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Integrand analysis and canonical bases in elliptic case (and beyond)

BASED ON

[Görges, Nega, Tancredi, Wagner arXiv:2305.14090]

Applications by other groups

Generalization to Calabi-Yau geometries [Duhr, Maggio, Nega, Sauer, Tancredi, Wagner arXiv:2503.20655]

[Becchetti, Dlapa, Zoia arXiv:2503.03603]

Generalizations to higher genus [Duhr, Porkert, Stawinski arXiv:2412.02300]

NOTE ALSO:

Applications to CY in Gravitational Waves [Driesse, Jakobsen, Klemm, Mogull, Nega, Plefka, Sauer, Usovitsch ’24]

+ a lot of parallel work by Adams, Frellesvig, Morales, Pögel, Wang, Weinzierl, Wilhelm,…

[Duhr, Gasparotto, Nega, Tancredi, Weinzierl arXiv:2408.05154]Applications to elliptic amplitudes and correlators
[Forner, Nega, Tancredi arXiv:2411.19042]
[Marzucca, McLeod, Nega arXiv:2501.14435]
[Becchetti, Coro, Nega, Tancredi, Wagner arXiv:2502.00118]

MAINLY:

[See previous talk by S. Weinzierl]

Concept of pure UT integrals in elliptic case [Brödel, Duhr, Dulat, Penante, Tancredi, arXiv:1809.10698]

[more applications coming soon!]



SCATTERING AMPLITUDES: POLES AND CUTS

𝒜 Amplitudes have poles where single-particle states go on-shell

They develop branch-cuts (logarithmic and algebraic!) when multi-particle 
states go on-shell
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produce a “pole” when the corresponding particle goes on-shell. For example

lim
q2→0
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where q = p1 + p2 . (1.74)

In fact, the relation between poles and intermediate one-particle state going on shell in
arbitrary N-point correlation function (or Green functions) is a very general result. As the
optical theorem discussed above, it is a rare non-perturbative result, and in fact it does
not require the one-particle intermediate states to be “elementary”: they could be bound
states! For example, in specific situations, a positronium bound state can be exchanged as
a single-particle intermediate state, leaving a trace through a pole at the positronium mass
in the corresponding correlator.

The proof can be found on Weinberg, Volume 1 (Section 10.2) and on Schwartz (Section
24.3). The proof is tedious and we won’t reproduce it here. Instead, we will summarize
this important result and then see it “in action” in the special case of two-point correlators.
This is something you should already be familiar with from your previous QFT studies and
that goes under the name of the “spectral representation” for the two-point function.

Let us start with the momentum-space Green function for n fields �(x1),...,�(xn):

Gn(p1, ..., pn) = � d4x1e
ip1x1 ...� d4xne

ipnxn�⌦�T{�(x1)...�(xn)} �⌦� (1.75)

where �⌦� is the vacuum of the theory and T is the usual time-ordering operator. We divide
now the momenta in two di↵erent sets
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,
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pn
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, (1.76)

the first set incoming and the second outgoing, and define the intermediate momentum

p = p1 + ... + pr = pr+1 + ... + pn .

We assume now that there exists a one-particle state in the Hilbert space (not necessarily
an elementary one!) � �, with mass m , which can be produced from the vacuum �⌦� by
action of the field operators, i.e.

� ��(x1)...�(xr)�⌦� ≠ 0 . (1.77)

In other words, � � has non-zero matrix element with the vacuum through the operators
associated to the first r momenta. Now, if this is the case, one can prove that the Green
function has a pole at p2 =m2

 and, when p2 →m2
 , it factorises as follows

Gn(p1, ..., pn)→ (2⇡)4�(4)(p1 + ... + pr − pr+1 − ... − pn)

× M1,r
 

i

p2 −m2
 + i✏

Mr+1,n
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sum over all intermediate states (hel, color, etc)

+non divergent terms (1.78)
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which indeed agrees with the imaginary part computed in eq. (1.44). We notice that we
never needed the explicit value of ��pcm�, since it canceled between the expression for the
imaginary part in terms of the cross-section, and the cross-section computed in eq. (1.49).

In conclusion, we have proved the optical theorem in general and verified its validity with
an explicit calculation. In doing so, we have seen that the one-loop amplitude in eq. (1.31)
develops an imaginary part when s > 4m2. As we will demonstrate in the next section,
this is the threshold energy necessary for the virtual particles exchanged in the loop to get
on-shell (it has nothing to do with the energy required to produce the final state particles!).
Graphically, this is often expressed as a “cut” through the virtual particles that have to be
produced on-shell:
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(1.51)

1.2.2 Cutkosky’s cutting rules

We have seen an explicit calculation that suggests that “discontinuities” (or imaginary
parts) of scattering amplitudes seem to be related to kinematical configurations where
virtual particles can be produced on-shell. In this section, we will make this statement
more precise and introduce a set of rules to compute discontinuities without having to first
compute the full Feynman diagram, as we did in the previous lecture.

Let us consider some generic scattering amplitude in some scalar theory, involving N
external particles, say

p1 + p2 → p3 + ... + pN .

The integrand for such an amplitude, is always a combination of Feynman propagators

⇧F (k) =
i

k2 −m2 + i✏ . (1.52)

NOTE: We are considering a scalar theory for simplicity, but all our considerations extend more
or less straightforwardly to any spin. On way to convince yourself that this is true, is realizing
that an amplitude in a theory with particles with spin, can always be rewritten, after some trivial
algebraic manipulations, as a combination of purely scalar Feynman integrals, which are also the
only source of possible discontinuities or branch cuts. You have already seen many examples of
this, for example when you computed the electron self-energy in QED or the g-2 of the electron.
In the case of the self-energy, you probably wrote it as something like

⌃̂(p,m) = ⌃V (p
2
,m

2
) �p +⌃S(p

2
,m

2
)mI , (1.53)

where the entire spinor-structure is contained in the matrices �p and I, while ⌃V and ⌃S are scalar
functions, containing Feynman integrals with propagators exactly in the form of (1.52).
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Rational functions: 

Information from poles

special functions (logarithms and more): 

irreducible “trascendental” information from “Feynman Integrals”

In the well understood case of polylogarithmic amplitudes, there is a clear “separation”

POLYLOGARITHMIC SCATTERING AMPLITUDES

𝒜

Becomes clear once we choose the right “integrals” 

How do we generalize this to “special functions” on more complicated geometries?



DIFFERENTIAL FORMS ON ELLIPTIC GEOMETRIES

entire space of functions spanned by single poles

log(1 − x/a) = ∫
x

0

dt
t − a

x = a

Multiple polylogarithms have log-singularities everywhere

Global statement
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entire space of functions spanned by single poles

log(1 − x/a) = ∫
x

0

dt
t − a

genus 1, elliptic curve;  y = P3(x)

First kind  

No poles   ω ∼ ∫
dx
y

Third kind  

single poles   g ∼ ∫
dx

(x − ci)y

Second kind  

double poles   η ∼ ∫
dx x

y

x = ci

x = a

DIFFERENTIAL FORMS ON ELLIPTIC GEOMETRIES

Multiple polylogarithms have log-singularities everywhere

Global statement



FROM INTEGRANDS TO INTEGRALS TO SPECIAL FUNCTIONS
Let us consider a (in)famous Feynman graph: the two-loop sunrise

highlights the importance of choosing a good starting basis of master integrals to derive
a system of differential equations in canonical form. We stress that some ideas from this
section have already been applied in the literature in one form or another, especially in
ref. [41] and subsequent works [56–59, 62], but we feel that it is important to summarise
them here in a coherent manner to motivate how they extend to more general geometries.

We consider the sunrise family of Feynman integrals (see fig. 1), defined by

I⌫1,...,⌫5(z; d) =

Z 0

@
2Y

j=1

ddkj
i⇡d/2

1

A (k1 · p)�⌫4(k2 · p)�⌫5

(k21 �m2)⌫1(k22 �M2)⌫2((k1 � k2 � p)2 �m2)⌫3
, (3.1)

where the set of kinematical variables is z = {
m2

s ,
M2

s } and we have singled out s as the only
dimensionful scale. We will study this example in the two cases M

2
6= 0 and M

2 = 0 (and

k2

k1

k1 � k2 � p

p p

Figure 1. The two-loop sunrise graph with two different masses.

we always assume m
2
6= 0). It is well known (cf. refs. [35, 77–90]) that whenever all three

propagator masses are non-zero, this integral involves functions related to an elliptic curve,
while the integral is of polylogarithmic type for M

2 = 0. As we will argue, a good choice
of master integrals is intimately connected to the underlying geometry. This idea is also at
the heart of many leading-singularity-based methods for finding a canonical basis of master
integrals that evaluate to polylogarithms (cf., e.g., refs. [25, 26]). Extensions of the notion
of leading singularities to elliptic geometries have been presented in refs. [74, 75]. When
applying this approach to more complicated geometries, one encounters new features, which
require an extension of the leading-singularity analysis. One of the goals of this section is
to identify from examples what these extensions are.

As a starting point, we use the Baikov representation [71, 91–93] to compute maximal
cuts and leading singularities. We work close to d0 = 2 dimensions, which is the most
natural (even) number of dimensions to analyse this integral. The maximal cuts allow us
to obtain information on the homogeneous part of the differential equations satisfied by our
integrals [69–72]. In the case of the sunrise family, this is the only non-trivial part, because
all subtopologies are products of one-loop tadpole integrals. Let us start by considering
the corner-integral, I1 = I1,1,1,0,0(z; d). Either from a loop-by-loop approach [69, 71] or
by parametrising both loops at once and taking a further residue, we see that the leading
singularities of I1 in d = 2 dimensions are given by a one-fold integral,

LS (I1) /

I
dx5

p
M2 + s+ 2x5

p
M2s� x

2
5

p
4m2 �M2 � s� 2x5

=

I
dx5p
P4(x5)

, (3.2)

where the / sign indicates that we are working modulo overall numerical normalisations.
We use the integral sign without specifying the contour since each independent integration

– 8 –

highlights the importance of choosing a good starting basis of master integrals to derive
a system of differential equations in canonical form. We stress that some ideas from this
section have already been applied in the literature in one form or another, especially in
ref. [41] and subsequent works [56–59, 62], but we feel that it is important to summarise
them here in a coherent manner to motivate how they extend to more general geometries.

