The geometry of Feynman integrals

Stefan Weinzierl

in collaboration with Iris Bree, Federico Gasparotto, Antonela Matijašić, Pouria Mazloumi, Dmytro Melnichenko, Sebastian Pögel, Toni Teschke, Xing Wang, Konglong Wu and Xiaofeng Xu

July 24, 2025

- Improving integration-by-parts
- **2** A systematic algorithm for ε -factorised differential equations

Section 1

Introduction

The Laporta algorithm

- Integration-by-parts identities provide linear relations among Feynman integrals.
- One defines an order relation between Feynman integrals and eliminates the more complicated ones in favour of the simpler ones.

Order relations

Typical order relations: Lexicographical order of tuples

ISP-basis:
$$(N_{\text{prop}}, N_{\text{id}}, r_{\text{dot}}, s_{\text{ISP}}, \dots)$$

dot-basis:
$$(N_{\text{prop}}, N_{\text{id}}, s_{\text{ISP}}, r_{\text{dot}}, \dots)$$

where

$$\label{eq:Nprop} N_{\text{prop}} \, = \, \sum_{j=1}^{n_{\text{int}}} \Theta \left(\nu_j > 0 \right), \qquad N_{\text{id}} \, = \, \sum_{j=1}^{n_{\text{int}}} 2^{j-1} \Theta \left(\nu_j > 0 \right),$$

$$\label{eq:r_dot_state} r_{\text{dot}} \, = \, \sum_{j=1}^{n_{\text{int}}} \nu_j \Theta \left(\nu_j > 0 \right), \qquad \, s_{\text{ISP}} \, = \, \sum_{j=1}^{n_{\text{int}}} |\nu_j| \, \Theta \left(\nu_j < 0 \right).$$

Comments

- The number of master integrals is independent of the order relation.
- The set of master integrals depends on the order relation, and so do the reduction coefficients.
- The reduction coefficients are rational functions of ε and x.
 We would like to avoid in the denominator irreducible polynomials, which depend on ε and x.
 Such polynomials lead to an expression swell.
- We may exploit the freedom of choosing an order relation.

Differential equations

 Using integration-by-parts obtain a differential equation of the form (always possible)

$$dI = A(\varepsilon, x) I.$$

(Kotikov '90, Remiddi '97, Gehrmann and Remiddi '99)

2 Bottle neck: Find a transformation I = RK such that

$$dK = \varepsilon A(x) K$$

(Henn '13)

Solve the latter differential equation with appropriate boundary conditions in terms of iterated integrals (always possible).
(Chen '77)

Sectors and block-triangular structure

Order the set of master integrals $I = (I_1, ..., I_{N_F})$ such that I_1 is the simplest integral and I_{N_F} the most complicated integral.

The integration-by-parts identities and the matrix *A* have a lower block-triangular structure:

$$\begin{pmatrix}
D_1 & 0 & 0 & 0 \\
N_{21} & D_2 & 0 \\
N_{31} & N_{32} & D_3
\end{pmatrix}$$

Diagonal blocks: D_1 , D_2 , D_3 Non-diagonal blocks: N_{21} , N_{31} , N_{32}

Diagonal blocks

- The challenging part are the diagonal blocks (i.e. the maximal cut).
- The size of the diagonal blocks can be sizeable, e.g. O(10).
- Once the correct masters are known on the maximal cut, it is rather straightforward to extent these masters beyond the maximal cut.
- In the following we denote by V the vector space of Feynman integrals on the maximal cut.

Transformation to an ε-factorised form

A two-step procedure:

$$I = R_1 J = R_1 R_2 K$$

• Construct an intermediate basis $J = R_1^{-1}I$, such that the differential equation for J is compatible with a filtration, in particular it is in Laurent polynomial form:

$$dJ = \sum_{k=k_{\min}}^{1} \varepsilon^{k} A^{(k)}(x) J,$$

② Construct a matrix R_2 , which leads to a basis $K = R_2^{-1}J$, such that the differential equation for K is in ε -factorised form.

Motivating example

ullet An elliptic sector, contributing to $pp o tar{t}$, with three master integrals:

We may decompose the three-dimensional vector-space into

We are interested in methods, which work for any geometry.

Section 2

Constructing the basis J

The Baikov representation

We study the integrands of Feynman integrals on the maximal cut in a (loop-by-loop) Baikov representation.

