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FIs are GHFs in the sense that their fundamental group of analytic
continuations are generalizations of the fundamental (monodromy)

group of the ordinary HGs.
Write multi-loop Feynman integrals in terms of Fox functions ,
respecting the original cut structure; compute the Fox functions

numerically.
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In 1967 Regge suggested to consider FIs as a kind of GHFs

In 1973 Kershaw suggested that,by studying FIs as power series

we could derive the connection

one-loop box: sum of 192 dilogarithms collapses into one HF

hypergeometric A-systems of Gelfand, Kapranov, and Zelevinsky

FIs à Fox functions
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Each Feynman diagram is a multivalued analytic function of the
relevant variables whose branching locus is in general an extremely

complicated reducible algebraic variety; however, the set of
singularities is very well defined by the Landau rules ,

i.e. they are characterized by a branch cut structure determined by
the Landau equations .

To give an example, in the most general one-loop triangle the
physical Landau curve has six branches; when we consider the most

general one-loop box we get 14 branches.

Furthermore we are interested in FI in the physical region ,identified with the
phase space for the corresponding process, i.e. the physical region of a given
process is the set of all real initial and final energy-momenta variables subject
to the mass-shell conditions and to energy-momentum conservation. Solutions
that correspond to points outside the physical region are on the wrong sheet.
Any process n→m is described by 3(m+n)−10 Mandelstam invariants and

the physical region is dictated by the corresponding phase space.
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Ingredients

qFq à Lauricella F
(N)
D à Meijer G à Fox H. The two facets, EM

à MB;

Consider now the following Euler-Mellin integral:

I =
∫ 1

0
dxxb−1 (1−x)c−b−1 (1− zx)−a .

If Rec>Reb> 0 and | arg(1− z) |< π

I = B(b, c−b) 2F1 (a , b ; c ; z) ,

Note that with z→ z− iδ (δ → 0+) the original integral can be interpreted as a
Hadamard finite-part integral even if z ∈ R and z> 1. Next we would like to
write I as a Mellin-Barnes integral , i.e.

I =
Γ(c−b)

Γ(a)

∫
L

ds

2 iπ
Γ(−s) Γ(a+ s) Γ(b+ s)

Γ(c+ s)
(−z)s ,

which requires | arg(−z) |< π .
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The Lauricella functions are defined by,

m EM

F
(N)
D (a ; b1 , . . . ,bN ; c ; z1 , . . . ,zN) = Γ(c , a)

∫ 1

0
dxxa−1 (1−x)c−a−1

N

∏
n=1

(1− zn x)−bn ,

with Rec>Rea> 0 and | arg(1− zi ) |< π .

m MB

F
(N)
D (a ; b1 , . . . ,bN ; c ; z1 , . . . ,zN) =

Γ(c)

Γ(a) ∏j Γ
(
bj
) [ N

∏
j=1

∫
Lj

dsj
2 iπ

] Γ
(
a+ ∑j sj

)
Γ
(
c+ ∑j sj

)
×

N

∏
j=1

Γ
(
bj + sj

)
Γ
(
−sj
) (
−zj
)sj ,

where Lj is a deformed imaginary axis curved so that only the poles of Γ
(
−sj
)

lie to the right of Lj.
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Definitions, z = R exp{iφ} and s = σ + i t

Hm ,n
p ,q (z) =

∫
L

ds

2 iπ

∏
m
j=1 Γ

(
aj +Aj s

)
∏

n
j=1 Γ

(
bj−Bj s

)
∏

p
j=1 Γ

(
cj +Cj s

)
∏

q
j=1 Γ

(
dj−Dj s

) zs ,
exponential power-like

| · | ∼ exp{− 1
2 α π | t | −φ t} | t |β σ+λ R−σ

ρ
σ | t |→ ∞ ,

Hm ,n
p ,q (z) =

∫
L

ds

2 iπ

∏
m
j=1 Γ

(
bj +Bj s

)
∏

n
j=1 Γ

(
1−aj−Aj s

)
∏

q
j=m+1 Γ

(
1−bj−Bj s

)
∏

p
j=n+1 Γ

(
aj +Aj s

) z−s .
| · | ∼ K± exp{tφ}

(
e
|σ |

)−µ σ ( | z |
β

)∓σ

| σ |δ σ →±∞
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There are three different paths of integration

Li∞ L runs from − i∞ to + i∞ separating the poles of the integrand.