We consider the sunrise family of Feynman integrals (see fig. 1), defined by

I⌫1,...,⌫5(z; d) =

Z 0

@
2Y

j=1

ddkj
i⇡d/2

1

A (k1 · p)�⌫4(k2 · p)�⌫5

(k21 �m2)⌫1(k22 �M2)⌫2((k1 � k2 � p)2 �m2)⌫3
, (3.1)

where the set of kinematical variables is z = {
m2

s ,
M2

s } and we have singled out s as the only
dimensionful scale. We will study this example in the two cases M

2
6= 0 and M

2 = 0 (and

k2

k1

k1 � k2 � p

p p

Figure 1. The two-loop sunrise graph with two different masses.

we always assume m
2
6= 0). It is well known (cf. refs. [35, 77–90]) that whenever all three

propagator masses are non-zero, this integral involves functions related to an elliptic curve,
while the integral is of polylogarithmic type for M

2 = 0. As we will argue, a good choice
of master integrals is intimately connected to the underlying geometry. This idea is also at
the heart of many leading-singularity-based methods for finding a canonical basis of master
integrals that evaluate to polylogarithms (cf., e.g., refs. [25, 26]). Extensions of the notion
of leading singularities to elliptic geometries have been presented in refs. [74, 75]. When
applying this approach to more complicated geometries, one encounters new features, which
require an extension of the leading-singularity analysis. One of the goals of this section is
to identify from examples what these extensions are.

As a starting point, we use the Baikov representation [71, 91–93] to compute maximal
cuts and leading singularities. We work close to d0 = 2 dimensions, which is the most
natural (even) number of dimensions to analyse this integral. The maximal cuts allow us
to obtain information on the homogeneous part of the differential equations satisfied by our
integrals [69–72]. In the case of the sunrise family, this is the only non-trivial part, because
all subtopologies are products of one-loop tadpole integrals. Let us start by considering
the corner-integral, I1 = I1,1,1,0,0(z; d). Either from a loop-by-loop approach [69, 71] or
by parametrising both loops at once and taking a further residue, we see that the leading
singularities of I1 in d = 2 dimensions are given by a one-fold integral,

LS (I1) /

I
dx5

p
M2 + s+ 2x5

p
M2s� x

2
5

p
4m2 �M2 � s� 2x5

=

I
dx5p
P4(x5)

, (3.2)

where the / sign indicates that we are working modulo overall numerical normalisations.
We use the integral sign without specifying the contour since each independent integration

– 8 –

Consider the case with 2 different masses  

When  polylogs 

While  is elliptic

m, M

M → 0

M ≠ 0
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Following the idea of local canonical integrals [Arkani-Hamed et al ’10] [Henn ’13]

Analyse its “integrand” to choose “good” integrals to represent scattering amplitudes (role of diff forms seen before!)

Let us consider a (in)famous Feynman graph: the two-loop sunrise

Consider the case with 2 different masses  

When  polylogs 

While  is elliptic

m, M

M → 0

M ≠ 0



THE INTEGRAND IN D=2
Use “some” parametric representation for the integrand of sunrise, with numerator in last scalar prod  

I choose Baikov, but choose your favourite

zν5
5

I1,1,1,0,ν5
= (s)(2−D)/2 ∫γ

dz1 . . . dz5

z1z2z3

z−ν5
5

[B(zj, m2, M2, s)](4−D)/2



THE INTEGRAND IN D=2

I1,1,1,0,ν5
= (s)(2−D)/2 ∫γ

dz1 . . . dz5

z1z2z3

z−ν5
5

[B(zj, m2, M2, s)](4−D)/2

The integrand has a bunch of singularities: 

e.g. @  and many others when zj = 0, j = 1,2,3 B = 0

Fix integer number of dimensions: we choose  (more later about )D = 2 D = 2 − 2ϵ
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THE INTEGRAND IN D=2
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For reason of space, let us focus on a subset of them, the ones that correspond to  

This is the so-called maximal cut of the graph: subset of its analytic structure 

z1 = z2 = z3 = 0

Use “some” parametric representation for the integrand of sunrise, with numerator in last scalar prod  

I choose Baikov, but choose your favourite

zν5
5



THE INTEGRAND IN D=2

with  

and 

A±(z5) =
1
2 (s + z5 ± Δ

s + M2 + 2z5 )
Δ = (2z5 + s + M2)(M2s − z2

5)(4m2 − M2 − s − 2z5)

I1,1,1,0,ν5
z1=z2=z3=0

= ∫ dz5 z−ν5
5 ∫

dz4

(z4 − A+(z5))(z4 − A−(z5))

On the max cut the integral becomes

There are 2 single poles in , with same residue (up to a sign)  z4
1

Δ
 Global Residue Theorem→
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POLYLOG CASE: THE INTEGRAND IN D=2

First case: M2 = 0

I1,1,1,0,ν5
z1=z2=z3=0

⟶ ∫
dz5 z−ν5

5
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dz4

dz4

Focus on integrand in  and z5 ν5 = 0

We are not done: more structure from residue in . Separate two casesz5
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Figure 2. The contours for the two-mass sunrise integral.

One easily finds that, modulo overall prefactors and with s ! s+ i0,
I

C1

dx5
x5

p
s+ 2x5

p
4m2 � s� 2x5

/

I

C2

dx5
x5

p
s+ 2x5

p
4m2 � s� 2x5

/
2⇡p

s(s� 4m2)
.

(3.8)
We see that we can completely localise the integrand of I1 by taking residues. Alternatively,
we could also rationalise the square root. The result is a rational integrand with two poles,
whose residues are equal and opposite due to the Global Residue Theorem.

Let us repeat the same analysis for I2. To obtain its integrand, we just need to multiply
the integrand of I1 by (k · p) = x5. This gives

LS (I2)
���
M2=0

/

I
dx5

p
s+ 2x5

p
4m2 � s� 2x5

. (3.9)

The integrand now has a single pole at x5 = 1 in addition to the branch cut. Again, the
residue at the simple pole is related to the integral over C2, and we find

I

C2

dx5
p
s+ 2x5

p
4m2 � s� 2x5

/ i⇡ . (3.10)

Let us interpret these results. In d = 2 dimensions, the integrands of the maximal
cuts of I1 and I2 only have simple poles and are associated with two different algebraic
leading singularities. In other words, our integrand analysis on the maximal cut provides
a justification for why we have chosen I1 and I2 as a basis of master integrals, rather than
a non-trivial linear combination of them. Being algebraic, the leading singularities satisfy
two first-order linear differential equations with rational coefficients. This means that their
homogeneous differential equations are expected to decouple in the limit d = 2. Finally,
after appropriate normalisation by their leading singularities, both integrals will have a
constant leading singularity on the maximal cut. By direct calculation, one can in fact
easily see that

J1 =
p

s(s� 4m2)I1 , J2 = I2 , (3.11)

satisfy the following differential equation in s,

@s

 
Cut(J1)
Cut(J2)

!
= (d� 2)

0

@
2(s�m2)
s(s�4m2)

3p
s(s�4m2)

�
1

2
p

s(s�4m2)
�

1
2s

1

A
 

Cut(J1)
Cut(J2)

!
. (3.12)

Clearly, the homogeneous differential equation is in ✏-factorised form for d = 2� 2✏. More-
over, the entries of the differential equation matrix can easily be identified as dlog-forms.
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Figure 2. The contours for the two-mass sunrise integral.
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a non-trivial linear combination of them. Being algebraic, the leading singularities satisfy
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homogeneous differential equations are expected to decouple in the limit d = 2. Finally,
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We are not done: more structure from residue in . Separate two casesz5

 removes pole at zero and produces a new simple pole at infinityν5 = − 1

C∞
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z1=z2=z3=0

⟶ ∫
dz5 z−ν5

5

z5 (2z5 + s)(4m2 − s − 2z5)
∫

d log[ f(z4, z5, m2, s)]
dz4

dz4

POLYLOG CASE: THE INTEGRAND IN D=2



First case: M2 = 0

What happens for other values of ν5?

Figure 2. The contours for the two-mass sunrise integral.
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We see that we can completely localise the integrand of I1 by taking residues. Alternatively,
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whose residues are equal and opposite due to the Global Residue Theorem.
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Let us interpret these results. In d = 2 dimensions, the integrands of the maximal
cuts of I1 and I2 only have simple poles and are associated with two different algebraic
leading singularities. In other words, our integrand analysis on the maximal cut provides
a justification for why we have chosen I1 and I2 as a basis of master integrals, rather than
a non-trivial linear combination of them. Being algebraic, the leading singularities satisfy
two first-order linear differential equations with rational coefficients. This means that their
homogeneous differential equations are expected to decouple in the limit d = 2. Finally,
after appropriate normalisation by their leading singularities, both integrals will have a
constant leading singularity on the maximal cut. By direct calculation, one can in fact
easily see that

J1 =
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s(s� 4m2)I1 , J2 = I2 , (3.11)
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We are not done: more structure from residue in . Separate two casesz5

 removes pole at zero and produces a new simple pole at infinityν5 = − 1

∫C∞

dz5

(2z5 + s)(4m2 − s − 2z5)
∝ ∫C2

dz5

(2z5 + s)(4m2 − s − 2z5)
∝ 1

  produces 1 independent logarithmic 
“master integral”, with residue  

take  as normalized integral

→ I1,1,1,0,−1
= 1

I1,1,1,0,−1

C∞

I1,1,1,0,ν5
z1=z2=z3=0

⟶ ∫
dz5 z−ν5

5

z5 (2z5 + s)(4m2 − s − 2z5)
∫

d log[ f(z4, z5, m2, s)]
dz4

dz4

POLYLOG CASE: THE INTEGRAND IN D=2



First case: M2 = 0

What happens for other values of ν5?