Baikov polynomials $p_i(z)$ defined by

$$\int\limits_{\mathcal{C}_{\text{maxcut}}} \prod_{r=1}^{J} \frac{d^D k_r}{i \pi^{\frac{D}{2}}} \frac{1}{\prod\limits_{j=1}^{n_{\text{edges}}} \sigma_j} \sim \int d^n z \prod_{i \in I_{\text{all}}} \left[p_i(z) \right]^{\alpha_i}.$$

The exponents α_i are always of the form

$$\alpha_i = \frac{1}{2}(a_i + b_i \varepsilon), \text{ with } a_i, b_i \in \mathbb{Z}.$$

Define l_{odd} as the set of indices for which a_i is odd and l_{even} as the set of indices for which a_i is even.

Integrands of Feynman integrals

- Recall: V denotes vector space of Feynman integrals on the maximal cut mod linear relations.
- We denote the vector space spanned by the **integrands** by Ω_{ω} and the vector space mod linear relations by H_{ω} .
- There is an injective map

$$\iota : V \rightarrowtail H_{\omega}.$$

- In general, this map is not surjective due to
 - Symmetries

$$z_1 dz_1 \wedge dz_2 \neq z_2 dz_1 \wedge dz_2$$
 but $\int_{[0,1]^2} z_1 dz_1 \wedge dz_2 = \int_{[0,1]^2} z_2 dz_1 \wedge dz_2$

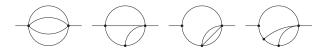
Super-sectors

Super-sectors

It may happen that

$$p_i(z) = z_r$$

• In this case, Ω_{ω} will also contain the integrands of the sector where the exponent of this inverse propagator is positive. If this sector has additional master integrals, they will also appear in H_{ω} .



Explains "magic relations".

The minimal twist

- Instead of working in the affine chart $z = (z_1, ..., z_n)$, go to projective space \mathbb{CP}^n with homogeneous coordinates $[z_0 : z_1 : \cdots : z_n]$.
- Define the minimal twist U and its $(\varepsilon = 0)$ -part U_0 by

$$U(z_0, z_1, \dots, z_n) = \prod_{i \in I_{\text{odd}}^0} P_i^{-\frac{1}{2} + \frac{1}{2}b_i \varepsilon} \prod_{j \in I_{\text{even}}^0} P_j^{\frac{1}{2}b_j \varepsilon},$$

$$U_0(z_0, z_1, \dots, z_n) = \prod_{i \in I_{\text{odd}}^0} P_i^{-\frac{1}{2}}.$$

The integrand

$$\Psi_{\mu_0...\mu_{N_D}}[Q] = \underbrace{\mathbf{C}_{\text{Baikov}}\mathbf{C}_{\text{abs}}\mathbf{C}_{\text{rel}}\mathbf{C}_{\text{clutch}}}_{z-\text{independent prefactors}} \underbrace{\mathbf{U}(\mathbf{z})}_{\text{minimal twist}} \underbrace{\frac{\mathbf{Q}}{\prod_{i \in I_{\text{all}}^0} \mathbf{P}_i^{\mu_i}}}_{\text{rational function}} \eta,$$

where η is the standard *n*-form on \mathbb{CP}^n :

$$\eta = \sum_{j=0}^{n} (-1)^{j} z_{j} dz_{0} \wedge ... \wedge \widehat{dz_{j}} \wedge ... \wedge dz_{n},$$

and C_{Baikov} and C_{abs} are independent of Q and $\mu_0 \dots \mu_{N_D}$,

$$\begin{split} C_{\text{rel}} &= \prod_{i \in I_{\text{odd}}^0} \left(-\frac{1}{2} + \frac{1}{2} b_i \epsilon \right)_{\mu_i} \prod_{i \in I_{\text{even}}^0} \left(\frac{1}{2} b_i \epsilon \right)_{\mu_i}, \qquad (a)_n = \frac{\Gamma(a+1)}{\Gamma(a+1-n)}, \\ C_{\text{clutch}} &= \epsilon^{-|\mu|}, \qquad |\mu| = \sum_{i \in I_{\text{nll}}^0} \mu_i. \end{split}$$

Linear relations

Integration-by-parts identities:

$$0 = \frac{1}{\varepsilon} \Psi_{\mu_0 \dots \mu_i \dots \mu_{N_D}} \left[\partial_{z_j} Q_+ \right] + \sum_{i \in I_{\text{all}}^0} \Psi_{\mu_0 \dots (\mu_i + 1) \dots \mu_{N_D}} \left[Q_+ \cdot \left(\partial_{z_j} P_i \right) \right]$$