L+∞ L is a loop starting and ending at +∞ and encircling all poles of

Γ
(
bj− s

)
once in the negative direction.

L−∞ L is a loop starting and ending at −∞ and encircling all poles of

Γ
(
1−aj + s

)
once in the positive direction.

It is assumed that at least one of the three definitions makes sense. In cases
where more than one make sense, they lead to the same result.

U With L±∞ compute (multidimensional) residues; with Li∞ ( our choice )
we compute (sj = σj + i tj)

H =
[
∏

r
j=1

∫+∞

−∞

dtj
2π

]
F(s1 . . . sr) ∏

r
j=1 z

sj
jH =

[
∏

r
j=1

∫+∞

−∞

dtj
2π

]
F(s1 . . . sr) ∏

r
j=1 z

sj
jH =

[
∏

r
j=1

∫+∞

−∞

dtj
2π

]
F(s1 . . . sr) ∏

r
j=1 z

sj
j ,
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Convergence, analytic structure

Convergence of H is controlled by five parametes, µ,β ,ρ,δ and α

(definitions in backup slides). The H function is an analytic
function of z and exists in the following cases (s = σ + i t):

¬ If µ > 0 or µ = 0 and | z |< β à L = L−∞;

­ If µ < 0 or µ = 0 and | z |> β à L = L+∞;

® If α > 0 and arg(z) < 1/2α π or α = 0 and β σ +Re δ <−1
à L = Li∞.

¯ A frequent case is α = 2,β = 0 but z ∈ R− which requires
Re δ <−1.

9/37



First consequence, the MB splitting:

F = (Q+a− iε)−ρ ,

where Q is a function of Feynman parameters and a is a positive parameter,
with ε → 0+. We perform a MB splitting, i.e.

F = a−ρ

∫
L

ds

2 iπ
B(s, ρ− s)

( a

Q− iε

)s
,

where 0 <Re s < ρ. The choice of L depends on z = a/Q. Indeed F is

proportional to a Meijer G1,1
1,1 function with parameters a1 = 1 and b1 = ρ.

If | z |< 1 we select L = L+∞ ; if | z |> 1 we select L = L−∞ and compute the

residues of the poles.

* The parameters of the Meijer G function are such that the MB integral
over Li∞ does not converge if Q ∈ R−, despite the − iε prescription. The main
question will be how to use L = Li∞.
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Second consequence

I = 2F1(a , b ; c ; z) =
Γ(c−b)

Γ(a)

∫
L

ds

2 iπ
Γ(−s) Γ(a+ s) Γ(b+ s)

Γ(c+ s)
(−z)s ,

* | arg(1− z) |< π

+ As long as Re(a+b− c) < 0 the MB integral converges for L = Li∞

even if z ∈ R and z> 0 .

* However, it is easily seen that the analytic continuation does not reproduce

the cut structure of the original integral, namely we have a cut at [0 , ∞]

instead of a cut at [1 , ∞] .

Seen in terms of a Feynman integral this corresponds to the fact, with this
procedure, we can describe the integral above its normal threshold but not
below it.
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The correct

In order to understand the correct procedure we consider the following example:

I =
∫ 1

0
dxx−1/2 (1− zx)−1 = 2 2F1

(
1 ,

1

2
;

3

2
; z

)
,

with z ∈ R. There are three cases:

z< 0z< 0z< 0 Here we immediately obtain

I =
∫
Li∞

ds

2 iπ
Γ(−s) Γ(1 + s) Γ(1/2 + s)

Γ(3/2 + s)
(−z)s 3

0 < z< 10 < z< 10 < z< 1 We use the following transformation of 2F1

2F1 (a , b ; c ; z) = (1− z)−a 2F1

(
a , c−b ; c ;

z

z−1

)
,

where now the argument of 2F1 is negative; we obtain

I =
√

π (1− z)−1
∫
Li∞

ds

2 iπ
Γ(−s) Γ2 (1 + s)

Γ(3/2 + s)

(
z

1− z

)s

3
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z> 1z> 1z> 1 Here we use a contiguity relation to increase c (convergence requires
Re(a+b− c) < 0),

2F1 (a , b ; ccc ; z) = −
[
c(c+ 1)(z−1)

]−1{
(c+ 1)

[
c− (2c−a−b+ 1)z

]
× 2F1 (a , b ; c+ 1c+ 1c+ 1; z)

+ (c−a+ 1)(c−b+ 1)z 2F1 (a , b ; c+ 2c+ 2c+ 2; z)
}
,

and obtain the following MB representation:

I =
5z−3

2(z−1)

∫
Li∞

ds

2 iπ
Γ(−s) Γ(1 + s) Γ(1/2 + s)

Γ(5/2 + s)
(−z)s

− 3
z

z−1

∫
Li∞

ds

2 iπ
Γ(−s) Γ(1 + s) Γ(1/2 + s)

Γ(7/2 + s)
(−z)s 3

where now the two MB integrals are convergent even for z> 1.
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do we need MB reps?

