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BASED ON

MAINLY:

Concept of pure UT integrals 1n elliptic case [Brodel, Duhr, Dulat, Penante, Tancredi, arXiv:1809.10698]

Integrand analysis and canonical bases in elliptic case (and beyond) [Gorges, Nega, Tancredi, Wagner arXiv:2305.14090]
Generalization to Calabi-Yau geometr ies [Duhr, Maggio, Nega, Sauer, Tancredi, Wagner arXiv:2503.20655]

Applications O elliptic amplitudes and correlators [Duhr, Gasparotto, Nega, Tancredi, Weinzierl arXiv:2408.05154]
Forner, Nega, Tancredi arXiv:2411.19042]

[Marzucca, McLeod, Nega arXiv:2501.14435]

Becchetti, Coro, Nega, Tancredi, Wagner arXiv:2502.00118]

[more applications coming soon!]

NOTE ALSO:
Applications by other groups [Becchetti, Dlapa, Zoia arXiv:2503.03603]
Generalizations to higher genus [Duhr, Porkert, Stawinski arXiv:2412.02300]

Applications to CY 1n Gravitational Waves [Driesse, Jakobsen, Klemm, Mogull, Nega, Plefka, Sauer, Usovitsch ’24]

+ a lot of parallel work by Adams, Frellesvig, Morales, Pogel, Wang, Weinzierl, Wilhelm,... [See previous talk by S. Weinzierl]



SCATTERING AMPLITUDES: POLES AND CUTS

Amplitudes have poles where single-particle states go on-shell
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They develop branch-cuts (logarithmic and algebraic!) when multi-particle
states go on-shell
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POLYLOGARITHMIC SCATTERING AMPLITUDES

In the well understood case of polylogarithmic amplitudes, there is a clear “separation”

—— ) R(sy | dlogf, A...Adlogf,
l Y

Rational functions:

Information from poles

special functions (logarithms and more):

irreducible “trascendental” information from “Feynman Integrals”

Becomes clear once we choose the right “integrals”

How do we generalize this to “special functions” on more complicated geometries?



DIFFERENTIAL FORMS ON ELLIPTIC GEOMETRIES

entire space of functions spanned by single poles

todt
log(l1 —x/a) = J

Global statement

Multiple polylogarithms have log-singularities everywhere



DIFFERENTIAL FORMS ON ELLIPTIC GEOMETRIES
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Global statement Third kind
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Multiple polylogarithms have log-singularities everywhere

single poles g ~ J



DIFFERENTIAL FORMS ON ELLIPTIC GEOMETRIES

entire space of functions spanned by single poles genus 1, elliptic curve; y = \/ P;(x)

First kind Second kind

dx x
No poles @ ~ | — double poles 71 ~ J—

Y

/i
log(l1 —x/a) = J

Global statement Third kind

dx
(x — ¢;)y

Multiple polylogarithms have log-singularities everywhere

single poles g ~ J



FROM INTEGRANDS TO INTEGRALS T10 SPECIAL FUNCTIONS

Let us consider a (in)famous Feynman graph: the two-loop sunrise

& Consider the case with 2 different masses m, M

P m f’ When M — 0 polylogs
&1_ 52_’/ While M # 0 is elliptic

2 — v —V
I (z-d)=/ [1 4, (F1 - p) (k2 -p) ™
U1y, U5 \ &5 . 7;7Td/2 (k’% L mQ)yl (k’% . MQ)I/Q((kl _ k2 _ p)Q _ mQ)I/g




FROM INTEGRANDS TO INTEGRALS T10 SPECIAL FUNCTIONS

Let us consider a (in)famous Feynman graph: the two-loop sunrise

k2 Consider the case with 2 different masses m, M

P m P When M — 0 polylogs
&1_ fZJ While M # 0 is elliptic

2 — U —V
I (Z°d)=/ L1 d%; (k1 -p) (k2 p) ™
Ve V5 A o i )k —m?)(ky — M?)2((ky — kg — p)? — m?)"8

Following the idea of local canonical integrals [Arkani-Hamed et al ’10] [Henn ’13]

Analyse its “integrand” to choose “good” integrals to represent scattering amplitudes (role of diff forms seen before!)



THE INTEGRAND IN D=2

Use “some” parametric representation for the integrand of sunrise, with numerator in last scalar prod 25” :

I choose Baikov, but choose your favourite

le o o o dZS ZS
21223 [B(zj m?, M?, 5)]¢-D)2

_ (N2-D)2
Ly 1100, = (5)*~) J
y



THE INTEGRAND IN D=2

Use “some” parametric representation for the integrand of sunrise, with numerator in last scalar prod 25” :

I choose Baikov, but choose your favourite

le o o o dZS ZS
21223 [B(zj m?, M?, 5)]¢-D)2

_ (N2-D)2
Ly 1100, = (5)*~) J
y

Fix integer number of dimensions: we choose D = 2 (more later about D = 2 — 2¢)

