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Section 1

Introduction
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The Laporta algorithm

Integration-by-parts identities provide linear relations among Feynman
integrals.

One defines an order relation between Feynman integrals and
eliminates the more complicated ones in favour of the simpler ones.
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Order relations

Typical order relations: Lexicographical order of tuples

ISP-basis :
(
Nprop,Nid, rdot,sISP, . . .

)
dot-basis :

(
Nprop,Nid,sISP, rdot, . . .

)
where

Nprop =
nint

∑
j=1

Θ(νj > 0) , Nid =
nint

∑
j=1

2j−1Θ(νj > 0) ,

rdot =
nint

∑
j=1

νjΘ(νj > 0) , sISP =
nint

∑
j=1

|νj |Θ(νj < 0) .
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Comments

The number of master integrals is independent of the order relation.

The set of master integrals depends on the order relation, and so do the
reduction coefficients.

The reduction coefficients are rational functions of ε and x .
We would like to avoid in the denominator irreducible polynomials, which
depend on ε and x .
Such polynomials lead to an expression swell.

We may exploit the freedom of choosing an order relation.
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Differential equations

1 Using integration-by-parts obtain a differential equation of the form
(always possible)

dI = A(ε,x) I.

(Kotikov ’90, Remiddi ’97, Gehrmann and Remiddi ’99)

2 Bottle neck: Find a transformation I = RK such that

dK = εA(x)K

(Henn ’13)

3 Solve the latter differential equation with appropriate boundary conditions
in terms of iterated integrals (always possible).
(Chen ’77)
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Sectors and block-triangular structure

Order the set of master integrals I = (I1, . . . , INF ) such that I1 is the simplest
integral and INF the most complicated integral.

The integration-by-parts identities and the matrix A have a lower
block-triangular structure:

D1 0 0 0
0

N21 D2 0
N31 N32 D3



Diagonal blocks: D1, D2, D3

Non-diagonal blocks: N21, N31, N32

Stefan Weinzierl (Uni Mainz) Geometry of Feynman integrals July 24, 2025 7 / 32



Diagonal blocks

The challenging part are the diagonal blocks (i.e. the maximal cut).

The size of the diagonal blocks can be sizeable, e.g. O(10).

Once the correct masters are known on the maximal cut, it is rather
straightforward to extent these masters beyond the maximal cut.

In the following we denote by V the vector space of Feynman integrals
on the maximal cut.
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Transformation to an ε-factorised form

A two-step procedure:

I = R1J = R1R2K

1 Construct an intermediate basis J = R−1
1 I, such that the differential

equation for J is compatible with a filtration, in particular it is in Laurent
polynomial form:

dJ =
1

∑
k=kmin

ε
k A(k) (x)J,

2 Construct a matrix R2, which leads to a basis K = R−1
2 J, such that the

differential equation for K is in ε-factorised form.
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Motivating example

An elliptic sector, contributing to pp → t t̄ , with three master integrals:

We may decompose the three-dimensional vector-space into

1 1

1

W1

W2

F 0
geomF 1

geom

We are interested in methods, which work for any geometry.
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Section 2

Constructing the basis J
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The Baikov representation

We study the integrands of Feynman integrals on the maximal cut in a
(loop-by-loop) Baikov representation.

Baikov polynomials pi(z) defined by

∫
Cmaxcut

l

∏
r=1

dDkr

iπ
D
2

1
nedges

∏
j=1

σj

∼
∫

dnz ∏
i∈Iall

[pi (z)]
αi .

The exponents αi are always of the form

αi =
1
2
(ai +biε) , with ai ,bi ∈ Z.

Define Iodd as the set of indices for which ai is odd and Ieven as the set of
indices for which ai is even.
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Integrands of Feynman integrals

Recall: V denotes vector space of Feynman integrals on the maximal cut
mod linear relations.

We denote the vector space spanned by the integrands by Ωω and the
vector space mod linear relations by Hω.

There is an injective map

ι : V ↣ Hω.

In general, this map is not surjective due to
Symmetries

z1dz1 ∧dz2 ̸= z2dz1 ∧dz2 but
∫

[0,1]2

z1dz1 ∧dz2 =
∫

[0,1]2

z2dz1 ∧dz2

Super-sectors
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Super-sectors

It may happen that

pi (z) = zr.