H =
∫ 1

0
dxdyxa−1 (1−x)c−a−1 (x2−2λ x−y2)−b

=
∫ 1

0
dxdyxa−1 (1−x)c−a−1 (x−x−)−b (x−x+)−b ,

x± = λ ±
√

λ 2 +y2 = λ ±η , λ = λ − iδ , δ → 0+ àF
(2)
D .

With λ > 1 we obtain x+ > 1 and x− < 0 We use the transformation

F
(2)
D (a ; b ; c ; z) = (1− z1)c−a−b1 (1− z2)b2 F

(2)
D (c−a ; c−b1−b2 , b2 ; ζ1 , ζ2) ,

ζ1 = z1 = 1/x− , z2 = 1/x+ , ζ2 =
x+−x−

x− (x+−1)
.

Since ζj < 0 we can use the MB representation obtaining

H =
Γ(a)

Γ(c−2)

∫ 1

0
dy (λ −η)a−c (λ −η−1)c−a−1

×
[ 2

∏
j=1

dsj
2 iπ

Γ(c−a+ s1 + s2)

Γ(c+ s1 + s2)
Γ(−s1) Γ(c−2 + s1) Γ(−s2) Γ(1 + s2)

× (2η)s2 (η−λ )−s1−s2 (λ + η−1)−1+s2 , à y = 2λ t/(t2−1) .
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Therefore the strategy is

¬ Use the Feynman parametrization and perform the first
integral obtaining a (generalized) hypergeometric function

(usually an F
(N)
D Lauricella function),

­ if needed transform it (Kummer transformation z→ z
z−1 ),

® Use the MB representation of the result and compute the
second integral,

¯ repeat the procedure until the final result is obtained.

U
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Consider the following integral corresponding to a three-point
Feynman function in arbitrary space-time dimensions (d = 4 + ε),

with a normal threshold at s = 4m2 (λ = m2

s = 1/4)

C = π
ε/2 Γ(1− ε/2)

∫ 1

0
dx
∫ x

0
dy
[
m2 (1−x) + (m2− s)y+ sxy

]ε/2−1

= π
ε/2mε−2 Γ2(1− ε/2)Γ(1 + ε/2)

Γ(2 + ε/2)
3F2(1 , 1− ε/2 , 1 + ε/2;

3

2
, 2 + ε/2;

1

4λ
) ,

with λ = m2/s. MB representation of 3F2 and Kummer transformations will
not be discussed here; instead we study the case ε = 0
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À 0 < s<m2, where λ > 1 .

C =
1

s

∫ 1

0
dx

X

λ −x
2F1 (1 , 1; 2;−X) , X =

(λ −x)(1−x)

λ x
.

Since X> 0 we can use a MB representation and perform the x
integration obtaining a new hypergeometric function of argument
1/λ > 0; therefore we use

2F1

(
a , b ; c ; λ

−1
)

=

(
1− 1

λ

)−a
2F1

(
a , c−b ; c ;

1

1−λ

)
.

Using again the corresponding MB representation we get

C=
∫
L1

ds1

2 iπ
Γ2 (−s1) Γ2 (1 + s1)

(
1− 1

λ

)s1

2F1

(
−s1 , 2 + s1 ; 2 ;

1

1−λ

)
,

and we can use the standard MB representation for 2F1 and no imaginary
part will arise 3
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Á m2 < s< 4m2 where 1/4 < λ < 1 . In this case it is more convenient to

split the x integration introducing C< where 0 < x< λ and C> where
λ < x< 1.

C< =
1

s

∫
L1

ds1

2 iπ

Γ2 (−s1) Γ3 (1 + s1)

Γ(2 + s1)
λ
−1−s1 (1−λ )1+s1

× 2F1

(
−1− s1 , 1 + s1 ; 1 ;− λ

1−λ

)
.