I J le o o o dZS ZS
1,1,1,0,0s — |
Us y Z1Z2Z3 B(Zja m2, Mz, S) c.g. @ Zj — (), ] = 1’2’3 and many others when B = 0

The integrand has a bunch of singularities:




THE INTEGRAND IN D=2

Use “some” parametric representation for the integrand of sunrise, with numerator in last scalar prod 25” :

I choose Baikov, but choose your favourite

le o o o dZS ZS
21223 [B(zj m?, M?, 5)]¢-D)2

_ (N2-D)2
Ly 1100, = (5)*~) J
y

Fix integer number of dimensions: we choose D = 2 (more later about D = 2 — 2¢)

I J le o o o dZS ZS
1,1,1,0,0s — |
Us y Z1Z2Z3 B(Zja m2, Mz, S) c.g. @ Zj — (), ] = 1’2,3 and many others when B = 0

The integrand has a bunch of singularities:

For reason of space, let us focus on a subset of them, the ones that correspond to z; =z, =23 = 0

This is the so-called maximal cut of the graph: subset of its analytic structure



THE INTEGRAND IN D=2

On the max cut the integral becomes

s+ M?+ 2z5

1
_, dZ4 with Ai(zs) = — (s + 75 +

11 1,1,0,0 — szs <s SJ A+ A- :
21=2,=23=0 (24 = AT(25))(24 — A7(25))

=

There are 2 single poles in z,, with same residue (up to a sign) \/_ — Global Residue Theorem
A

=

and A = (2z5 + s + M?*)(M*s — Z52)(4m2 - M? — 5 — 2z5)




THE INTEGRAND IN D=2

On the max cut the integral becomes

s+ M? + 275

1
_, dZ4 with Ai(zs) = — (s + 75 +

11 1,1,0,0 — szs <s SJ A+ A- :
21=2,=23=0 (24 = AT(25))(24 — A7(25))

=

There are 2 single poles in z,, with same residue (up to a sign) \/_ — Global Residue Theorem
A

=

and A = (2z5 + s + M?*)(M*s — Z52)(4m2 - M? — 5 — 2z5)

dZ4

dzs 753 d log[ f(z4, 25, m*, M, 5)]
/ 1,1,1,0,us ~
<] =ZQ=Z3:O

\/ (225 + 5 + M2(M2s — 22)(4m? — M2 — 5 — 2z5) dzy



POLYLOG CASE: THE INTEGRAND IN D=2

We are not done: more structure from residue in zs. Separate two cases

First case: M? = ()

; J dzs 25 J dloglfzy 25 m* 91
191,19091/5 4
21=2=23=0 Z5\/ (225 + S)(4m2 — S — 2Z5) dZ4

Focus on integrand in z5 and v5 = 0



POLYLOG CASE: THE INTEGRAND IN D=2

We are not done: more structure from residue in zs. Separate two cases

First case: M? = ()

; J’ dzs 75 J‘ d log[ f(z,, 25, m*, 5)] o
1,1,1,0,u5 5 4
21=2=2,=0 25\/ (225 + $)(4m2 — 5 = 229 dzy

Focus on integrand in z5 and v5 = 0

» Re(xs)




POLYLOG CASE: THE INTEGRAND IN D=2

We are not done: more structure from residue in zs. Separate two cases

First case: M? = ()

; J’ dzs 75 J‘ d log[ f(z,, 25, m*, 5)] o
1,1,1,0,u5 E 4
21=2=2,=0 25\/ (225 + $)(4m2 — 5 = 229 dzy

Focus on integrand in z5 and v5 = 0
GRT: not independent!

J dZS J' dZ5 1
X X
¢ Z5\/(2«Z5 + S)(4m2 — 5 — 2Z5) 2 Z5\/(225 + S)(4m2 — 5 — 2Z5) \/S(S - 4m2)

Im(Xxs) : : :
t — I} 1 100 produces 1 independent logarithmic
v C1 “master integral”, with residue # 1
:" o > Re(x5)
take \/ s(s —4mHI, | 0.0 s normalized integral




POLYLOG CASE: THE INTEGRAND IN D=2

We are not done: more structure from residue in zs. Separate two cases

First case: M? = ()

dZS ZS_US d log[f(z4, 35, m29 s)]
11 1,1,0.05 — y dz,
R ZS\/ (225 + 8)(dm? — 5 — 225) <4
What happens for other values of v5? vs = — 1 removes pole at zero and produces a new simple pole at infinity

> Re(xs)




POLYLOG CASE: THE INTEGRAND IN D=2

We are not done: more structure from residue in zs. Separate two cases

First case: M? = ()

dZS ZS_US d log[f(z4, 35, m29 s)]
11 1,1,0.05 — y dz,
R ZS\/ (225 + 8)(dm? — 5 — 225) <4
What happens for other values of v5? vs = — 1 removes pole at zero and produces a new simple pole at infinity