We are not done: more structure from residue in . Separate two casesz5

As soon as  we produce higher poles: not independent!ν5 < − 1

∫C∞

dz5 zn
5

(2z5 + s)(4m2 − s − 2z5)
, n ≥ 1 → no residue, algebraic, nothing new

 just looking at the integrand we know that there are 2 master integrals, both “logarithmic”…→

I1,1,1,0,ν5
z1=z2=z3=0

⟶ ∫
dz5 z−ν5

5

z5 (2z5 + s)(4m2 − s − 2z5)
∫

d log[ f(z4, z5, m2, s)]
dz4

dz4

POLYLOG CASE: THE INTEGRAND IN D=2



POLYLOG CASE: A GOOD BASIS IN D=2
First case: M2 = 0

Moreover, the 2 master integrals are in dlog form in D=2 (analysis can be easily extended beyond max cut)

J1 = s(s − 4m2)I1,1,1,0,0 ∝ ∫
d log g1(z5, s, m2)

dz5
dz5 ∫

d log f(z4, z5, s, m2)
dz4

dz4

J2 = I1,1,1,0,−1 ∝ ∫
d log g2(z5, s, m2)

dz5
dz5 ∫

d log f(z4, z5, s, m2)
dz4

dz4



First case: M2 = 0

Moreover, the 2 master integrals are in dlog form in D=2 (analysis can be easily extended beyond max cut)

∑
i

Ri(sij) ∫γ
d log fn ∧ . . . ∧ d log f1𝒜

Removed algebraic “residue” 
gives “pure” integrals that 
contribute only to “irreducible” 
transcendental part

J1 = s(s − 4m2)I1,1,1,0,0 ∝ ∫
d log g1(z5, s, m2)

dz5
dz5 ∫

d log f(z4, z5, s, m2)
dz4

dz4

J2 = I1,1,1,0,−1 ∝ ∫
d log g2(z5, s, m2)

dz5
dz5 ∫

d log f(z4, z5, s, m2)
dz4

dz4

POLYLOG CASE: A GOOD BASIS IN D=2



POLYLOG CASE: A GOOD BASIS IN D=2-2ϵ
First case: M2 = 0

What if we deform  ? It’s easy to restore full  dependence noticing that we would only getD = 2 − 2ϵ ϵ

J1 = s(s − 4m2)I1,1,1,0,0 ∝ ∫
d log g1(z5, s, m2)

dz5
dz5 ∫

d log f(z4, z5, s, m2)
dz4

dz4(G(z4, z5, m2, M2, s))kϵ

J2 = I1,1,1,0,−1 ∝ ∫
d log g2(z5, s, m2)

dz5
dz5 ∫

d log f(z4, z5, s, m2)
dz4

dz4(G(z4, z5, m2, M2, s))kϵ



First case: M2 = 0

What if we deform  ? It’s easy to restore full  dependence noticing that we would only getD = 2 − 2ϵ ϵ

J1 = s(s − 4m2)I1,1,1,0,0 ∝ ∫
d log g1(z5, s, m2)

dz5
dz5 ∫

d log f(z4, z5, s, m2)
dz4

dz4(G(z4, z5, m2, M2, s))kϵ

J2 = I1,1,1,0,−1 ∝ ∫
d log g2(z5, s, m2)

dz5
dz5 ∫

d log f(z4, z5, s, m2)
dz4

dz4(G(z4, z5, m2, M2, s))kϵ

But new object just adds more “logs” once it is expanded close to ϵ = 0

(G(z4, z5, m2, M2, s))kϵ ∼ 1 + k ϵ log G + 𝒪(ϵ2)

POLYLOG CASE: A GOOD BASIS IN D=2-2ϵ



POLYLOG CASE: DIFFERENTIAL EQUATIONS IN D=2-2ϵ
These integrals fulfil canonical diff-equations

d ⃗I = ϵ [ ϵ-indep ] ⃗I , → [ ϵ-indep ] = ∑
i

Bi d log fi

[Kotikov ’10] [Henn ’13]

Solution as path-ordered exponential: naturally polylogs if    are rational functions!fi

⃗I = ℙ exp [ϵ∑
i

Bi ∫γ
d log fi] ⃗I0

Integrals have (at most) logarithmic singularities close to each regular singular point



ELLIPTIC CASE: THE INTEGRAND IN D=2
Second case: M2 ≠ 0

I1,1,1,0,ν5
z1=z2=z3=0

⟶ ∫γ

dz5 z−ν5
5

(2z5 + s + M2)(M2s − z2
5)(4m2 − M2 − s − 2z5)

∫
d log[ f(z4, z5, m2, s)]

dz4
dz4

Im z3

I->
Im z3 8

ToB

Im z3

-YetB

Polynomial of degree 4 in square-root  for , there is NO POLE but two independent contours among 4 roots:→ ν5 = 0



Second case: M2 ≠ 0

I1,1,1,0,ν5
z1=z2=z3=0

⟶ ∫γ

dz5 z−ν5
5

(2z5 + s + M2)(M2s − z2
5)(4m2 − M2 − s − 2z5)

∫
d log[ f(z4, z5, m2, s)]

dz4
dz4

Im z3

I->
Im z3 8

ToB

Im z3

-YetB

∫C1

dz5

P4(z5)
∝ ω0 ∼

⏟
s→0

1 +
∞

∑
n=1

cnsn

∫C2

dz5

P4(z5)
∝ ω1 ∼

⏟
s→0

ω0 log s +
∞

∑
n=1

dnsn

Polynomial of degree 4 in square-root  for , there is NO POLE but two independent contours among 4 roots:→ ν5 = 0

True locally !!!

ELLIPTIC CASE: THE INTEGRAND IN D=2



Second case: M2 ≠ 0

I1,1,1,0,ν5
z1=z2=z3=0

⟶ ∫γ

dz5 z−ν5
5

(2z5 + s + M2)(M2s − z2
5)(4m2 − M2 − s − 2z5)

∫
d log[ f(z4, z5, m2, s)]

dz4
dz4

Im z3

I->
Im z3 8

ToB

Im z3

-YetB

locally, holomorphic solution  generalization of algebraic 
prefactor (no trascendental weight) 

 generalization of integral with unit leading 

singularities beyond logarithmic case

ω0

1
ω0

I1,1,1,0,0

∫C1

dz5

P4(z5)
∝ ω0 ∼ 1 +

∞

∑
n=1

cnsn

Polynomial of degree 4 in square-root  for , there is NO POLE but two independent contours among 4 roots:→ ν5 = 0

1st kind integral

ELLIPTIC CASE: THE INTEGRAND IN D=2



Second case: M2 ≠ 0

I1,1,1,0,ν5
z1=z2=z3=0

⟶ ∫γ

dz5 z−ν5
5

(2z5 + s + M2)(M2s − z2
5)(4m2 − M2 − s − 2z5)

∫
d log[ f(z4, z5, m2, s)]

dz4
dz4

What happens increasing ? For  there is a single pole at infinity, now there are three contoursν5 ν5 = − 1

Im z3

I->
Im z3 8

ToB

Im z3

-YetB

ELLIPTIC CASE: THE INTEGRAND IN D=2



Second case: M2 ≠ 0

I1,1,1,0,ν5
z1=z2=z3=0

⟶ ∫γ

dz5 z−ν5
5

(2z5 + s + M2)(M2s − z2
5)(4m2 − M2 − s − 2z5)

∫
d log[ f(z4, z5, m2, s)]

dz4
dz4

∫C1

dz5 z5

P4(z5)
∝ Π0 ∫C2

dz5 z5

P4(z5)
∝ Π1

∫C∞

dz5 z5

P4(z5)
∝ Res∞ [ z5

P4(z5) ] ∝ 1

Extra residue: it decouples from the others 

 is a second good integral, already normalized!I1,1,1,0,−1

3rd kind integrals

Im z3

I->
Im z3 8

ToB

Im z3

-YetB

What happens increasing ? For  there is a single pole at infinity, now there are three contoursν5 ν5 = − 1

ELLIPTIC CASE: THE INTEGRAND IN D=2



Second case: M2 ≠ 0

I1,1,1,0,ν5
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⟶ ∫γ

dz5 z−ν5
5

(2z5 + s + M2)(M2s − z2
5)(4m2 − M2 − s − 2z5)

∫
d log[ f(z4, z5, m2, s)]

dz4
dz4

Can we increase  more? Contrary to polylog case  is independent! Double pole at infinity (no residue)ν5 ν5 = − 2
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Im z3 8

ToB

Im z3

-YetB

ELLIPTIC CASE: THE INTEGRAND IN D=2



Second case: M2 ≠ 0

I1,1,1,0,ν5
z1=z2=z3=0

⟶ ∫γ

dz5 z−ν5
5

(2z5 + s + M2)(M2s − z2
5)(4m2 − M2 − s − 2z5)

∫
d log[ f(z4, z5, m2, s)]

dz4
dz4

Can we increase  more? Contrary to polylog case  is independent! Double pole at infinity (no residue)ν5 ν5 = − 2

∫C1

dz5 z2
5

P4(z5)
→ (z5 → 1/x)

Im z3

I->
Im z3 8

ToB

Im z3

-YetB

Subtlety: 

→ ∫ dx[ 1
2x2⏟

double pole

−
s + M2 − 2m2

4x
contamination single pole

+ 𝒪(x0)]

ELLIPTIC CASE: THE INTEGRAND IN D=2



Second case: M2 ≠ 0

I1,1,1,0,ν5
z1=z2=z3=0

⟶ ∫γ

dz5 z−ν5
5

(2z5 + s + M2)(M2s − z2
5)(4m2 − M2 − s − 2z5)

∫
d log[ f(z4, z5, m2, s)]

dz4
dz4

∫C1

dz5 z2
5

P4(z5)
→ (z5 → 1/x)

Candidate with pure double pole in  D = 2

I1,1,1,0,−2 + [ s + M2 − 2m2

2 ] I1,1,1,0,−1 + C0 I1,1,1,0,0

Im z3

I->
Im z3 8

ToB

Im z3

-YetB

→ ∫ dx[ 1
2x2⏟

double pole

−
s + M2 − 2m2

4x
contamination single pole

+ 𝒪(x0)]

Subtlety: 

Can we increase  more? Contrary to polylog case  is independent! Double pole at infinity (no residue)ν5 ν5 = − 2

ELLIPTIC CASE: THE INTEGRAND IN D=2



ELLIPTIC CASE: A GOOD BASIS IN D=2

J2 = I1,1,1,0,−2 + [ s + M2 − 2m2

2 ] I1,1,1,0,−1 + C0 I1,1,1,0,0 = ∫
dz5

P4(z5) (z2
5 +

s1

2
z5 + C0)∫

d log f(z4, z5, s, m2)
dz4

dz4

J1 =
1

ω0
I1,1,1,0,0 =

1
ω0 ∫

dz5

P4(z5) ∫
d log f(z4, z5, s, m2)

dz4
dz4

J3 = I1,1,1,0,−1 = ∫
dz5 z5

P4(z5) ∫
d log f(z4, z5, s, m2)

dz4
dz4



ELLIPTIC CASE: A GOOD BASIS IN D=2

∑
i

Ri(sij) ∫γ
d log fn ∧ . . . ∧ d log f1𝒜

Unfortunately,  is not right yet 
to generalize the decomposition. 