C> =
1

s

∫
L1

ds1

2 iπ
Γ(−s1)

Γ2(1 + s1)

Γ(2 + s1)
J ,

J =
( λ

1−λ

)2s1 Γ(1 + s1)Γ(2 + s1)

Γ(3 + 2s1)

× F
(2)
D

(
1 + s1 ; 1 + s1 , 1 + s1 ; 3 + 2s1 ;

1

x−
,

1

x+

)
.

Since x± = 1
2 (1−λ )−1

[
1−2λ ± i

√
4λ −1

]
are complex we can use the

standard MB representation for the Lauricella function 3
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Partial quadratization of Symanzik polynomials

A two loop diagram with K internal lines is described by the two Symanzik
polynomials in K variables α1 , . . . , αK. The diagram will have

m k1 lines with momentum q1,

m k2 with momentum q2 and

m k12 with momentum q1−q2.

Partial quadratization is a change of variables defined as follows:

¬ to the k1 lines we assign parameters α1, . . . ,αk1
;

­ to the k12 lines parameters αk1+1, . . . ,αk1+k12
; to the k2 lines parameters

αk1+k12+1, . . . ,αk1+k12+k2
.
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Next we perform the following change of variables:

α1 = ρ1 x1 , . . . , αk1−1 = ρ1 xk1−1 , αk1
= ρ1

(
1−

k1−1

∑
j=1

xj

)
.

For k12 = 1 we introduce

αk1+1 = ρ3 , αk1+2 = ρ2 xk1
, . . . , αk1+k2

= ρ2 xk1+k2−2 ,

αk1+k2+1 = ρ2

(
1−

k1+k2−2

∑
j=k1

xj

)
.

For k12 = 2 we introduce

αk1+1 = ρ3 xk1+k2−1 , αk1+2 = ρ3
(
1−xk1+k2−1

)
,

αk1+3 = ρ2 xk1
, . . . , αk1+k2+1 = ρ2 xk1+k2−2 , αk1+k2+2 = ρ2

(
1−

k1+k2−2

∑
j=k1

xj

)
,

etc. As a result of the transformation we will have ∑j ρj = 1;

à S1 is a funtion of the ρ variables but not of the x variables; à S2 is a

quadratic form in the x variables with coefficients that are ρ dependent.

20/37



A useful relation EM à MB

F
(N)
D (a ; b ; c ; x , y1 . . . yN−1) = (1−x)−a

× F
(N)
D

(
a ; c−∑

j

bj , b2 . . . bN ; c ;
x

x−1
,
y1−x

1−x
. . .

yN−1−x

1−x

)
,

0 < zj < 1 , j = 1 . . .M , zj > 1 , j = M+ 1 . . .N , z1 = maxj=1 ...M {zj}
z1

z1−1
,
z2− z1

1− z1
. . .

zM− z1

1− z1
,

where all variables are negative and

zM+1− z1

1− z1
. . .

zN− z1

1− z1
,

where all variables are greater than one .
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Equal masses sunrise

After partial quadratization of the Symanzik polynomials we obtain

S =
∫ 1

0
dρ dxρ

3 (1−x)(ax2 +bx+ c)−1

a =−b = ρ (m2− sσ) , c =−m2
σ , σ = 1−ρ .

The integral can be rewritten as

S =
1

m2

∫ 1

0
dρ dxρ

3 (1−x)
[
a(x− 1

2
)2 +B

]−1
,

B =−1

4
λ (ρ−ρ−)(ρ−ρ+) , ρ± =

1

2λ

[
λ + 3±

√
(λ −1)(λ −9)

]
It follows that λ = 1 corresponds to the pseudo-threshold while λ = 9

corresponds to the normal threshold . We have four different regions:
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¬ λ < 0, where ρ0 > 1 and ρ− > 1, ρ+ < 0.

­ 0 < λ < 1, where ρ0 < 0 and ρ± > 1.

® 1 < λ < 9, where 0 < ρ0 < 1 and ρ± are complex

¯ λ > 9, where 0 < ρ− < ρ+ < 1

In all cases we always start with (ρ0 = 1−1/λ )

S =−2
∫ 1

0
dρ ρ

3
[
(ρ−ρ−)(ρ−ρ+)

]−1

2F1
(
1 ,

1

2
;

3

2
;

ρ (ρ−ρ0)

(ρ−ρ−)(ρ−ρ+)

)
.