② Distribution identities:

$$\Psi_{\mu_{0}...\mu_{N_{D}}}\left[\textit{Q}_{1}+\textit{Q}_{2}\right]=\Psi_{\mu_{0}...\mu_{N_{D}}}\left[\textit{Q}_{1}\right]+\Psi_{\mu_{0}...\mu_{N_{D}}}\left[\textit{Q}_{2}\right]$$

Cancellation identities:

$$\Psi_{\mu_0...(\mu_j+1)...\mu_{N_D}}[P_j \cdot Q] = \frac{1}{\varepsilon} \frac{\mathbf{C}_{\mathrm{rel}}^{(j)}}{\mathbf{C}_{\mathrm{rel}}} \Psi_{\mu_0...\mu_j...\mu_{N_D}}[Q]$$

Remarks

- We compute a basis in twisted cohomology with the Laporta algorithm (and not with intersection numbers).
- We may reduce the subsystem formed by the integration-by-parts identities and the distribution identities by setting $\varepsilon=1$, and recover the ε -dependence in the end from the $|\mu|$ -grading.
- This is only spoiled by the ratio $C_{\rm rel}^{(j)}/C_{\rm rel}$ in the cancellation identities:

$$\frac{C_{\rm rel}^{(j)}}{C_{\rm rel}} = \frac{1}{2}a_j - \mu_j + \frac{b_j}{2}\varepsilon.$$

Algebraic geometry

- We are interested in a method, which is independent of any specific geometry (elliptic curve, higher-genus curve, Calabi-Yau, ...)
- In algebraic geometry we may look at
 - poles
 - residues

The pole order

Define $\Psi^0_{\mu_0...\mu_{N_D}}[Q]$ by replacing U with U_0 in the definition of $\Psi_{\mu_0...\mu_{N_D}}[Q]$.

The **pole order** o of $\Psi^0_{\mu_0...\mu_{N_D}}[Q]$ is defined as follows:

- The pole order is the maximum of pole orders at individual points.
- For $\alpha > 0$, the pole order of $z^{-\alpha}dz$ at z = 0 is $\lfloor \alpha \rfloor$, where $\lfloor x \rfloor$ denotes the floor function, e.g. the pole order of $z^{-\frac{3}{2}}dz$ at z = 0 is 1.
- For normal-crossing singularities, the pole order is additive, i.e. the pole order of $\frac{dz_1}{z_1} \wedge \frac{dz_2}{z_2^2}$ at $(z_1, z_2) = (0, 0)$ is 3.
- For non-normal-crossing singularities, we first need to perform a blow-up.

The number of residues

Let r be the largest number such that the r-fold residue of $\Psi^0_{\mu_0...\mu_{N_D}}[Q]$ is non-zero.

Example in the affine chart $z_0 = 1$:

$$r = 1:$$

$$\frac{dz_1}{z_1}$$
 $r = 0:$
$$\frac{dz_1}{\sqrt{z_1(z_1 - 1)(z_1 - 2)(z_1 - 3)}}$$

Filtrations

With the help of r, o and $|\mu|$ we define three filtrations of Ω_{ω} :

$$\begin{split} & \Psi_{\mu_0 \dots \mu_{N_D}}[Q] \in W_w \Omega_\omega & \text{if} \quad n+r \leq w \\ & \Psi_{\mu_0 \dots \mu_{N_D}}[Q] \in F_{\text{geom}}^p \Omega_\omega & \text{if} \quad n+r-o \geq p \\ & \Psi_{\mu_0 \dots \mu_{N_D}}[Q] \in F_{\text{comb}}^{p'} \Omega_\omega & \text{if} \quad n-|\mu| \geq p' \end{split}$$

The W_{\bullet} -filtration and the $F_{\text{geom}}^{\bullet}$ -filtration define the decomposition

$$\Omega_{\text{geom}}^{p,q} = Gr_{F_{\text{geom}}}^p Gr_{p+q}^W \Omega_{\omega}$$

and similar for $H_{geom}^{p,q}$ and $V^{p,q}$.