Double pole would generate extra 
“poles” in the special functions! 

Not just logarithmic singularities

J2

?

J2 = I1,1,1,0,−2 + [ s + M2 − 2m2

2 ] I1,1,1,0,−1 + C0 I1,1,1,0,0 = ∫
dz5

P4(z5) (z2
5 +

s1

2
z5 + C0)∫

d log f(z4, z5, s, m2)
dz4

dz4

J3 = I1,1,1,0,−1 = ∫
dz5 z5

P4(z5) ∫
d log f(z4, z5, s, m2)

dz4
dz4

J1 =
1

ω0
I1,1,1,0,0 =

1
ω0 ∫

dz5

P4(z5) ∫
d log f(z4, z5, s, m2)

dz4
dz4



ELLIPTIC CASE: A GOOD BASIS IN D=2-2ϵ

J2 = ∫
dz5

P4(z5) (z2
5 +

s1

2
z5 + C0)∫

d log f(z4, z5, s, m2)
dz4

dz4(G(z4, z5, m2, M2, s))kϵ

J1 = ∫
dz5

P4(z5) ∫
d log f(z4, z5, s, m2)

dz4
dz4(G(z4, z5, m2, M2, s))kϵ

J3 = ∫
dz5 z5

P4(z5) ∫
d log f(z4, z5, s, m2)

dz4
dz4(G(z4, z5, m2, M2, s))kϵ

GOOD as for polylogs

GOOD as for polylogs

Serious problem:  

second integral cannot easily be lifted to  and give rise to a “real canonical basis”D = 2 − 2ϵ



ELLIPTIC CASE: A GOOD BASIS IN D=2-2ϵ

J2 = ∫
dz5

P4(z5) (z2
5 +

s1

2
z5 + C0)∫

d log f(z4, z5, s, m2)
dz4

dz4(G(z4, z5, m2, M2, s))kϵ

J1 = ∫
dz5

P4(z5) ∫
d log f(z4, z5, s, m2)

dz4
dz4(G(z4, z5, m2, M2, s))kϵ

J3 = ∫
dz5 z5

P4(z5) ∫
d log f(z4, z5, s, m2)

dz4
dz4(G(z4, z5, m2, M2, s))kϵ

BAD!?!?  

Double pole requires “integration by parts”, 
OK strictly in , “bad” in  D = 2 D = 2 − 2ϵ

Serious problem:  

second integral cannot easily be lifted to  and give rise to a “real canonical basis”D = 2 − 2ϵ



INTERMEZZO: USING DERIVATIVES FOR POLYLOGS

I = c(0) + ϵ∑
k

c(1)
k ℐ(w=1)

k + ϵ2 ∑
k

c(2)
k ℐ(w=2)

k + 𝒪(ϵ3)

Imagine we have found a perfectly “canonical” integral. It’s expression will be



I = c(0) + ϵ∑
k

c(1)
k ℐ(w=1)

k + ϵ2 ∑
k

c(2)
k ℐ(w=2)

k + 𝒪(ϵ3)

It generates a new uniform weight integral with lower weight, not pure due to Rk

Not perfect, but after an -rescaling, can be transformed into a canonical integral 
by an -independent rotation

ϵ
ϵ

Imagine we have found a perfectly “canonical” integral. It’s expression will be

∂I ∝ ϵ∑
k

Rk c(1)
k + ϵ2 ∑

k

c(2)
k ∑

j

Rj ℐ(w=1)
k,j + 𝒪(ϵ3)

Consider now its derivative

INTERMEZZO: USING DERIVATIVES FOR POLYLOGS



I = c(0) + ϵ∑
k

c(1)
k ℐ(w=1)

k + ϵ2 ∑
k

c(2)
k ℐ(w=2)

k + 𝒪(ϵ3)

∂I ∝ ϵ∑
k

Rk c(1)
k + ϵ2 ∑

k

c(2)
k ∑

j

Rj ℐ(w=1)
k,j + 𝒪(ϵ3)

Imagine we have found a perfectly “canonical” integral. It’s expression will be

Consider now its derivative

For polylogs we can live without (but they can still be useful, see the INITIAL algorithm)

[Dlapa, Henn, Yan ’20]

INTERMEZZO: USING DERIVATIVES FOR POLYLOGS



ELLIPTIC CASE: DO WE NEED DERIVATIVES?

J2 = ∫
dz5

P4(z5) (z2
5 +

s1

2
z5 + C0)∫

d log f(z4, z5, s, m2)
dz4

dz4(G(z4, z5, m2, M2, s))kϵ

trade by derivative of first one, with full -dependence!ϵ

J2 ∝ ∂ [∫
dz5

P4(z5) ∫
d log f(z4, z5, s, m2)

dz4
dz4(G(z4, z5, m2, M2, s))kϵ] [part of Ansatz procedure by S. Weinzierl et al!]



J2 = ∫
dz5

P4(z5) (z2
5 +

s1

2
z5 + C0)∫

d log f(z4, z5, s, m2)
dz4

dz4(G(z4, z5, m2, M2, s))kϵ

At exactly  no difference with previous choice (derivative completes cohomology without generating single poles) 

BUT derivative guarantees that when we turn on  we can reach a “generalized” canonical basis by an 
-independent rotation modulo overall rescaling due to weight drop

D = 2

ϵ ϵ

IMPORTANT: up to this point, this is the only difference in our proposal versus

trade by derivative of first one, with full -dependence!ϵ

J2 ∝ ∂ [∫
dz5

P4(z5) ∫
d log f(z4, z5, s, m2)

dz4
dz4(G(z4, z5, m2, M2, s))kϵ]

[Chaubey, Sotnikov arXiv 2504.20897]

ELLIPTIC CASE: DO WE NEED DERIVATIVES?

[part of Ansatz procedure by S. Weinzierl et al!]



ELLIPTIC CASE: A CANONICAL BASIS IN D=2-2ϵ

J2 ∝ ∂ [∫
dz5

P4(z5) ∫
d log f(z4, z5, s, m2)

dz4
dz4(G(z4, z5, m2, M2, s))kϵ]

If we want to remove them, we must perform a “rotation”  defined locally close to a singular point →

Second integral still has double poles (think about polylog integral before removing LS)



In this basis, third integral decouples and differential equations are:

ELLIPTIC CASE: A CANONICAL BASIS IN D=2-2ϵ

variable will also fix the non-trivial part of the rotation necessary to get to a full canonical
basis in all remaining variables, modulo simple extra rotations that only depend on the
remaining variables. We will see that this is indeed the case in the problem considered
here. We can act with @z on the vector of master integrals. Focussing on the homogeneous
part, we obtain

@z

0

B@
Cut(eI1)
Cut(eI2)
Cut(eI3)

1

CA =
⇥
A(z) + ✏B(z) + ✏

2
C(z)

⇤
0

B@
Cut(eI1)
Cut(eI2)
Cut(eI3)

1

CA , (3.23)

with

A(z) =

0

B@
0 1 0

a21(z) a22(z) 0

a31(z) a32(z) 0

1

CA , B(z) =

0

B@
0 0 0

b21(z) b22(z) b23(z)

b31(z) 0 b33(z)

1

CA , C(z) =

0

B@
0 0 0

c21(z) 0 c23(z)

0 0 0

1

CA .

(3.24)

For instance, for the particular choice z = m2

s , and putting s = 1 for ease of typing, we
have

a21(z) =
2(1� 6m2 +M

2)

m2R
, a21(z) = �

48m4
� 16m2(M2 + 1) + (M2

� 1)2

m2R
,

a31(z) = 1 , a32(z) =
1

2
(4m2

�M
2
� 1) ,

b21(z) =
6M2

� 56m2 + 6

m2R
, b22(z) = �

80m4
� 24m2(M2 + 1) + (M2

� 1)2

m2R
,

b23(z) = �
12

m2R
, b31(z) = 2 , b33(z) = 0 ,

c21(z) =
4(1� 16m2 +M

2)

m2R
, c23(z) = �

24

m2R
. (3.25)

with R = 16m4
� 8m2

�
M

2 + 1
�
+
�
M

2
� 1
�2. We stress that the peculiar structure of the

higher-order terms in ✏ follows purely from a direct computation and we will come back to
this point in section 6. As a first important feature, we notice that the matrix A(z) has
a third column of zeros, which is a direct consequence of having chosen for eI3 a candidate
whose maximal cut has a single pole at infinity with residue normalised to a constant, as
discussed above. Or, in other words, our choice of basis respects the filtration in eq. (3.22).

We now discuss how (and why) the algorithm of ref. [41] leads to a system of ✏-factorised
differential equations that can be called canonical. However, in doing so, we will keep
the discussion general for any system of the form (3.23) and not resort to the particular
functional form of eq. (3.24) for our example of the sunrise to showcase how the same
strategy may be applied to similar problems.

As explained above, Cut(eI3) decouples for ✏ = 0. We, therefore, separate the discussion
into two and first concentrate on the subsystem formed by formed by

�
Cut(eI1),Cut(eI2)

�T :

@z

 
Cut(eI1)
Cut(eI2)

!
=
h
bA(z) +O(✏)

i Cut(eI1)
Cut(eI2)

!
, with bA(z) =

 
0 1

a21(z) a22(z)

!
. (3.26)
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variable will also fix the non-trivial part of the rotation necessary to get to a full canonical
basis in all remaining variables, modulo simple extra rotations that only depend on the
remaining variables. We will see that this is indeed the case in the problem considered
here. We can act with @z on the vector of master integrals. Focussing on the homogeneous
part, we obtain
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higher-order terms in ✏ follows purely from a direct computation and we will come back to
this point in section 6. As a first important feature, we notice that the matrix A(z) has
a third column of zeros, which is a direct consequence of having chosen for eI3 a candidate
whose maximal cut has a single pole at infinity with residue normalised to a constant, as
discussed above. Or, in other words, our choice of basis respects the filtration in eq. (3.22).

We now discuss how (and why) the algorithm of ref. [41] leads to a system of ✏-factorised
differential equations that can be called canonical. However, in doing so, we will keep
the discussion general for any system of the form (3.23) and not resort to the particular
functional form of eq. (3.24) for our example of the sunrise to showcase how the same
strategy may be applied to similar problems.