In this case, Ωω will also contain the integrands of the sector where the
exponent of this inverse propagator is positive. If this sector has
additional master integrals, they will also appear in Hω.

Explains “magic relations”.
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The minimal twist

Instead of working in the affine chart z = (z1, . . . ,zn), go to projective
space CPn with homogeneous coordinates [z0 : z1 : · · · : zn].

Define the minimal twist U and its (ε = 0)-part U0 by

U (z0,z1, . . . ,zn) = ∏
i∈I0

odd

P
− 1

2+
1
2 bi ε

i ∏
j∈I0

even

P
1
2 bj ε

j ,

U0 (z0,z1, . . . ,zn) = ∏
i∈I0

odd

P
− 1

2
i .
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The integrand

Ψµ0...µND
[Q] = CBaikovCabsCrelCclutch︸ ︷︷ ︸

z−independent prefactors

U(z)︸︷︷︸
minimal twist

Q

∏
i∈I0all

Pµi
i︸ ︷︷ ︸

rational function

η,

where η is the standard n-form on CPn:

η =
n

∑
j=0

(−1)j zj dz0 ∧ ...∧ d̂zj ∧ ...∧dzn,

and CBaikov and Cabs are independent of Q and µ0 . . .µND ,

Crel = ∏
i∈I0

odd

(
−1

2
+

1
2

bi ε

)
µi

∏
i∈I0

even

(
1
2

bi ε

)
µi

, (a)n =
Γ(a+1)

Γ(a+1−n)
,

Cclutch = ε
−|µ|, |µ|= ∑

i∈I0
all

µi .
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Linear relations

1 Integration-by-parts identities:

0 =
1
ε
Ψµ0...µi ...µND

[
∂zj Q+

]
+ ∑

i∈I0
all

Ψµ0...(µi+1)...µND

[
Q+ ·

(
∂zj Pi

)]
2 Distribution identities:

Ψµ0...µND
[Q1 +Q2] = Ψµ0...µND

[Q1]+Ψµ0...µND
[Q2]

3 Cancellation identities:

Ψµ0...(µj+1)...µND
[Pj ·Q] =

1
ε

C(j)
rel

Crel
Ψµ0...µj ...µND

[Q]
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Remarks

We compute a basis in twisted cohomology with the Laporta algorithm
(and not with intersection numbers).

We may reduce the subsystem formed by the integration-by-parts
identities and the distribution identities by setting ε = 1, and recover the
ε-dependence in the end from the |µ|-grading.

This is only spoiled by the ratio C(j)
rel/Crel in the cancellation identities:

C(j)
rel

Crel
=

1
2

aj −µj +
bj

2
ε.
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Algebraic geometry

We are interested in a method, which is independent of any specific
geometry (elliptic curve, higher-genus curve, Calabi-Yau, ...)
In algebraic geometry we may look at

poles
residues
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The pole order

Define Ψ0
µ0...µND

[Q] by replacing U with U0 in the definition of Ψµ0...µND
[Q].

The pole order o of Ψ0
µ0...µND

[Q] is defined as follows:

The pole order is the maximum of pole orders at individual points.

For α > 0, the pole order of z−αdz at z = 0 is ⌊α⌋, where ⌊x⌋ denotes the floor function,

e.g. the pole order of z−
3
2 dz at z = 0 is 1.

For normal-crossing singularities, the pole order is additive, i.e. the pole order of dz1
z1

∧ dz2
z2

2

at (z1,z2) = (0,0) is 3.

For non-normal-crossing singularities, we first need to perform a blow-up.
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The number of residues

Let r be the largest number such that the r -fold residue of Ψ0
µ0...µND

[Q] is
non-zero.