@ J’ dzs J’ dzs
C X x 1
o0 Co, G,

\/ (225 + 5)(dm? — 5 — 225) \/ (225 + 5)(4m? — 5 — 225)

— I, 1 10— produces 1 independent logarithmic

“master integral”, with residue =1

» Re(xs)

take /; | 1 9_1 as normalized integral



POLYLOG CASE: THE INTEGRAND IN D=2

We are not done: more structure from residue in zs. Separate two cases

First case: M? = ()

dzs ZS_US d log| f(z4, zs m?, s)]
11,1,1,0,1/5 — y dZ4
— 25\/ (225 + 5)(dm? — 5 — 2z5) 2
What happens for other values of v5? As soon as vs < — | we produce higher poles: not independent!

dZ5 Z?

o[ (225 + $)(4m? = s = 225)

n>1 — noresidue, algebraic, nothing new

(S

— just looking at the integrand we know that there are 2 master integrals, both “logarithmic”...



POLYLOG CASE: A GOOD BASIS IN D=2

First case: M? =0

Moreover, the 2 master integrals are in dlog form in D=2 (analysis can be easily extended beyond max cut)

dlog g,(zs, s, m*) d log f(z4, zs, 5, m?)
dZ5 dZ4

J =\/S(S—4m2)1 ocJ
1 1,1,1,0,0 dz dz,

dlog gy(zs,5,m*) [ dlogf(zy, 25,5, m”)
dZ5 dZ4

J, = 11,1,1,0,—1 X J
dZ5 dZ4



POLYLOG CASE: A GOOD BASIS IN D=2

First case: M? =0

Moreover, the 2 master integrals are in dlog form in D=2 (analysis can be easily extended beyond max cut)

dlog g,(zs, s, mz)d J’legf(Z4,Zs,S, m?)
<5

J =\/S(S—4m2)1 ocJ
1 1,1,1,0,0 dz dz,

dZ4

Removed algebraic “residue”

d log gz(ZS, S, mz) 7 d logf(z4, 25, S, mz) gives “pure” integrals that
dz <5 contribute only to “irreducible”
5 transcendental part

J, = 11,1,1,0,—1 X J

Y

—— ) R(sp|| dlogf, A...Adlogf,




POLYLOG CASE: A GOOD BASIS IN D=2-2¢

First case: M? =0

What if we deform D =2 — 2¢ ? It’s easy to restore full € dependence noticing that we would only get

dlog g,(z<, s, m?) d log f(z,, zs, S, m?) ke
& 815 dZsJ 8 (24, 25 dz4(G(z4,z5,m2,M2,S))

J =\/S(S—4m2)1 ocJ
1 1,1,1,0,0 dz dz,

dz, ( G(2y, 25, m?, M, S))k€

dlog g,(zs, s, m”) | J dlog f(z4, 25, 5, m?)
<5

J, = 11,1,1,0,—1 X J
dZ5

dZ4



POLYLOG CASE: A GOOD BASIS IN D=2-2¢

First case: M? =0

What if we deform D =2 — 2¢ ? It’s easy to restore full € dependence noticing that we would only get

dlo Z<, S, > d1oe f(z4, z<, 5, m? ke
g 81(Zs )dZSJ 8 (24 25 )dz4(G(Z4, 2, m%, M2, S))

J =\/S(S—4m2)1 ocJ
1 1,1,1,0,0 dz dz,

dz, ( G(2y, 25, m?, M, S))k€

dlog g,(zs, s, m”) | J dlog f(z4, 25, 5, m?)
<5

J, = 11,1,1,0,—1 X J
dZ5

dZ4

But new object just adds more “logs” once it is expanded close to € = 0

(G2 25.m2 M2, 5)) " ~ 1 + kelog G + O(?)



POLYLOG CASE: DIFFERENTIAL EQUATIONS IN D=2-2¢

These integrals fulfil canonical diff-equations [Kotikov’10] [Henn ’13]

— —

e | eindep |I, — e-indep = 2 B.dlogf.

=
~
|

Solution as path-ordered exponential: naturally polylogs if f. are rational functions!

I = Pexp GZBZ-J dlog/, 70

Y

Integrals have (at most) logarithmic singularities close to each regular singular point



ELLIPTIC CASE: THE INTEGRAND IN D=2

Second case: M? + ()

J' dzs Z5_D5 J d log| f(z4, zs, m?, s)]
I 110, - d
s Lo Lo\Ul/§

y

{4
V225 + 5+ M2YMPs — ) (dm? = M2 — s = 225) 424

7] =Z2=Z3=O

Polynomial of degree 4 in square-root — for vs = 0, there is NO POLE but two independent contours among 4 roots:

T 25

AN\

C1




ELLIPTIC CASE: THE INTEGRAND IN D=2

Second case: M? + ()

J' dzs Z5_D5 J' d log| f(z4, zs, m?, s)]
I 110, - d
s Lo Lo\Ul/§

y

{4
V@225 + s+ MDMPs — 2)(dm? — M2 = 5 = 29 a4

7] =Z2=Z3=O

Polynomial of degree 4 in square-root — for vs = 0, there is NO POLE but two independent contours among 4 roots:

T 25 J’ dzs

o0
xwy ~ 1+ chsn
n=1

AN
of C \/ P4(z5) 0
> dz o0
e 25 [ ) ~ wq logs Zdnsn
eZ. C \/P4(ZS) s—0 n=1

True locally !!!