As explained above, Cut(eI3) decouples for ✏ = 0. We, therefore, separate the discussion
into two and first concentrate on the subsystem formed by formed by

�
Cut(eI1),Cut(eI2)

�T :

@z

 
Cut(eI1)
Cut(eI2)

!
=
h
bA(z) +O(✏)

i Cut(eI1)
Cut(eI2)

!
, with bA(z) =

 
0 1

a21(z) a22(z)

!
. (3.26)

– 14 –

variable will also fix the non-trivial part of the rotation necessary to get to a full canonical
basis in all remaining variables, modulo simple extra rotations that only depend on the
remaining variables. We will see that this is indeed the case in the problem considered
here. We can act with @z on the vector of master integrals. Focussing on the homogeneous
part, we obtain
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with R = 16m4
� 8m2
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+
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�2. We stress that the peculiar structure of the

higher-order terms in ✏ follows purely from a direct computation and we will come back to
this point in section 6. As a first important feature, we notice that the matrix A(z) has
a third column of zeros, which is a direct consequence of having chosen for eI3 a candidate
whose maximal cut has a single pole at infinity with residue normalised to a constant, as
discussed above. Or, in other words, our choice of basis respects the filtration in eq. (3.22).

We now discuss how (and why) the algorithm of ref. [41] leads to a system of ✏-factorised
differential equations that can be called canonical. However, in doing so, we will keep
the discussion general for any system of the form (3.23) and not resort to the particular
functional form of eq. (3.24) for our example of the sunrise to showcase how the same
strategy may be applied to similar problems.

As explained above, Cut(eI3) decouples for ✏ = 0. We, therefore, separate the discussion
into two and first concentrate on the subsystem formed by formed by

�
Cut(eI1),Cut(eI2)

�T :

@z

 
Cut(eI1)
Cut(eI2)

!
=
h
bA(z) +O(✏)

i Cut(eI1)
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J2 ∝ ∂ [∫
dz5

P4(z5) ∫
d log f(z4, z5, s, m2)

dz4
dz4(G(z4, z5, m2, M2, s))kϵ]

Second integral still has double poles (think about polylog integral before removing LS)

If we want to remove them, we must perform a “rotation”  defined locally close to a singular point →



Focus on  system at 2 × 2 D = 2

The functions a21(z) and a22(z) are directly related to the Picard-Fuchs equation in z of
the underlying elliptic geometry,

⇥
@
2
z � a22(z)@z � a11(z)

⇤
⇡i = 0 , i = 0, 1 . (3.27)

In the polylogarithmic case, the hallmark of a system in the canonical form is the ap-
pearance of dlog-forms, which is tightly connected to the concepts of pure functions and
transcendental weight. We thus expect that these concepts also play an important role
in identifying a canonical form for our elliptic example. As a starting point, we therefore
focus on a somewhat simpler problem, namely how to interpret the transcendental weight
for ✏ = 0.

The splitting of the Wronskian and the transcendental weight. Up to this point,
one could, at least in principle, have defined the periods ⇡i globally through the integral
representation for the periods in eq. (3.15). In the following, it will be more useful to
consider the local behaviour of these solutions. To simplify the exposition, and in view
of the application of our method to one-parameter cases in later sections, we consider
here the dependence of the integral on one single variable, but we stress that all these
considerations can easily be extended to a multi-parameter problem. With z any such
kinematic variables, eq. (3.27) is just an ordinary second-order differential equation in z.
The Frobenius method then guarantees that close to a regular singular point z0, the solutions
of a Fuchsian linear differential equation with rational coefficients can always be found in
terms of generalised power series close to z = z0, i.e., linear combinations of power series
multiplied by non-integer powers of z � z0 and/or logarithms. It follows from a theorem
by Landman [94] that the periods of a family of n-dimensional varieties can diverge at
most like the n

th power of a logarithm. Note that this does not imply that all powers of
logarithms arise at every singular point. A regular singular point where periods diverge like
the n

th power of a logarithm is called a point of Maximal Unipotent Monodromy (MUM).
For our case n = 1, this is indeed the case for all regular singular points. Without loss of
generality, we assume that z = z0 = 0 is a MUM-point, and so there is a basis of solutions
of the Picard-Fuchs equation (3.27) of the form

$0(z) = 1 +
1X

j=1

cjz
j and $1(z) = $0(z) log(z) +

1X

j=1

djz
j
, (3.28)

where the cj and dj are complex numbers (typically, they will be rational numbers for the
cases we are considering). This basis of solutions is commonly referred to as a Frobenius
basis. The two periods ⇡0 and ⇡1 are then linear combinations (with complex coefficients)
of $0 and $1, and we may choose a fundamental solution matrix (or Wronskian) W of the
subsystem at ✏ = 0 formed by

�
LS(eI1),LS(eI2)

�T as

W =

 
$0 $1

@z$0 @z$1

!
, with @zW =

 
0 1

a21(z) a22(z)

!
W . (3.29)

Let us now discuss how we can assign a notion of transcendental weight to the entries of W .
For geometries beyond those that give rise to dlog-forms, there is no commonly accepted
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variable will also fix the non-trivial part of the rotation necessary to get to a full canonical
basis in all remaining variables, modulo simple extra rotations that only depend on the
remaining variables. We will see that this is indeed the case in the problem considered
here. We can act with @z on the vector of master integrals. Focussing on the homogeneous
part, we obtain
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(3.24)

For instance, for the particular choice z = m2

s , and putting s = 1 for ease of typing, we
have
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m2R
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48m4
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� 1)2

m2R
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m2R
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with R = 16m4
� 8m2

�
M

2 + 1
�
+
�
M

2
� 1
�2. We stress that the peculiar structure of the

higher-order terms in ✏ follows purely from a direct computation and we will come back to
this point in section 6. As a first important feature, we notice that the matrix A(z) has
a third column of zeros, which is a direct consequence of having chosen for eI3 a candidate
whose maximal cut has a single pole at infinity with residue normalised to a constant, as
discussed above. Or, in other words, our choice of basis respects the filtration in eq. (3.22).

We now discuss how (and why) the algorithm of ref. [41] leads to a system of ✏-factorised
differential equations that can be called canonical. However, in doing so, we will keep
the discussion general for any system of the form (3.23) and not resort to the particular
functional form of eq. (3.24) for our example of the sunrise to showcase how the same
strategy may be applied to similar problems.

As explained above, Cut(eI3) decouples for ✏ = 0. We, therefore, separate the discussion
into two and first concentrate on the subsystem formed by formed by

�
Cut(eI1),Cut(eI2)

�T :

@z
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!
=
h
bA(z) +O(✏)

i Cut(eI1)
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!
, with bA(z) =

 
0 1

a21(z) a22(z)

!
. (3.26)
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Period matrix = homogeneous solution 

mixes transcendental weight (not UT) 

not pure

ELLIPTIC CASE: A CANONICAL BASIS IN D=2-2ϵ



The functions a21(z) and a22(z) are directly related to the Picard-Fuchs equation in z of
the underlying elliptic geometry,

⇥
@
2
z � a22(z)@z � a11(z)

⇤
⇡i = 0 , i = 0, 1 . (3.27)

In the polylogarithmic case, the hallmark of a system in the canonical form is the ap-
pearance of dlog-forms, which is tightly connected to the concepts of pure functions and
transcendental weight. We thus expect that these concepts also play an important role
in identifying a canonical form for our elliptic example. As a starting point, we therefore
focus on a somewhat simpler problem, namely how to interpret the transcendental weight
for ✏ = 0.

The splitting of the Wronskian and the transcendental weight. Up to this point,
one could, at least in principle, have defined the periods ⇡i globally through the integral
representation for the periods in eq. (3.15). In the following, it will be more useful to
consider the local behaviour of these solutions. To simplify the exposition, and in view
of the application of our method to one-parameter cases in later sections, we consider
here the dependence of the integral on one single variable, but we stress that all these
considerations can easily be extended to a multi-parameter problem. With z any such
kinematic variables, eq. (3.27) is just an ordinary second-order differential equation in z.
The Frobenius method then guarantees that close to a regular singular point z0, the solutions
of a Fuchsian linear differential equation with rational coefficients can always be found in
terms of generalised power series close to z = z0, i.e., linear combinations of power series
multiplied by non-integer powers of z � z0 and/or logarithms. It follows from a theorem
by Landman [94] that the periods of a family of n-dimensional varieties can diverge at
most like the n

th power of a logarithm. Note that this does not imply that all powers of
logarithms arise at every singular point. A regular singular point where periods diverge like
the n

th power of a logarithm is called a point of Maximal Unipotent Monodromy (MUM).
For our case n = 1, this is indeed the case for all regular singular points. Without loss of
generality, we assume that z = z0 = 0 is a MUM-point, and so there is a basis of solutions
of the Picard-Fuchs equation (3.27) of the form

$0(z) = 1 +
1X

j=1

cjz
j and $1(z) = $0(z) log(z) +

1X

j=1

djz
j
, (3.28)

where the cj and dj are complex numbers (typically, they will be rational numbers for the
cases we are considering). This basis of solutions is commonly referred to as a Frobenius
basis. The two periods ⇡0 and ⇡1 are then linear combinations (with complex coefficients)
of $0 and $1, and we may choose a fundamental solution matrix (or Wronskian) W of the
subsystem at ✏ = 0 formed by
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LS(eI1),LS(eI2)
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W =
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!
, with @zW =
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W . (3.29)

Let us now discuss how we can assign a notion of transcendental weight to the entries of W .
For geometries beyond those that give rise to dlog-forms, there is no commonly accepted
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definition of the notion of transcendental weight. Here we rely on the extension of the
notions of pure functions and transcendental weight to elliptic geometries introduced in
ref. [55]. In a nutshell, ref. [55] starts from the observation that locally close to the MUM-

point, $0 is a power series, so it is natural to assign transcendental weight 0 to it. The
same reasoning applies to @z$0 as the derivative of a power series (which is itself a power
series). Further, according to the definition in ref. [55], the ratio
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is a pure function of transcendental weight 1 (close to the MUM-point at z = 0),4 because it
behaves locally as log(z) and satisfies a unipotent differential equation. As a consequence,
the solution $1 is not a pure function because, close to the MUM-point, it is the product
of $0 and ⌧(z). Moreover, $0 is not pure as it does not satisfy a unipotent differential
equation. We stress that this assignment of the transcendental weight and the associated
notions of pure functions are only valid locally, and they change if we choose a different
MUM-point.