Example in the affine chart z0 = 1:

r = 1 :
dz1

z1

r = 0 :
dz1√

z1 (z1 −1)(z1 −2)(z1 −3)
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Filtrations

With the help of r , o and |µ| we define three filtrations of Ωω:

Ψµ0...µND
[Q] ∈ WwΩω if n+ r ≤ w

Ψµ0...µND
[Q] ∈ F p

geomΩω if n+ r −o ≥ p

Ψµ0...µND
[Q] ∈ F p′

combΩω if n−|µ| ≥ p′

The W•-filtration and the F •
geom-filtration define the decomposition

Ωp,q
geom = Grp

Fgeom
GrW

p+qΩω

and similar for Hp,q
geom and V p,q .

h2,0 h1,1 h0,2

h2,1 h1,2

h2,2

W2

W3

W4

F 0
geomF 1

geomF 2
geom
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Order relation for the Laporta algorithm

Definition (order relation)

(a,w ,o, |µ|, . . .)

where

a =


−r if Ψ is the pre-image of a master integrand of a sub-problem

localised on Pi = 0 with i ∈ I0
even

0 otherwise

h2,0 h1,1 h0,2

h2,1 h1,2

h2,2

W2

W3

W4

F 0
geomF 1

geomF 2
geom
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Examples

1 1

1

W1

W2

F 0
geomF 1

geom

2 2

1

W1

W2

F 0
geomF 1

geom

1 4 1

0 0

5

W2

W3

W4

F 0
geomF 1

geomF 2
geom
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The differential equation

Let Ψ= (Ψ1, . . . ,ΨNF ) be the basis of master integrands obtained from this
algorithm and

dΨ = A(ε,x)Ψ.

We observe that the differential equation is compatible with the
F •

comb-filtration: If Ψi ∈ Grn−|µ|i
Fcomb

Ωω and Ψj ∈ Grn−|µ|j
Fcomb

Ωω, then

Aij (ε,x) =
1

∑
k=−(|µ|i−|µ|j)

ε
k A(k)

ij (x) .

The compatibility condition implies Griffiths transversality.
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Section 3

Constructing the basis K
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The transformation R2

Rewrite:

A =
1

∑
k=−n

ε
k A(k) (x) =

1

∑
k=−n

B(k) (ε,x)

Example n = 2:

B(1) =

 εB
(1)
11 εB

(1)
12 0

εB
(1)
21 εB

(1)
22 εB

(1)
23

εB
(1)
31 εB

(1)
32 εB

(1)
33

 ,

B(0) =

 0 0 0
0 0 0

B
(0)
31 0 0

 , B(−1) =

 0 0 0

B
(−1)
21 0 0

1
ε

B
(−1)
31 B

(−1)
32 0

 , B(−2) =


B
(−2)
11 0 0

1
ε

B
(−2)
21 B

(−2)
22 0

1
ε2 B

(−2)
31

1
ε

B
(−2)
32 B

(−2)
33

 .
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The transformation R2

We look for a transformation J = R2K .

Set

R2 = R(−n)
2 R(−n+1)

2 . . .R(−1)
2 R(0)

2

R(k)
2 removes the terms of B(k).

The entries of R(k)
2 are determined by ε-independent first-order

differential equations (a differential ideal).

In general, the entries of R(k)
2 are transcendental functions (periods, ...).

The procedure does not depend on properties of a special point (for
example, properties of a point of maximal unipotent monodromy).
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Examples

With this algorithm we were able to compute state-of-the-art integrals
(including sub-topologies):

A genus-two non-planar double box contributing to Møller scattering and
Drell-Yan.

The unequal-mass three-loop banana integral (involving a K3 surface)

Stefan Weinzierl (Uni Mainz) Geometry of Feynman integrals July 24, 2025 29 / 32



Section 4

Summary and conclusions
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Details on the conjecture

Conjecture: The order relation (a,w ,o, |µ|, . . .) leads to a F •
comb-compatible

differential equation.

Equivalent to: In deriving the differential equation the cancellation identities

Ψµ0...(µj+1)...µND
[Pj ·Q] =

1
ε

C(j)
rel

Crel
Ψµ0...µj ...µND

[Q]

are always used with pivot elements from the left-hand side.
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Conclusions

A well-chosen order relation in integration-by-parts reductions
improves the efficiency.

Sub-system can be reduced by setting ε = 1.
Full system: work with Laurent polynomials.

A systematic algorithm for ε-factorised differential equations.
Step 1: Obtain the intermediate basis J directly from the order relation.
Step 2: Rotation to the basis K introduces transcendental functions.

Input from mathematics:
Twisted cohomology
Ideas from Hodge theory
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