The strategy below the normal threshold will be as follows:

m for 2F1(. . . ; z< 0) we use the standard MB representation.

m For 2F1(. . . ; z> 0) and 0 < z< 1 we transform the HF before using the
MB representation.

After that we perform the ρ integration, obtaining an F
(N)
D Lauricella function.

If needed we transform it (below the normal threshold) so that we always have

to deal with F
(N)
D with negative arguments; only at this point we use the

corresponding MB representation 3
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One example only

S(0 < λ < 1) = − 1√
π

[ 2

∏
j=1

∫
Lj

dsj
2 iπ

] Γ2 (1/2 + s1)

Γ(3/2 + s1) Γ(9/2 + s1)

× Γ(−s2) Γ(1/2− s2) Γ(s2− s1) Γ(4 + s2 + s1)

× (1−ρ0)s1

(
1− 1

ρ−

)−1/2 (
1− 1

ρ+

)−1/2 (
λ

4

)1+s1

× F
(2)
D

(
1

2
− s2 ;

1

2
,

1

2
;

9

2
+ s1 ;

1

1−ρ−
,

1

1−ρ+

)
.
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General strategy:

Given an irreducible quadratic form in N variables always write it as

V = (x−X)tH(x−X) +BN ,

since BN = 0 induces a pinch (AT) con the integration contour at x = X if

0 <XN < .. . <X1 < 1 .

m for the vertex C0 ∼ ln B2 ,

m for the box D0 ∼ B
−1/2
3 ,

m for the pentagon E0 ∼ B−1
4 ,

m no singularity for the hexagon F0 in 4dimensions.

Let L be the number of internal lines and ν the number of loops; define
ρ = 2ν−1/2(L+ 1), the leading behavior of the diagram is given by

B
ρ

L for ρ < 0 , B
k+1/2
L for ρ = k+

1

2
, Bk

L lnBL for ρ = k , k ∈ Z∗ .

Therefore for L = 2(2ν +n)−1 and n ∈ Z+ the AT is a pole of order n for the
amplitude, e.g. a simple pole for the one-loop pentagon, for two-loop diagrams
with 9 propagators etc. In all other cases it is a branch point.
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Infrared poles

I =
∫ 1

0
dxxε−1 (1−x)c−ε−1 (1− zx)−a .

I = Γ(ε)
Γ(c− ε)

Γ(c)
2F1(a , ε ; c ; z) .

I =
Γ(c− ε)

Γ(a)

∫ +i ∞

−i ∞

Γ(−s)
Γ(ε + s) Γ(a+ s)

Γ(c+ s)
(−z)s .

m Solution: use contiguity

(c−b−1) 2F1 =−
[
az−c+(b+1)(2−z)

]
2F1(b+1)−(b+1)(z−1) 2F1(b+2) ,
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obtaining I = I1 + I2

I1 = H2 (1 + ε)
∫ +i ∞

−i ∞

Γ(−s) Γ(a+ s)Γ(2 + ε + s)

Γ(c+ s)
(−z)s

− H1 (2− c+ 2s)
∫ +i ∞

−i ∞

Γ(−s) Γ(a+ s)Γ(1 + ε + s)

Γ(c+ s)
(−z)s .

I2 = H2 (1 + ε)
∫ +i ∞

−i ∞

Γ(−s) Γ(a+ s)Γ(2 + ε + s)

Γ(c+ s)
(−z)s+1

− H1 (1−a+ s)
∫ +i ∞

−i ∞

Γ(−s) Γ(a+ s)Γ(1 + ε + s)

Γ(c+ s)
(−z)s+1 .

H1 =
Γ(ε) Γ(c− ε)

Γ(1 + ε)Γ(a)

1

c−1− ε
, H2 =

Γ(ε) Γ(c− ε)

Γ(2 + ε)Γ(a)

1

c−1− ε
.
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Numerical computation; we will limit the presentation to the
univariate case

m The main point: the absolute value of the integrand in a Fox function is
comparable with

exp{−1

2
α π | t | −θ t} | t |β σ+λ R−σ

ρ
σ ,

where z = R exp{iθ} and s = σ + i t; α,β and λ are parameters of H.

m Given a function f(x) with x ∈ R we intoduce the Cardinal function

C(f , h)(x) = ∑
k∈Z

f(k,h)sinc
(x
h
−k
)
, sinc(x) =

sin(π x)

π x
.

m The Sinc approximation over the interval [a , b] is defined by

f(x)≈∑
k

f(xk)sinc

(
φ(x)

h
−k

)
,

where φ is a one-to-one mapping of [a , b] onto R and xk = φ
−1(kh).
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Sinc lattice: define the strip

Dd = {z ∈ C : | Imz |< d} .