At this point, we have to address two issues. First, while the entries of the first column
of W both have the same weight 0, this is not the case for the first row, where $1 = $0⌧

entails a mixture of weights with ⌧ having transcendental weight 1. Second, the assignment
of a transcendental weight to @z$1 is subtle, because the latter is not independent of the
other three entries of W . Indeed, it is well-known that the determinant � = detW of
the Wronskian is always an algebraic function, and thus has transcendental weight 0. We
thus see that the second column contains a mixture of transcendental weights. Since we
expect systems in canonical form to be closely related to pure functions, which in turn
should have uniform transcendental weight, we must find a way to disentangle this mixture
of transcendental weights and expose the pure part.

The solution advocated in refs. [41, 55] is to split the Wronskian matrix into its semi-

simple and its unipotent parts. Note that this splitting is not unique, but we can make it
unique by requiring the unipotent part to be an upper unitriangular matrix, i.e., an upper
triangular matrix with 1’s on the diagonal. For the case at hand, this splitting takes the
form  
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By inspection, it is easy to see that W
u satisfies the unipotent differential equation

@zW
u =

 
0 @z⌧

0 0

!
W

u =

 
0 �

$2
0

0 0

!
W

u
. (3.32)

As a result of the splitting in eq. (3.31), all entries of W ss and W
u have a well-defined

transcendental weight (which, we reiterate, is only defined locally at the MUM-point). In
4
In ref. [55], ⌧(z) is assigned weight 0, because it is conventionally defined as ⌧(z) = $1(z)
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= log(z)
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O(z).
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variable will also fix the non-trivial part of the rotation necessary to get to a full canonical
basis in all remaining variables, modulo simple extra rotations that only depend on the
remaining variables. We will see that this is indeed the case in the problem considered
here. We can act with @z on the vector of master integrals. Focussing on the homogeneous
part, we obtain
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1
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For instance, for the particular choice z = m2

s , and putting s = 1 for ease of typing, we
have

a21(z) =
2(1� 6m2 +M

2)

m2R
, a21(z) = �

48m4
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2
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with R = 16m4
� 8m2

�
M

2 + 1
�
+
�
M

2
� 1
�2. We stress that the peculiar structure of the

higher-order terms in ✏ follows purely from a direct computation and we will come back to
this point in section 6. As a first important feature, we notice that the matrix A(z) has
a third column of zeros, which is a direct consequence of having chosen for eI3 a candidate
whose maximal cut has a single pole at infinity with residue normalised to a constant, as
discussed above. Or, in other words, our choice of basis respects the filtration in eq. (3.22).

We now discuss how (and why) the algorithm of ref. [41] leads to a system of ✏-factorised
differential equations that can be called canonical. However, in doing so, we will keep
the discussion general for any system of the form (3.23) and not resort to the particular
functional form of eq. (3.24) for our example of the sunrise to showcase how the same
strategy may be applied to similar problems.

As explained above, Cut(eI3) decouples for ✏ = 0. We, therefore, separate the discussion
into two and first concentrate on the subsystem formed by formed by

�
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!
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The functions a21(z) and a22(z) are directly related to the Picard-Fuchs equation in z of
the underlying elliptic geometry,

⇥
@
2
z � a22(z)@z � a11(z)

⇤
⇡i = 0 , i = 0, 1 . (3.27)

In the polylogarithmic case, the hallmark of a system in the canonical form is the ap-
pearance of dlog-forms, which is tightly connected to the concepts of pure functions and
transcendental weight. We thus expect that these concepts also play an important role
in identifying a canonical form for our elliptic example. As a starting point, we therefore
focus on a somewhat simpler problem, namely how to interpret the transcendental weight
for ✏ = 0.

The splitting of the Wronskian and the transcendental weight. Up to this point,
one could, at least in principle, have defined the periods ⇡i globally through the integral
representation for the periods in eq. (3.15). In the following, it will be more useful to
consider the local behaviour of these solutions. To simplify the exposition, and in view
of the application of our method to one-parameter cases in later sections, we consider
here the dependence of the integral on one single variable, but we stress that all these
considerations can easily be extended to a multi-parameter problem. With z any such
kinematic variables, eq. (3.27) is just an ordinary second-order differential equation in z.
The Frobenius method then guarantees that close to a regular singular point z0, the solutions
of a Fuchsian linear differential equation with rational coefficients can always be found in
terms of generalised power series close to z = z0, i.e., linear combinations of power series
multiplied by non-integer powers of z � z0 and/or logarithms. It follows from a theorem
by Landman [94] that the periods of a family of n-dimensional varieties can diverge at
most like the n

th power of a logarithm. Note that this does not imply that all powers of
logarithms arise at every singular point. A regular singular point where periods diverge like
the n

th power of a logarithm is called a point of Maximal Unipotent Monodromy (MUM).
For our case n = 1, this is indeed the case for all regular singular points. Without loss of
generality, we assume that z = z0 = 0 is a MUM-point, and so there is a basis of solutions
of the Picard-Fuchs equation (3.27) of the form

$0(z) = 1 +
1X

j=1

cjz
j and $1(z) = $0(z) log(z) +

1X

j=1

djz
j
, (3.28)

where the cj and dj are complex numbers (typically, they will be rational numbers for the
cases we are considering). This basis of solutions is commonly referred to as a Frobenius
basis. The two periods ⇡0 and ⇡1 are then linear combinations (with complex coefficients)
of $0 and $1, and we may choose a fundamental solution matrix (or Wronskian) W of the
subsystem at ✏ = 0 formed by

�
LS(eI1),LS(eI2)

�T as

W =

 
$0 $1

@z$0 @z$1

!
, with @zW =

 
0 1

a21(z) a22(z)

!
W . (3.29)

Let us now discuss how we can assign a notion of transcendental weight to the entries of W .
For geometries beyond those that give rise to dlog-forms, there is no commonly accepted
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definition of the notion of transcendental weight. Here we rely on the extension of the
notions of pure functions and transcendental weight to elliptic geometries introduced in
ref. [55]. In a nutshell, ref. [55] starts from the observation that locally close to the MUM-

point, $0 is a power series, so it is natural to assign transcendental weight 0 to it. The
same reasoning applies to @z$0 as the derivative of a power series (which is itself a power
series). Further, according to the definition in ref. [55], the ratio

⌧(z) =
$1(z)

$0(z)
= log(z) +O(z) , (3.30)

is a pure function of transcendental weight 1 (close to the MUM-point at z = 0),4 because it
behaves locally as log(z) and satisfies a unipotent differential equation. As a consequence,
the solution $1 is not a pure function because, close to the MUM-point, it is the product
of $0 and ⌧(z). Moreover, $0 is not pure as it does not satisfy a unipotent differential
equation. We stress that this assignment of the transcendental weight and the associated
notions of pure functions are only valid locally, and they change if we choose a different
MUM-point.

At this point, we have to address two issues. First, while the entries of the first column
of W both have the same weight 0, this is not the case for the first row, where $1 = $0⌧

entails a mixture of weights with ⌧ having transcendental weight 1. Second, the assignment
of a transcendental weight to @z$1 is subtle, because the latter is not independent of the
other three entries of W . Indeed, it is well-known that the determinant � = detW of
the Wronskian is always an algebraic function, and thus has transcendental weight 0. We
thus see that the second column contains a mixture of transcendental weights. Since we
expect systems in canonical form to be closely related to pure functions, which in turn
should have uniform transcendental weight, we must find a way to disentangle this mixture
of transcendental weights and expose the pure part.

The solution advocated in refs. [41, 55] is to split the Wronskian matrix into its semi-

simple and its unipotent parts. Note that this splitting is not unique, but we can make it
unique by requiring the unipotent part to be an upper unitriangular matrix, i.e., an upper
triangular matrix with 1’s on the diagonal. For the case at hand, this splitting takes the
form  
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| {z }
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| {z }
W ss
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By inspection, it is easy to see that W
u satisfies the unipotent differential equation
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As a result of the splitting in eq. (3.31), all entries of W ss and W
u have a well-defined

transcendental weight (which, we reiterate, is only defined locally at the MUM-point). In
4
In ref. [55], ⌧(z) is assigned weight 0, because it is conventionally defined as ⌧(z) = $1(z)
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= log(z)
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O(z).

– 16 –

Algebraic function: weight 0

ELLIPTIC CASE: A CANONICAL BASIS IN D=2-2ϵ
Focus on  system at 2 × 2 D = 2



A possible solution: split period matrix into semi-simple and unipotent part

ELLIPTIC CASE: A GOOD BASIS IN D=2

definition of the notion of transcendental weight. Here we rely on the extension of the
notions of pure functions and transcendental weight to elliptic geometries introduced in
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the solution $1 is not a pure function because, close to the MUM-point, it is the product
of $0 and ⌧(z). Moreover, $0 is not pure as it does not satisfy a unipotent differential
equation. We stress that this assignment of the transcendental weight and the associated
notions of pure functions are only valid locally, and they change if we choose a different
MUM-point.

At this point, we have to address two issues. First, while the entries of the first column
of W both have the same weight 0, this is not the case for the first row, where $1 = $0⌧

entails a mixture of weights with ⌧ having transcendental weight 1. Second, the assignment
of a transcendental weight to @z$1 is subtle, because the latter is not independent of the
other three entries of W . Indeed, it is well-known that the determinant � = detW of
the Wronskian is always an algebraic function, and thus has transcendental weight 0. We
thus see that the second column contains a mixture of transcendental weights. Since we
expect systems in canonical form to be closely related to pure functions, which in turn
should have uniform transcendental weight, we must find a way to disentangle this mixture
of transcendental weights and expose the pure part.

The solution advocated in refs. [41, 55] is to split the Wronskian matrix into its semi-

simple and its unipotent parts. Note that this splitting is not unique, but we can make it
unique by requiring the unipotent part to be an upper unitriangular matrix, i.e., an upper
triangular matrix with 1’s on the diagonal. For the case at hand, this splitting takes the
form  
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By inspection, it is easy to see that W
u satisfies the unipotent differential equation
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As a result of the splitting in eq. (3.31), all entries of W ss and W
u have a well-defined

transcendental weight (which, we reiterate, is only defined locally at the MUM-point). In
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By inspection, it is easy to see that W
u satisfies the unipotent differential equation
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As a result of the splitting in eq. (3.31), all entries of W ss and W
u have a well-defined

transcendental weight (which, we reiterate, is only defined locally at the MUM-point). In
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By inspection, it is easy to see that W
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As a result of the splitting in eq. (3.31), all entries of W ss and W
u have a well-defined

transcendental weight (which, we reiterate, is only defined locally at the MUM-point). In
4
In ref. [55], ⌧(z) is assigned weight 0, because it is conventionally defined as ⌧(z) = $1(z)

2⇡i$0(z)
= log(z)

2⇡i +

O(z).