ELLIPTIC CASE: THE INTEGRAND IN D=2

Second case: M? + ()

I 1100

J dzs 25 J d log[ f(zy, 25, m*, 5)]
’ \/ (225 + 5 + M2)(M2s — 22)(4m? — M2 — 5 — 2z5) dz

<] =Z2=Z3=O

Polynomial of degree 4 in square-root — for vs = 0, there is NO POLE but two independent contours among 4 roots:

dz =
L 2§ J > wy ~ 1 + Z c, 8"  Istkind integral
C

D locally, holomorphic solution w, generalization of algebraic
m y o prefactor (no trascendental weight)
c, I o I
—1 1 1 o generalization of integral with unit leading
Wy
singularities beyond logarithmic case



ELLIPTIC CASE: THE INTEGRAND IN D=2

Second case: M? + ()

dzs Z5_D5 d log| f(z4, zs, m?, s)]
I 1100 —> y dz,
21=2,=23=0 y \/ (2z5+ s + M?)(M?s — z2)(4m? — M? — 5 — 2z5) 4
What happens increasing vs? For vs = — 1 there is a single pole at infinity, now there are three contours

T 25 CM@

C




ELLIPTIC CASE: THE INTEGRAND IN D=2

Second case: M? + ()

dzs Z5_D5 d log| f(z4, zs, m?, s)]
I 1100 —> y dz,
21=2=23=0 Y \/(2Z5 + 5 + M2)(M2S — 252)(41712 — M2 — 5 — 2Z5) 4
What happens increasing vs? For vs = — 1 there is a single pole at infinity, now there are three contours
d d

L 2¢ Coo 555 x 11, 555 o IT; 3rd kind integrals

@ Je, /Pazs) Je, \/Pazs)
C
dzs 2 Z
J RS Res_, : x 1

o \/ P(z5) \/ P4(z5)

Extra residue: it decouples from the others

1 1 10— is a second good integral, already normalized!



ELLIPTIC CASE: THE INTEGRAND IN D=2

Second case: M? + ()

dzs 753 d log[ f(z4, 25, m?, 5)]
I 1100 —> y dz,
1=2=25=0 / \/ (225 + 5 + M2)(M2s — 22)(4m? — M2 — 5 — 2z) “
Can we increase vs more? Contrary to polylog case vs = — 2 is independent! Double pole at infinity (no residue)

T 25

AN\

C1




ELLIPTIC CASE: THE INTEGRAND IN D=2

Second case: M? + ()

dzs Z5_D5 d log| f(z4, zs, m?, s)]
I 1100 —> y dz,
21=2=25=0 Y \/(2Z5 + 5 + M2)(M2S — 252)(41712 —M? — 5 — 2Z5) 4
Can we increase vs more? Contrary to polylog case vs = — 2 is independent! Double pole at infinity (no residue)
dzs 72
Subtlety: (55— /%)
T, 20 Je, \/Pa(zs)
i 1 s+ M? —2m?
AN 0
o 5m - o)
of ~ ] * 2{6 4x +O0)
D double pole contamination singlje pole




ELLIPTIC CASE: THE INTEGRAND IN D=2

Second case: M? + ()

dzs 75 B d log| f(zy, zs, m?,s)]
I 1100 —> y dz,
21=2=23=0 Y \/(2Z5 + 5 + M2)(M2S — 252)(41712 — M2 — 5 — 225) 4
Can we increase vs more? Contrary to polylog case vs = — 2 is independent! Double pole at infinity (no residue)
dzs 72
Subtlety: (55— /%)
S
i 1 s+ M? —2m?
™ — dx[ — — + O ]
£ | 2 ™ (x*)
D double pole contamination singlje pole
e 25
Candidate with pure double pole in D = 2
eZ. .

s + M? — 2m?
11,1,1,0,—2 | 5 11,1,1,0,—1 + C 11,1,1,0,0




ELLIPTIC CASE: A GOOD BASIS IN D=2

1

J = —11,1,1,0,0 -
@y \/P4(Zs) . dZ4

W

=110+

J3 — 11,1,1,0,—1 —

1 [ dZS

" d lng(Z4, 35595, mZ)

_S+M2—2m2

2

P

dZ4

Liy10-1+Colit100=

dzszs [ dlog f(zy, 25,5, m?)