¶ The interval is R. If z ∈Dd and

Rez ≤ 0 , | f(z) |≤ c− exp{−α− | z |} ,
Rez ≥ 0 , | f(z) |≤ c+ exp{−α+ | z |} ,
φ(z) = z , zk = kh

· The interval is R. If z ∈Dd with

Dd = {z ∈ C : | arg
{

sinh
[
z+ (1 + z2)1/2

]}
|< d

}
,

Rez ≤ 0 , | f(z |≤ c− | z |−α− ,

Rez ≥ 0 , | f(z) |≤ c+ exp{−α+ | z |} ,

φ(z) = ln
{

sinh
[
z+ (1 + z2)1/2

]}
,

zk =
1

2

(
uk−u−1

k

)
, uk = ln

[
exp{kh}+ (1 + exp{2kh})1/2

]
.
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¸ The interval is R. If Dd is defined by

Dd = {z ∈ C : | arg
[
z+ (1 + z2)1/2

]
|< d} ,

φ(z) = ln
[
z+ (1 + z2)1/2

]
If z ∈Dd and

Rez ≤ 0 , | f(z) |≤ c− (1+ | z |)−α− ,

Rez ≥ 0 , | f(z) |≤ c+ (1+ | z |)−α+ ,

then the Sinc points are defined by

zk = sinh(kh) ,
1

φ′(zk)
= cosh(kh) .

30/37



In all cases we introduce a positive integer N and define

M =
[

α+

α−
N
]
, h =

( d

α+N

)1/2
,

where [x ] is the integer part of x. Having defined all the auxiliary quantities we
obtain

f(z)≈ ∑
N
k=−M f(zk)sinc

(
φ(z)
h −k

)
,
∫ b
a f(z)≈ h ∑

N
k=−M f(zk)

[
φ
′(zk)

]−1

In the computation of H we integrate over the real variable ttt but the analytic
continuation, t ∈ Ct ∈ Ct ∈ C, is needed in order to determine the parameter ddd which
defines the step size hhh. The accuracy of the Sinc approximation on R is based
on the fact that f is analytic and uniformly bounded on the strip Dd.
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H =
[ 2

∏
j=1

∫
Lj

dsj
2 iπ

]
Γ(−s1) Γ(−s2)

Γ(1 + s1 + s2) Γ(1 + s1) Γ(4 + s2)

Γ(5 + s1 + s2)
zs1

1 zs2
2 ,

z1 = −1

4
, z2 =

1

3
+ 0.01 i .

Re Im

Korobov 8.16687758(4) −0.0524562(2)

S10 9.21579469 −0.152544264

S30 8.26254429 −0.0540061617

S50 8.19088582 −0.0525001759

S100 8.16884067 −0.0524777335

S300 8.16687874 −0.0524526209
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H =
[ 2

∏
j=1

∫
Lj

dsj
2 iπ

] Γ
(

1
2 + s1 + s2

)
Γ
(

3
2 + s1 + s2

) Γ(−s1) Γ(2 + s1) Γ(−s2) Γ(1 + s2) zs1
1 zs2

2 .

Setting z1 = 0.15 + 0.01 i, z2 = 0.55−0.01 i and σ1 = σ2 =−0.1 we can
compare the exact result with the Korobov lattice and the Sinc lattice.

Exact 62.6024046−0.183034716 i

Sinc 355152 calls 62.6024046−0.183034712 i

Korobov 3071856 calls 62.6024045(2)−0.18303475(5) i
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H =
[ 4

∏
j=1

∫
Lj

dsj
2 iπ

] Γ
(

1
2 + s

)
Γ
(

11
2 + s

) 4

∏
j=1

Γ
(
−sj
)

Γ
(
aj + sj

)
z
sj
j ,

with aj = 1, σj =−0.1 and

z1 =−2.11 , z2 = 0.22 + 0.1 i , z3 = 0.33 + 0.1 i , z4 = 0.44 + 0.1 i ,

obtaining

Lattice Calls Re Im

Korobov 281437986 62.98(9) −8.91(5)