– 16 –

[Brödel, Duhr, Dulat, Penante, Tancredi, arXiv:1809.10698]

(splitting becomes unique requiring special form of )Wu

 is algebraic: generalizes LS, must be rotated awayWss

Unipotent part fulfils generalized dlog-equation

particular, all entries of W ss have weight 0, and they can be interpreted as the generalisation
of the algebraic leading singularities in the polylogarithmic case. The unipotent part W u =�
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ss��1
W is obtained by normalising (in some sense) the entries of W to have unit leading

singularities. Its entries thus play the role of pure functions in the polylogarithmic case. We
emphasise here that d⌧ can indeed take the role of a generalised dlog-form. In particular,
one can verify that in the limit M
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Realignment of the transcendental weight and the ✏-expansion. After this dis-
cussion of how the splitting of the period matrix into its semi-simple and unipotent parts
allows one to assign transcendental weights for ✏ = 0 (locally to a MUM-point), let us
now return to the full system in eq. (3.26). In order to achieve a consistent assignment of
the transcendental weights, we need to multiply the vector of master integrals (eI1, eI2)T by�
W

ss��1. At this point, however, we need to address another issue, which did not appear
during the discussion at ✏ = 0. From the polylogarithmic case, we would expect that the
coefficient of ✏k only involves pure functions of uniform transcendental weight k. However,
while all the entries of W u are pure functions, it is easy to see that the entries of the second
column have different weights. This can easily be remedied by a simple rescaling by powers
of ✏ to ensure that there is the expected correlation between the order in the ✏-expansion
and the transcendental weight. We then define the new basis
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where we defined the diagonal matrix

Dn(✏) = diag(✏n, ✏n�1
, . . . , ✏, 1) . (3.35)

✏-factorisation of the full 3 ⇥ 3 system. After this extensive discussion of the 2 ⇥ 2

subsystem, let us return to the full 3⇥3 system in eq. (3.23) and illustrate how the presence
of the third master integral affects the discussion compared to the 2⇥ 2 case.

Following the discussion above, as a first step, we should extend eq. (3.34) to accom-
modate the third master integral. As was argued above, the entries of W

ss can be seen
as the generalisation of the algebraic leading singularities in the polylogarithmic case. For
eI3 = I2, this means that it should be normalised by its algebraic leading singularity L3(z),
which corresponds to the residue at the additional simple pole at x5 = 1 in eq. (3.17).
In this example, since the integral already has a constant residue, this step is trivial, and
we can choose L3(z) = 1. Concerning the ✏-rescaling, recall that the integrand of LS(eI3)
corresponds to the integrand of LS(eI1) up to the additional simple pole. Consequently, we
expect that the ✏-expansion of the first and third integral should be kept aligned. Based on
these considerations, we can now define the new basis
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Proved that splitting produces same result as Ansatz procedure by S. Weinzierl et al
[Duhr, Maggio, Nega, Sauer, Tancredi, Wagner arXiv:2503.20655]
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dlog not properly multiplied by ϵ



A CANONICAL BASIS?!

a new basis of master integrals that fulfills a so-called ✏-factorized system of differential
equations [21]. More explicitly, we define a new basis of integrals ~J through

~J = A(✏, x)~I , (3.2)

and we would like to find a matrix A(✏, x) such that the new basis of master integrals fulfills

d

dx
~J = ✏G(x) ~J , ✏G(x) = ABA

�1 +
dA

dx
A

�1
. (3.3)

In this form, the differential equations can easily be solved as series expansion in ✏. The
matrix G(x) can in general be written as follows

G(x) =
X

i

Gi fi(x) , (3.4)

where Gi are numerical matrices and the fi(x) are functions of the kinematical variable
x. Importantly, the functions fi(x) determine the analytic structure of the solutions to all
orders in ✏. Using the language of differential forms we can write

fi(x)dx = !i , (3.5)

such that the system of differential equations takes the form

d ~J = ✏

 
X

i

Gi !i

!
~J . (3.6)

Its solutions can formally be written as a path-ordered exponential,

~J(x) = P exp

"
✏

X

i

Gi

Z

�
!i

#
~J0 , (3.7)

where P is the path-ordering operator, ~J0 is the boundary condition at x = x0 and � is a
path that connects the points x0 to the generic point x. In this form, it becomes obvious
that at all orders in ✏ the integrals ~J can be written as linear combinations of (Chen)
iterated integrals [14] over the forms !i. In the problem under study we only deal with one
kinematic variable and the ensuing iterated integrals are explicitly given by

I(!in , . . . ,!i1) =

Z x

x0

dxnfin(xn) . . .

Z x3

x0

dx2fi2(x2)

Z x2

x0

dx1fi1(x1) , (3.8)

where x0 is the chosen boundary point.
As already hinted at in the previous section, in the case of the three-loop self-energy

in QED, we find that the space of differential one-forms is larger than just dlog-forms, and
differential one-forms related to the elliptic curve of the two-loop equal mass sunrise integral
appear. In order to find an ✏-factorized basis, we proceed in two equivalent ways: first, using
an Ansatz as elucidated in refs. [25, 30, 54], and second, employing the algorithm described
in ref. [29]. We verified explicitly that both approaches generate the same ✏-factorized
basis, up to a rotation by a constant matrix. For the dlog-type integrals, we use a standard
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After splitting and some minor clean up, integrals fulfil “generalized” canonical differential equations:  

Analytic structure manifest in terms of a set of independent differential forms with at most single poles

NOTE: 

Differential equations degenerate to standard dlog canonical equations close to singular points of elliptic curve 
 for this to happen without non-trivial -rotation, it is crucial to have chosen derivative as second-kind form! 

Some differential forms which can be associated to form of second kind drop from Amplitudes at 

→ ϵ

𝒪(ϵ0)



 and  mediated by a top quark perfect laboratory:  

- realistic amplitude of elliptic type (studied only numerically before us) 

qq̄ → γγ gg → γγ

solve the differential equations, along with a brief analysis on the geometry underlying the actual
analytic solution.

Moreover, as ancillary material attached to this paper, we furnish the analytic expressions of the
finite reminder for the form factors, alongside with Mathematica files which allows for a standalone
evaluation of the MIs with DiffExp.

2 Computational setup and amplitude structure

In this paper, we consider the two-loop form factors for diphoton production in the quark annihila-
tion channel with a heavy quark loop. At the partonic level, the scattering amplitude proceeds as
the Born subprocess:

q(p1) + q(p2) ! �(p3) + �(p4). (2.1)

The kinematics for this process is described by the Mandelstam variables3

s = �(p1 + p2)
2, t = �(p1 � p3)

2, u = �(p2 � p3)
2, with s+ t+ u = 0, (2.2)

where the external particles are on-shell, i.e. p2
i
= 0, and we indicate with m2

t
the heavy-quark

Figure 1: Representative set of two-loop diagrams with internal heavy-quark loops, which con-
tribute at NNLO QCD corrections to diphoton production in the quark annihilation channel. Thin
black lines represents light quarks, thick black lines heavy quarks, curly lines gluons and curby lines
photons.

squared mass4. In order to obtain the scattering amplitude, we generated the relevant Feynman
diagrams using the FeynArts package [108]. We found a total number of 14 diagrams contributing
to the amplitude, the representative ones are shown in fig. 1. We write the scattering amplitude
in terms of form factors, which are decomposed into a basis of 72 MIs exploiting IBPs reduction
[47–49, 51–57, 109], as implemented in the software Kira [57].

The MIs contributing to this process can be described by three different scalar integral topologies
(modulo exchange of the two final photons). Specifically, the MIs for the Feynman diagrams (a)
and (b) in fig. 1 are associated to the integral families PLA and NPL, respectively, as defined
in section 3. Similarly, the MIs for the diagrams (c), (d) and (e) can be grouped into one scalar
integral family, PLB, also defined in section 3. The MIs of the families PLA and PLB were already
known in the literature [67]. Regarding the non-planar topology NPL, while most of the MIs have
already been studied [67, 72, 73, 97, 110–112], the double-box top-sector have not been considered
in the literature yet, and therefore its computation represents an original result by itself.

For this project, we performed an independent calculation of all the MIs by means of the
differential equations method [59–66]. In particular we solved the system of differential equations

3For our computations we use the metric of [107].
4For the rest of this paper we will refer to the heavy quark as top quark. We note however that our formulas are

general and they can be evaluated with a different value of the heavy quark mass.
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(a) PLA (b) PLB (c) PLC

(d) NPA (e) NPB

Figure 1: Representative set of two-loop graphs with internal heavy-quark loops. Thick
and thin lines represent massive and massless propagators, respectively.

arrange in the five families above and all their crossings2. Interestingly, while family PLB
is useful for matching all Feynman diagrams, after reduction, it contains no extra master
integrals, so we ignore it from here on. As we will see below, there are actually 11 extra
relations among these integrals, which we can prove to be valid to all orders in ✏ from
the differential equations they satisfy, reducing the number of independent master integrals
to 154. We will describe these relations in the next section. The complete list of master
integrals in a convenient basis can be found in appendix B.

To compute these master integrals, we resort to the differential equations method. To
avoid having to discuss how to cross the various integrals, we prefer to consider all master
integrals, including their relevant crossings, at once. In the next section, we describe how
to derive a set of differential equations for these integrals and how to put the system in
an ✏-factorized form, which will make the analytic properties of the scattering amplitudes
manifest.

4 Differential equations and ✏-factorized basis

It is convenient to introduce the vector notation for the master integrals ~J = {J1, ...,J165},
where for simplicity we left the dependence on the kinematics and on the dimensional
regulator implicit, i.e., Ji = Ji(x, y; ✏) for i = 1, ..., 165. For now, we consider the full set of
165 integrals, even if, as hinted to above, 11 extra relations can be discovered a posteriori
by studying their system of differential equations.

More explicitly, by leveraging integration-by-parts identities, we can easily derive two
systems of differential equations for the master integrals in the two dimensionless ratios
x, y, which take the general form

@

@x

~J = Ax(x, y; ✏) ~J ,
@

@y

~J = Ay(x, y; ✏) ~J , (4.1)

2Note that this counting includes all relevant crossings of the master integrals.
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(a) Singularities gluon fusion (b) Singularities quark-antiquark annihilation

Figure 3: Plot of all singular lines in the variables s, t for gluon fusion and quark-antiquark
annihilation, respectively. We have highlighted the physically relevant parameter space in
light gray. Notice that the physical threshold is at s = 4m2.