J \/Py(zs) -

dz
dZ4 ’

dZ5

J A/ Py(z5)

(252+ ,

51

)

" dlog f(z4, 25, 5, mz)

dZ4

dZ4



ELLIPTIC CASE: A GOOD BASIS IN D=2

1 I [ dzs [ dlogflzy 25,5, m°)
Ji=—11100=— dz
@o Do J \/Py(z5) - dz,
_S + M? — om?

J,=1 o+
2 = 1,1,1,0,-2 5

r.

Liy10-1+Colit100=

J3 — 11,1,1,0,—1 —

J A/ Py(z5)

dzs Zs J d log f(z4, 25, S, m?)

dz
dZ4 !

—— ) R(sy

dZ5

J A/ Py(z5)

Y

(z52+ ,

51

)

" dlog f(z4, 25, 5, mz)

dZ4

dZ4

Unfortunately, J, is not right yet
to generalize the decomposition.

Double pole would generate extra
“poles” in the special functions!

Not just logarithmic singularities

dlogf A ... Adlogf,




ELLIPTIC CASE: A GOOD BASIS IN D=2-2¢

Serious problem:

second integral cannot easily be lifted to D = 2 — 2¢ and give rise to a “real canonical basis”

ke
dZ4(G(Z4, 255 m*, M?, S)) GOOD as for polylogs

| =
\/ Pa(zs) - dz,

ke
dZ4<G(Z4, 35, m29 M29 S)) GOOD as for polylogs

7. — J dzsz5 [ dlog f(zy, Zs, S, mz)
s =
\V Pu(z5) - dzy




ELLIPTIC CASE: A GOOD BASIS IN D=2-2¢

Serious problem:

second integral cannot easily be lifted to D = 2 — 2¢ and give rise to a “real canonical basis”

BAD!?!1?

dzs s " d log f(zy, zs, 5, m*) k
9) 1 4o X599 9) 9) €
Jy = J 5 (25 + ?Zs + Co) 1 dZ4<G(Z4, Zs,m*°, M~, S)) Double pole requires “integration by parts”,
\/ 4(25) ’ 4 OK strictly in D =2, “bad” in D =2 — 2¢




INTERMEZZ0: USING DERIVATIVES FOR POLYLOGS

Imagine we have found a perfectly “canonical” integral. It’s expression will be

I=c9+¢ Z clgl)jl(cwzn + €” Z CIEZ)J]({sz) + O(e”)
k k



INTERMEZZ0: USING DERIVATIVES FOR POLYLOGS

Imagine we have found a perfectly “canonical” integral. It’s expression will be
I=cY+e Z ¢V gw=b 4 ¢2 Z cP 7= 4 O(e)
k k k k
k k

Consider now its derivative

0l x ¢ 2 R, clgl) + €? Z CIEZ) 2 R; f](;;.:l) + O(e”)
k k j

[t generates a new uniform weight integral with lower weight, not pure due to R,

Not perfect, but after an e-rescaling, can be transformed into a canonical integral
by an e-independent rotation



INTERMEZZ0: USING DERIVATIVES FOR POLYLOGS

Imagine we have found a perfectly “canonical” integral. It’s expression will be

I=cY+e Z clgl)f](cwzl) + ¢* Z CIEZ)J](CWZ” + O(e”)
k k

Consider now its derivative

0l x ¢ 2 R, clgl) + €? Z CIEZ) 2 R; Jl(;;.:l) + O(e”)
k k J

For polylogs we can live without (but they can still be useful, see the INITIAL algorithm)

[Dlapa, Henn, Yan ’20]



ELLIPTIC CASE: DO WE NEED DERIVATIVES?

[ dz S dlogf(z # ke
J, = : z5 + —125 + C; 2l dz4(G(z4, z5,m*, M7, s))
— trade by derivative of first one, with full e-dependence!

dzs J d log f(zy, 25, 5, m?)

k
dZ4(G(Z4, s, mz, M? : S)) ) [part of Ansatz procedure by S. Weinzierl et al!]
J A/ Pa(z5) dz

Jy, x 0




ELLIPTIC CASE: DO WE NEED DERIVATIVES?

[ dz S dlogf(z # ke
J2 — 2 252 + _IZS + C, gf dZ4<G(Z4, 25, mz, MZ, S))
\/ P(z : dzy
— trade by derivative of first one, with full e-dependence!

dzs Jd log f(z4, 25, 5, M)

k
Jy, x 0 dZ4(G(Z4, s, m?, M?, S)) ) [part of Ansatz procedure by S. Weinzierl et al!]

