

1

’y(_l’ 2)(a*) 8 —0.199920 | —0.068444 | —0.110503
12 || —0.056850 | —0.044097 | —0.048697
16 || —0.004318 | —0.004307 | —0.004308
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Conformal window

Quark mass dimension

The same Banks-Zaks expansion can be applied to the quark mass exponent,
Yg4(a"), as a way of determining where the lower end of the conformal window
is and confining behaviour commences

Several lattice field theory groups have evaluated the SU(3) S-function for even
Nr as well as estimating v;,,(a")

The general consensus from the lattice studies is that the conformal window
exists down to at least and including Nf = 12 but it is not established if
Nf = 10 is within the window as uncertainties on a* need to be reduced

For Nf = 8 the evidence varies with a few groups convinced this value is inside
the window

There have been various continuum approaches centred on renormalization
group studies and resummation or improved convergence methods

One criterion used to define the lower end of the window is the solution of
%Z;w(a*) [2 - 'Y&w(a*)} =1

which is motivated by a condition that is connected to chiral symmetry breaking
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Conformal window

Given the Padé approximant improvement with the baryon operators exponent
estimates with the Banks-Zaks expansion it is worthwhile repeating the exercise
for the quark mass operator

As the five loop MS QCD S-function ceases to have a Banks-Zaks fixed point
below Nr = 10 we have used a different scheme to deduce v, (a*) which is a
renormalization group invariant

Instead we have used the five loop mini-MOM scheme 3-function to find a*

The minimal MOM (mMOM) scheme is based on the ghost-gluon vertex and
motivated by lattice considerations [von Smekal et al]

The scheme endeavours to preserve the relation of the Landau gauge coupling
renormalization constant to the ghost and gluon renormalization constants for
a general linear covariant gauge
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Conformal window

0.64

0.44

0.29

8 9 10 11 12 13 14 15 16
Nf
—— 10 NLO NNLO —— NNNLO

rho m

Lower end of the conformal window can be estimated from solving for the value
of Nf where the exponent is unity giving values of 8.56, 7.97 and 8.44
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Higher orders

Next order thoughts

While the QCD f-function and quark mass dimension are available at five loops
Y34 (") has only been analysed to fourth order

The fifth order value for ~;,,(a*) requires the six loop S-function

This is because the one and two loop terms of 3(a) determine the leading order
value of a*

Low loop computations of the S-function used straightforward approaches but
some higher order calculations exploited properties of the underlying gauge
theory such as Slavnov-Taylor identities and for example the background field
gauge

For instance in that gauge the coupling renormalization constant is equivalent
to the background gluon anomalous dimension
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Higher orders

For any future next order renormalization a similar or improved strategy would
be necessary in order to reduce the large bottleneck with integration by parts
mostly driven by the second term of the gluon propagator

DA = = 5 [~ (- 0) 2]

Using the Feynman gauge would simplify matters but may necessitate a vertex
renormalization

On the Slavnov-Taylor identity side in the Landau gauge the gluon-ghost vertex
is finite
So the B-function is determined solely by a linear combination of the gluon and

ghost anomalous dimensions but this would not avoid the bottleneck
originating from the gluon propagator

Is it possible to have a setup where the S-function can be deduced from the
gluon and ghost anomalous dimensions for a particular choice of the gauge
parameter which preserves the benefit of « = 17

It transpires there is a (nonlinear) covariant gauge which has beneficial
properties constructed by Curci and Ferrari
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Higher orders

Curci-Ferrari gauge

The Curci-Ferrari gauge fixed Lagrangian is

1 P 1 .
L= —GLG"™ + iW'py — ﬁ(aMA“‘)2 + & (8,D"c)
o %fabCEaCb apAZ + %agZ f-abchaCbEccd

which differs only in the ghost sector from the canonical linear gauge but
equates to the Landau gauge when a = 0

Unlike the canonical linear gauge ya(a, @) + va(a, @) x aa
Wschebor and Tissier showed that for all «
ﬁ(av O‘) = a [fYA(av O5) + 2'75(37 Oé) - 4(7/4(37 Oé) + ’704(37 a))]

which is the generalization of Taylor's theorem for calculating the 8-function
from the ghost-gluon vertex or

B(av a) = 3[276(37 a) _37A(ava) _47a(av a))]
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Higher orders

In other words the S-function can be deduced from renormalizing 2-point
functions without evaluating a vertex function which substantially reduces the
number of graphs to be computed

Moreover it also possesses the bottleneck simplification option of @ =1

Using FORCER have checked the four loop gluon, ghost and gauge parameter
anomalous dimensions reproduce the four loop MS QCD S-function for all «
purely from renormalizing two 2-point functions

For example with the one loop anomalous dimensions

(4 13 1
va(a, ) = gTFNf - KCA + ECAa} a + 0(a)
’ya(a, a) = ECA — iT,::Nf — 1CAO( a + 0(32)
6 3 4
r1 3 .
Ye(a,) = ZCAa_ ZCA a + 0(a%)

a cancels in the combination that produces (3(a, «)
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Higher orders

Conclusions

In terms of the baryon operator renormalization for lattice distribution
amplitude analyses there are several directions to head

The anomalous dimensions need to be extended to one or more moment and to
three loops

Moreover the operator matrix element with non-zero momentum operator
insertion needs to determined at three loops which is viable given the current
loop technology

The resolution of the lower end of the conformal window using the Banks-Zaks
resummation approach would benefit from the six loop QCD S-function

Whether using the Curci-Ferrari gauge is a viable strategy to achieve that is an
open question that ought to be explored
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