Sinc 11298540 62.9799396 −8.91142516

86972936 62.9370547 −8.91706193

331085208 62.9329160 −8.91725259
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We have studied the problem of writing the Mellin-Barnes
representation (akas Fox functions) of Feynman integrals describing

physical processes and taking into account their behavior below
and above the thresholds characterizing the integrals.
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Thank you for your attention
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Definition of H parameters

H
[
z ; (a , A) ; (b , B) ; (c , C) ; (d ,D)

]
=
∫
L

ds

2 iπ

∏
m
j=1 Γ

(
aj +Aj s

)
∏

n
j=1 Γ

(
bj−Bj s

)
∏

p
j=1 Γ

(
cj +Cj s

)
∏

q
j=1 Γ

(
dj−Dj s

) zs ,

A =
m

∑
i=1

Aj . . . D =
q

∑
j=1

Dj ,

a = Re
m

∑
i=1

aj . . . d = Re
q

∑
j=1

dj ,

α = A+B−C−D , β = A−B−C+D ,

λ =
1

2
(p+q−m−n) +a+b− c−d ,

ρ =
m

∏
j=1

A
Aj

j

n

∏
j=1

B
−Bj

j

p

∏
j=1

C
−Cj

j

q

∏
j=1

D
Dj

j .
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Definition of H parameters

H
[
z ; (a1,A1) . . . (ap,Ap) ; (b1,B1) . . . (bq,Bq)

]
=∫

L

ds

2 iπ

∏
m
j=1 Γ

(
bj +Bj s

)
∏

n
j=1 Γ

(
1−aj−Aj s

)
∏

q
j=m+1 Γ

(
1−bj−Bj s

)
∏

p
j=n+1 Γ

(
aj +Aj s

) z−s .

µ =
q

∑
j=1

Bj−
p

∑
j=1

Aj , δ =
q

∑
j=1

bj−
p

∑
j=1

aj +
1

2
(p−q) ,

β =
[ p

∏
j=1

A
−Aj

j

][ q

∏
j=1

B
Bj

j

]
, α =

n

∑
j=1

Aj−
p

∑
j=n+1

Aj +
m

∑
j=1

Bj−
q

∑
j=m+1

Bj .
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Multivariate H

given s = [s1 . . . sr], α = [α1 . . . αr], β = [β1 . . . βr],
arg(z) = [arg(z1) . . . arg(zr)], we define

A =
(
aj,k
)
m×r , B =

(
bj,k

)
n×r ,

H
[
z ; (α , A) ; (β , B)

]
=
[ r

∏
j=1

∫
Lj

dsj
2 iπ

]
Ψ

r

∏
j=1

(zj)
−sj , Ψ =

∏
m
j=1 Γ

(
αj + ∑k aj,k sk

)
∏

n
j=1 Γ

(
βj + ∑k bj,k sk

) ,
where a and b are arbitrary real numbers. It is important to realize that the
multiple integral may be overall divergent although the iterate integrals
converge.
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For an accurate Sinc approximation of a function f on a contour Γ,
we require two conditions:

(a) analyticity of f in a domain D with Γ ∈D, and

(b) a set of Lipschitz conditions of f on Γ.

The infinite-point Sinc formula may be very accurate when the first
condition is satisfied, even though the second condition is not. In
this case, the use of Sinc approximation requires a large number of
evaluation points in order to sum the series accurately.
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If D is a n -dimensional hypercube and

VN ,n =
N

∑
i=0

Vi
n , Vi

n = ∑
0≤i1= ··· in≤i

aii1 ... in x
i1
1 · · · x

in
n ,

where the Vi
n are homogeneous polynomials and VN ,mrn is a generic

polynomial in the ring of polynomials of degree N, it is convenient to determine
the (N−1)n n-tuples Xi

1 . . .Xi
n such that

VN ,n

(
x1−Xi

1 . . . xn−Xi
n

)
= ∆+

N

∑
i=2

Vi
n

(
x1−Xi

1 . . . xn−Xi
n

)
, i= 1 . . . (N−1)n ,

so that the solutions of ∆(w1 . . . wk) = 0, are the potential (leading) pinch
singularities if Xi

j ∈ R , 0 <Xi
j < 1 ∀j. For V2

n = . . . = Vk
n = 0 the singular

point will have multiplicity k+ 1.
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