At exactly D = 2 no difference with previous choice (derivative completes cohomology without generating single poles)

BUT derivative guarantees that when we turn on € we can reach a “generalized” canonical basis by an ¢
-independent rotation modulo overall rescaling due to weight drop

IMPORTANT: up to this point, this is the only difference in our proposal versus [Chaubey, Sotnikov arXiv 2504.20897]




ELLIPTIC CASE: A CANONICAL BASIS IN D=2-2¢

Second integral still has double poles (think about polylog integral before removing LS)

dz " d log f(zy, z<, 5, m> e
J 5 g (245 25 )dZ4(G(Z4, Z5,m2,M2, S))k
\V Pu(z5) - dz,

Jy x 0

I[f we want to remove them, we must perform a “rotation” — defined locally close to a singular point



ELLIPTIC CASE: A CANONICAL BASIS IN D=2-2¢

Second integral still has double poles (think about polylog integral before removing LS)

dZ r'CZIO (Z 9Z 9S9m2) ke
J > 8/ % dzy(G(z4, 25, m*, M, 5))

Jy x 0
\V Pu(z5) - dzy

[f we want to remove them, we must perform a “rotation” — defined locally close to a singular point

In this basis, third integral decouples and differential equations are:

~ ~

Cut (/1) Cut(Iy)
0, | Cut(ly) | = [A(z) + € B(2) + €2 C(z)] | Cut(ly)
Cut(I3) Cut(I3)

Cut () R Cut(1)
— 0. (Cut(fz)) = [A(g) —I—O(e)} (



ELLIPTIC CASE: A CANONICAL BASIS IN D=2-2¢

Focus on 2 X 2 system at D = 2

Cut(l;)\ [~ Cut(I;) o~ (0 1
0. (Cut(fg)) = {A(g) —I—O(e)} (Cut(fg)) , with A(z) = (agl(z) agg(z))

) Period matrix = homogeneous solution

mixes transcen dental weight (not UT)

not pure



ELLIPTIC CASE: A CANONICAL BASIS IN D=2-2¢

Focus on 2 X 2 system at D = 2

Cut(l;)\ [~ Cut(I;) o~ (0 1
0. (Cut(fg)) = {A(g) —I—O(e)} (Cut(fg)) , with A(z) = (&21(2) agg(z))

Period matrix = homogeneous solution
0 1
W = “o o Wi , with 0, W = %% mixes transcendental weight (not UT)
0,y 0,1 a21(2) a(z)
not pure
o
— (Z) 14 Z o T(Z) _ w1(2) _ log(z) 4 O(Z) Transcendental weight 1
’ 1 g W (Z) close to MUM point
]:
o
_ ]
wi(2) = wo(2) log(2) + Z djz A = detW Algebraic function: weight O



ELLIPTIC CASE: A GOOD BASIS IN D=2

A possible solution: split period matrix into semi-simple and unipotent part

[Brodel, Duhr, Dulat, Penante, Tancredi, arXiv:1809.10698]

wo w1 B wo 0 1 7
0. 0.1 ]  \ 0.0 A 01 (splitting becomes unique requiring special form of W*)
wo
—
% s W

x S

W% is algebraic: generalizes LS, must be rotated away W" is transcendental, weight 1 as a logarithm



ELLIPTIC CASE: A GOOD BASIS IN D=2

A possible solution: split period matrix into semi-simple and unipotent part

[Brodel, Duhr, Dulat, Penante, Tancredi, arXiv:1809.10698]

wo w1 wo 0 1 7
0. 0.1 ] \ 0,9 = 01 (splitting becomes unique requiring special form of W*)
w0
—— N —— e e
W WSS Wu
W% is algebraic: generalizes LS, must be rotated away W" is transcendental, weight 1 as a logarithm
A : .
0 0.7 0 = _ A2 Second integral has “weight
O, Wh = Pl wu=| @ | W ar M2, gloq (22505~ 4m?) ) 1
0 0 0 0 s+ +/s(s — 4m?) drop”, rescale by —
€
Unipotent part fulfils generalized dlog-equation Proved that splitting produces same result as Ansatz procedure by S. Weinzierl et al

dl()g not properly multlphed by € [Duhr, Maggio, Nega, Sauer, Tancredi, Wagner arXiv:2503.20655]



A CANONICAL BASIS?!

After splitting and some minor clean up, integrals fulfil “generalized” canonical differential equations:

Analytic structure manifest in terms of a set of independent differential forms with at most single poles

—

dJ = e ZGi wi | J «— fi(x)dzr = w;

NOTE:

Differential equations degenerate to standard dlog canonical equations close to singular points of elliptic curve
— for this to happen without non-trivial e-rotation, it is crucial to have chosen derivative as second-kind form!