Order relation for the Laporta algorithm

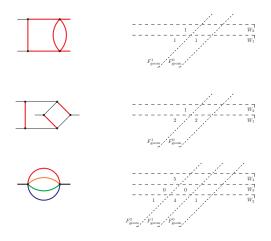
Definition (order relation)

$$(a, w, o, |\mu|, \dots)$$

where

$$a = \begin{cases} -r & \text{if } \Psi \text{ is the pre-image of a master integrand of a sub-problem} \\ & \text{localised on } P_i = 0 \text{ with } i \in \mathit{l}_{\text{even}}^0 \\ 0 & \text{otherwise} \end{cases}$$

Examples



The differential equation

Let $\Psi=\left(\Psi_{1},\ldots,\Psi_{N_{F}}\right)$ be the basis of master integrands obtained from this algorithm and

$$d\Psi = A(\varepsilon, x)\Psi.$$

We observe that the differential equation is compatible with the $F^{\bullet}_{\text{comb}}$ -filtration: If $\Psi_i \in \text{Gr}_{F_{\text{comb}}}^{n-|\mu|_i}\Omega_{\omega}$ and $\Psi_j \in \text{Gr}_{F_{\text{comb}}}^{n-|\mu|_j}\Omega_{\omega}$, then

$$A_{ij}(\varepsilon,x) = \sum_{k=-(|\mu|_i-|\mu|_j)}^1 \varepsilon^k A_{ij}^{(k)}(x).$$

The compatibility condition implies Griffiths transversality.

Section 3

Constructing the basis *K*

The transformation R_2

Rewrite:

$$A = \sum_{k=-n}^{1} \varepsilon^{k} A^{(k)}(x) = \sum_{k=-n}^{1} B^{(k)}(\varepsilon, x)$$

Example n = 2:

$$\begin{split} \mathcal{B}^{(1)} &= \begin{pmatrix} \frac{\epsilon \mathcal{B}_{11}^{(1)} & \epsilon \mathcal{B}_{12}^{(1)} & \epsilon \mathcal{B}_{12}^{(1)} & 0}{\epsilon \mathcal{B}_{21}^{(1)} & \epsilon \mathcal{B}_{22}^{(1)} & \epsilon \mathcal{B}_{23}^{(1)} & \epsilon \mathcal{B}_{23}^{(1)} \end{pmatrix}, \\ \mathcal{B}^{(0)} &= \begin{pmatrix} \frac{0}{0} & 0 & 0 & 0 & 0 \\ \frac{0}{0} & 0 & 0 & 0 & 0 \\ \frac{0}{31} & 0 & 0 & 0 \end{pmatrix}, \ \mathcal{B}^{(-1)} &= \begin{pmatrix} \frac{0}{0} & 0 & 0 & 0 \\ \frac{0}{21} & 0 & 0 & 0 & 0 \\ \frac{1}{\epsilon} \mathcal{B}_{31}^{(-1)} & \mathcal{B}_{32}^{(-1)} & 0 & 0 \\ \frac{1}{\epsilon} \mathcal{B}_{31}^{(-2)} & \mathcal{B}_{32}^{(-2)} & \frac{1}{\epsilon} \mathcal{B}_{32}^{(-2)} & \mathcal{B}_{33}^{(-2)} \end{pmatrix}. \end{split}$$

The transformation R_2

- We look for a transformation $J = R_2 K$.
- Set

$$R_2 = R_2^{(-n)} R_2^{(-n+1)} \dots R_2^{(-1)} R_2^{(0)}$$

- $R_2^{(k)}$ removes the terms of $B^{(k)}$.
- The entries of R₂^(k) are determined by ε-independent first-order differential equations (a differential ideal).
- In general, the entries of $R_2^{(k)}$ are transcendental functions (periods, ...).
- The procedure does not depend on properties of a special point (for example, properties of a point of maximal unipotent monodromy).

Examples

With this algorithm we were able to compute state-of-the-art integrals (including sub-topologies):

 A genus-two non-planar double box contributing to Møller scattering and Drell-Yan.

The unequal-mass three-loop banana integral (involving a K3 surface)

Section 4

Summary and conclusions

Details on the conjecture

Conjecture: The order relation $(a, w, o, |\mu|, ...)$ leads to a $F_{\text{comb}}^{\bullet}$ -compatible differential equation.

Equivalent to: In deriving the differential equation the cancellation identities

$$\Psi_{\mu_0...(\mu_j+1)...\mu_{N_D}}[P_j \cdot Q] = \frac{1}{\varepsilon} \frac{C_{\text{rel}}^{(j)}}{C_{\text{rel}}} \Psi_{\mu_0...\mu_j...\mu_{N_D}}[Q]$$

are always used with pivot elements from the left-hand side.

Conclusions

- A well-chosen order relation in integration-by-parts reductions improves the efficiency.
 - Sub-system can be reduced by setting $\varepsilon = 1$.
 - Full system: work with Laurent polynomials.
- A systematic algorithm for ϵ -factorised differential equations.
 - Step 1: Obtain the intermediate basis J directly from the order relation.
 - Step 2: Rotation to the basis K introduces transcendental functions.
- Input from mathematics:
 - Twisted cohomology
 - Ideas from Hodge theory