Some differential forms which can be associated to form of second kind drop from Amplitudes at O(e")



AN ELLIPTIC AMPLITUDE: TOP CORRECTIONS TO pp — yy

qq — vy and gg — yy mediated by a top quark perfect laboratory:

- realistic amplitude of elliptic type (studied only numerically before us)
[Becchetti, Bonciani, Cieri Coro, Ripani ’23]
[Maltoni, Mandal, Zhao ’18]
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qq — yy and gg — yy mediated by a top quark perfect laboratory:

- realistic amplitude of elliptic type (studied only numerically before us)

[Becchetti, Bonciani, Cieri Coro, Ripani ’23]
[Maltoni, Mandal, Zhao ’18]

- not too complex algebraically but still rich in physical and mathematical features in NPL graphs
[Becchetti, Coro, Nega, LT, Wagner ’25]
See also [Ahmed, Chakraborty, Chaubey, Kaur, Maggio ’24, ’25]
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THE ELLIPTIC DOUBLE BOX: SELECTING A GOOD BASIS

Construction of basis of master integrals mapped to “right” differential forms on the elliptic curve

Total of 4 master integrals on the maximal cut ‘Gorges, Nega, LT, Wagner 23]
Becchetti, Coro, Nega, LT, Wagner ’25]

Duhr, Maggio, Nega, Sauer LT, Wagner ’25]
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Construction of basis of master integrals mapped to “right” differential forms on the elliptic curve

Total of 4 master integrals on the maximal cut ‘Gorges, Nega, LT, Wagner 23]
Becchetti, Coro, Nega, LT, Wagner ’25]

'Duhr, Maggio, Nega, Sauer LT, Wagner ’25]

MaxCut [(m2 — t)Inpa(1,1,1,1,0,1,1,1,0) — Znpa(1,1,1,1,0,1,1, 1, _1)] Form of first kind

2
X ! / dz5dzg (m” — ¢~ 2) — ! / Az / d log (1 + /e, Zg)) + its derivatives for second kind
S Ps 3(25, 29) s ) \/Pi(z9) 1 — f(25,29)




THE ELLIPTIC DOUBLE BOX: SELECTING A GOOD BASIS

Construction of basis of master integrals mapped to “right” differential forms on the elliptic curve

Total of 4 master integrals on the maximal cut Gorges, Nega, LT, Wagner "23]
Becchetti, Coro, Nega, LT, Wagner ’25]

'Duhr, Maggio, Nega, Sauer LT, Wagner ’25]

MaxCut [(mz — t)ZNPA(l, 1, ]., 1, O, ]., 1, 1, O) — INPA(L 1, 1, 1, O, 1, 1, 1, —1)] Form of first kind
2
X ! / dz5dzg (m / / dlog (1 G Z9)> + its derivatives for second kind
S Ps 3(25,2’9 \/P4 (29) 1 — f(zs5, 29)
1 d 1
Nbﬂhﬂﬁ@MLLLlﬁJJJJMm—/‘ b /dmg('hﬂ%”@>
sJ (m?—1t—29)\/Ps(29) 1 — f(25,29)

single poles:

two forms of 3rd kind

NbeutKnﬂ——ﬂZNHujghlgLOghlJﬂ—l)—Z&pAﬂﬁngﬂOJﬁLlﬁ—Qﬂ

1 2t — 1 1
X —/dZ5d29 (m Z9)Z9 = dzg /dlog ( f(z5’Z9)> ,
S Ps 3(25, 29) \/P4 (29) 1 — f(zs5, 29)




NUMERICAL RESULTS: TOP CORRECTIONS TO pp — yy

From analytic representation, we can obtain few fast converging series expansions for numerical evaluation:

With only 2 series, reliable numerical evaluation across large portion of phase space due to cancellation
of unphysical singularities in full amplitude

12][34] | o o
A‘|‘+++ — [ i . -1t 7 -r
- 12)[34] L L
ATt — < - : : [ 3 :
qg [12] <34> f ‘|“|‘($7 y) ’ n ] _4:_ ; ,
L (13)[24) I I
ATt — < - : | : : |
99 [13]<24>f +—+(2,9). N T R
(a) £ (b) f20, (c) F52,

[Becchetti, Coro, Nega, LT, Wagner ’25]



NUMERICAL RESULTS: TOP CORRECTIONS TO pp — yy

Preliminary: extend the convergence using “Bernoulli-like” variables in 2 dimensions

roughly

| (1+S—4m2>
x « log
4m?

push s = 0 singularity to infinity

[Becchetti, Coro, Nega, LT, Wagner to appear soon]



NUMERICAL RESULTS: TOP CORRECTIONS TO pp — yy

Preliminary: extend the convergence using “Bernoulli-like” variables in 2 dimensions

roughly

| (1+S—4m2>
x « log
4m?

push s = 0 singularity to infinity

[Becchetti, Coro, Nega, LT, Wagner to appear soon]

Preliminary!!!!!!
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push convergence to very high values of s

small mass expansion nicely complements the rest



CONCLUSIONS

- Elliptic amplitudes are fundamental building blocks in QFT, for precision collider physics and beyond

- Controlling them “analytically” requires understanding relations among integrals, analytic continuation,

and being able to evaluate them numerically (i.e. doing series expansions, see Matthias’ talk)

- Choosing good integrals to make analytic structure manifest has been fundamental to solve many

polylogarithmic problems
- I described today a path towards the generalization of those ideas to elliptic amplitudes and beyond

- Thanks to these developments, first “fully analytic” results obtained for elliptic amplitudes and more!



CUTTING-EDGE PROBLEMS ADDRESSED

Description

References

Geometry

Equal-mass banana graphs

41|, this paper

CY 2-, 3- and 4-folds

Single scale triangle graphs

41]

Elliptic curve

3-loop corrections to the electron
and photon self-energies in QED

58, 59]

Sunrise elliptic curve,
banana K3 surface

3- and 4-loop ice cone integrals

|41], this paper

Two copies of sunrise elliptic
curve and banana K3 surface

Deformed CY operators this paper CY 2-, 3- and 4-folds
Equal-mass banana graphs with unpublished CY 1-, 2-, 3-folds

one massless propagator

Gravitational scattering 160, 61, 162| Sym. square of Legendre curve,
at 5PM-1SF CY 3-fold AESZ 3
Gravitational scattering this paper Apéry family of K3 surfaces,

at o PM-25F

CY 3-fold

Generic three-mass sunset 41| Elliptic curve

2-loop 3-point integrals for gg — H | [170| Two-mass sunrise elliptic curve
2-parameter triangle graph 41| Elliptic curve

2-loop 4-point integrals for Bhabha | unpublished Elliptic curve

and Mgller scattering

2-loop 4-point integrals for diphoton | [56] Elliptic curve

2-loop 4-point acnode integral unpublished Elliptic curve

(diagonal box)

3-parameter double box |41] Elliptic curve

2-loop 5-point integrals for tt+jet 157 Elliptic curve

3-loop two-mass banana graph unpublished K3 surface

4-loop two-mass banana graph unpublished CY 3-fold

Maximal cut of a non-planar 62] Hyperelliptic curve of genus 2

double box




THANK YOU!
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1) For each geometry, identify the master integrals corresponding to the form of the first kind
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Jc Y
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This is a differential form without poles (holomorphic) — In elliptic case —
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RECAP: CONSTRUCTION OF CANONICAL BASES BEYOND POLYLOGS

|Gorges, Nega, LT, Wagner ’23] [Duhr, Maggio, Nega, Sauer, LT, Wagner ’25]

1) For each geometry, identify the master integrals corresponding to the form of the first kind

. . . . . . - dx
This is a differential form without poles (holomorphic) — In elliptic case — | — y =14/(x —a)(x — ay)(x — az)(x — ay)
Jo Y

2) All independent forms of the second kind to span the full cohomology as derivatives of the first

g) "
d
These are differential forms with higher poles — In elliptic case, just one with a double pole — | dx S 0 -
Jc Y Jc Y
3) Identity all master integrals corresponding to the forms of the third kind
i 1
Special: like “dlogs”, punctures, differential forms with single poles — In elliptic case — dx i, dx ( )
JC y JC X—C y

4) Locally close to a singular point: rotate away the semi-simple part + clean up for a full e-factorization



A TWO-POINT CORRELATOR: THE THREE-LOOP QED SELF-ENERGY

| Duhr, Gasparotto, Nega, Tancredi, Weinzierl 24]

— P Z(pim?) +mZ(p?, m?)

2y & X¢ expressed in terms of O(50) Masters Integrals J

2 “top graphs” / \
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| Duhr, Gasparotto, Nega, Tancredi, Weinzierl 24]

— P Z(pim?) +mZ(p?, m?)

2y & X expressed in terms of O(50) Masters Integrals J

2 “top graphs”

same elliptic curve as 2loop sunrise graph

mix of elliptic and polylogarithmic sectors /\



A TWO-POINT CORRELATOR: THE THREE-LOOP QED SELF-ENERGY

| Duhr, Gasparotto, Nega, Tancredi, Weinzierl 24]

— P Z(pim?) +mZ(p?, m?)

2y & X¢ expressed in terms of O(50) Masters Integrals J

Following prescription described before: dJ = € ( E G@ wz-) J — f () (Qf)dﬂ? — Wy
1



A TWO-POINT CORRELATOR: THE THREE-LOOP QED SELF-ENERGY

| Duhr, Gasparotto, Nega, Tancredi, Weinzierl 24]

— P Z(pim?) +mZ(p?, m?)

2y & X¢ expressed in terms of O(50) Masters Integrals J

7 (independent) elliptic differential forms: full analytic control over iterated integrals over these forms

| 1 oy @o(@)  (z—3wo(x) (2 +3) wo(z)’
" {$(:171 @ = 9mo@? =1 =m0 —a) 2 - D —9)

} for: =10,...,16,

@, (x) is the first elliptic period



A TWO-POINT CORRELATOR: THE THREE-LOOP QED SELF-ENERGY

| Duhr, Gasparotto, Nega, Tancredi, Weinzierl 24]

— P Z(pim?) +mZ(p?, m?)

2y & X¢ expressed in terms of O(50) Masters Integrals J

7 (independent) elliptic differential forms: full analytic control over iterated integrals over these forms

3 of the kernels drop in the physical amplitude:
they are related to forms of the second kind with

“double poles” — a hint for bootstrap program?