In the specific case of the large-mass expansion, the point m
2
! 1 corresponds to

s = 0, t = 0, and u = 0 , s = �t in the kinematical plane. In fig. 3, we draw all
singular lines relevant for gluon fusion and quark-antiquark annihilation, respectively, with
a particular focus on the ones passing through (s, t) = (0, 0). As it can be seen, many lines
intersect at that point and most of them cross tangentially to each other. Concretely, these
singular lines correspond to the following set

�
s+ t,�4s� 4t+ st, s+ 2s2 + s

3 + t� 2st+ s
2
t,�4s+ st+ t

2
, s� 2st� 4t2 + st

2
,

s� 2s2 + s
3
� 6st+ 2s2t� 4t2 + st

2
, s+ t� 2st+ 2t2 + st

2 + t
3
, s

2
� 4t+ st,

�4s2 + t� 2st+ s
2
t,�4s2 + t� 6st+ s

2
t� 2t2 + 2st2 + t

3
 

(7.1)
for gluon fusion and the subset

�
s+ t,�4s� 4t+ st,�4s+ st+ t

2
, s� 2st� 4t2 + st

2
,

s� 2s2 + s
3
� 6st+ 2s2t� 4t2 + st

2
, s

2
� 4t+ st

 (7.2)

for quark-antiquark annihilation. Following the blow-up procedure, in our case, a good set
of variables that resolves all singularities is given by

x1 = �
tm

2

s2
, x2 =

s

4m2
. (7.3)

In fig. 4, we report the same singularities in the new set of coordinates x1, x2. As it is
easy to see, all singular lines are appropriately disentangled in the large mass limit, i.e.,
for x1 = x2 = 0. Moreover, in the blow-up variables x1, x2, the threshold s = 4m2 is at
x2 = 1. With these new variables, we can now expand all singular denominators in series
consistently. We stress here that, in terms of the original kinematic variables, this choice
of expansion variables corresponds to having taken the directional limit �t/m

2
< s

2
/m

4.
Before integrating the differential equations, we have to determine the necessary bound-

ary constants. We follow the standard approach and first use regularity properties of the
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Construction of basis of master integrals mapped to “right” differential forms on the elliptic curve 

THE ELLIPTIC DOUBLE BOX: SELECTING A GOOD BASIS

Total of 4 master integrals on the maximal cut  [Gorges, Nega, LT, Wagner ’23]

 [Duhr, Maggio, Nega, Sauer LT, Wagner ’25]
 [Becchetti, Coro, Nega, LT, Wagner ’25]



This polynomial is cubic in z9 and quadratic in z5. While it has single poles in both
variables, it is clearly convenient to start the analysis with z5. Picking the two residues in
z5, or alternatively taking a primitive in z5, we can then easily write the maximal cut of
the second integral as

MaxCut [INPA(1, 1, 1, 1, 0, 1, 1, 1, 0)]/
1

s

Z
dz9

(m2 � t� z9)
p
P4(z9)

Z
d log

✓
1 + f(z5, z9)

1� f(z5, z9)

◆
,

(4.20)

where
f(z5, z9) =

(m2
� z9)(m2 + s� z9)(3m2

� t� 2z5 � z9)

(m2 � t� z9)
p
P4(z9)

. (4.21)

In this form, it becomes evident that, due to the extra pole at z9 = m
2
� t, this integral

can be written as a dlog-integration iterated with a differential form of the third kind on
the same elliptic curve given in eq. (4.8). Indeed, since the reduction to master integrals
exposed four master integrals, we expect that, differently from the previous case, we should
also be able to identify some forms of the third kind on the maximal cut, which should
correspond to the extra two masters. Taking the extra residue at this pole shows that its
leading singularity is

Resz9=t�m2

"
1

s

1

(m2 � t� z9)
p
P4(z9)

#
=

1

s

p
P4(m2 � t)

, (4.22)

which immediately gives us a first good candidate for this sector as

s

p
P4(m2 � t) INPA(1, 1, 1, 1, 0, 1, 1, 1, 0) , (4.23)

modulo appropriate ✏ normalization. From this analysis, we also immediately identify a
good candidate for the integral corresponding to the differential of the first kind. This can
be obtained by considering an integral with a scalar product constructed exactly to cancel
this residue. Using the formulas above, in fact, we see that

MaxCut
⇥
(m2

� t)INPA(1, 1, 1, 1, 0, 1, 1, 1, 0)� INPA(1, 1, 1, 1, 0, 1, 1, 1,�1)
⇤

/
1

s

Z
dz5dz9

(m2
� t� z9)

P2,3(z5, z9)
=

1

s

Z
dz9p
P4(z9)

Z
d log

✓
1 + f(z5, z9)

1� f(z5, z9)

◆
. (4.24)

Having identified the integral of the first kind, we can choose its derivative (we choose once
more @m2) to map the integral of the second kind. Finally, a similar integrand analysis
allows us to identify a second independent integral of the third kind as

MaxCut
⇥
(m2

� t)INPA(1, 1, 1, 1, 0, 1, 1, 1,�1)� INPA(1, 1, 1, 1, 0, 1, 1, 1,�2)
⇤
/

/
1

s

Z
dz5dz9

(m2
� t� z9)z9

P2,3(z5, z9)
=

1

s

Z
dz9

z9p
P4(z9)

Z
d log

✓
1 + f(z5, z9)

1� f(z5, z9)

◆
, (4.25)

which has a single pole at z9 = 1. In this way, we come to our choice of initial basis for
the top sector, which at ✏ = 0 explicitly separates the integrals of the third kind from the
coupled 2⇥ 2 block of homogeneous equations satisfied by the first kind and its derivative

I1 = "
4
s
⇥
(m2

� t)INPA(1, 1, 1, 1, 0, 1, 1, 1, 0)� INPA(1, 1, 1, 1, 0, 1, 1, 1,�1)
⇤
, (4.26)
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+ its derivatives for second kind

Total of 4 master integrals on the maximal cut

THE ELLIPTIC DOUBLE BOX: SELECTING A GOOD BASIS

 [Gorges, Nega, LT, Wagner ’23]

 [Duhr, Maggio, Nega, Sauer LT, Wagner ’25]
 [Becchetti, Coro, Nega, LT, Wagner ’25]

Construction of basis of master integrals mapped to “right” differential forms on the elliptic curve 



This polynomial is cubic in z9 and quadratic in z5. While it has single poles in both
variables, it is clearly convenient to start the analysis with z5. Picking the two residues in
z5, or alternatively taking a primitive in z5, we can then easily write the maximal cut of
the second integral as

MaxCut [INPA(1, 1, 1, 1, 0, 1, 1, 1, 0)]/
1

s

Z
dz9

(m2 � t� z9)
p
P4(z9)

Z
d log

✓
1 + f(z5, z9)

1� f(z5, z9)

◆
,

(4.20)

where
f(z5, z9) =

(m2
� z9)(m2 + s� z9)(3m2

� t� 2z5 � z9)

(m2 � t� z9)
p
P4(z9)

. (4.21)

In this form, it becomes evident that, due to the extra pole at z9 = m
2
� t, this integral

can be written as a dlog-integration iterated with a differential form of the third kind on
the same elliptic curve given in eq. (4.8). Indeed, since the reduction to master integrals
exposed four master integrals, we expect that, differently from the previous case, we should
also be able to identify some forms of the third kind on the maximal cut, which should
correspond to the extra two masters. Taking the extra residue at this pole shows that its
leading singularity is
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which immediately gives us a first good candidate for this sector as
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modulo appropriate ✏ normalization. From this analysis, we also immediately identify a
good candidate for the integral corresponding to the differential of the first kind. This can
be obtained by considering an integral with a scalar product constructed exactly to cancel
this residue. Using the formulas above, in fact, we see that
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Having identified the integral of the first kind, we can choose its derivative (we choose once
more @m2) to map the integral of the second kind. Finally, a similar integrand analysis
allows us to identify a second independent integral of the third kind as
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which has a single pole at z9 = 1. In this way, we come to our choice of initial basis for
the top sector, which at ✏ = 0 explicitly separates the integrals of the third kind from the
coupled 2⇥ 2 block of homogeneous equations satisfied by the first kind and its derivative
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This polynomial is cubic in z9 and quadratic in z5. While it has single poles in both
variables, it is clearly convenient to start the analysis with z5. Picking the two residues in
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Form of first kind

single poles: 

two forms of 3rd kind

+ its derivatives for second kind

}

Total of 4 master integrals on the maximal cut

THE ELLIPTIC DOUBLE BOX: SELECTING A GOOD BASIS

 [Gorges, Nega, LT, Wagner ’23]

 [Duhr, Maggio, Nega, Sauer LT, Wagner ’25]
 [Becchetti, Coro, Nega, LT, Wagner ’25]

Construction of basis of master integrals mapped to “right” differential forms on the elliptic curve 



NUMERICAL RESULTS: TOP CORRECTIONS TO  pp → γγ
with base 10, and multiply the result by minus one,

� log10 (|⌦X,max|) . (7.6)

The result for the finite part of all the bare two-loop helicity amplitudes is shown in fig. 5
and fig. 6, where we have taken in every point the best value of the four expansions available.
Note that we treated ⌦h and ⌦l as defined in eq. (7.5) separately.
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Figure 5: Number of digits of precision obtained for the finite part of the bare helicity
amplitudes in the gluon-fusion channel. The horizontal axis corresponds to s/m

2, the
vertical axis to t/m

2.
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We further fix the helicities of the external states and define a set of independent
helicity amplitudes for the two processes as follows
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where �q = {L,R} is the helicity along the massless fermion line while �i = ± is the helicity
of the vector boson of momentum pi . We fix our conventions for the helicities by picking
left-handed spinors as
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With these, we find that the helicity amplitudes for the two processes can be written
in a very compact form. Specifically, for the quark-induced channel, we write
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Instead, for the gluon fusion channel, we find
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ūL(p2) = h2| and uL(p1) = |1] , (2.13)

and the vector boson j of momentum pj and gauge vector qj as

✏
µ
j,+(qj) =

hqj |�
µ
|j]

p
2hqjji

and ✏
µ
j,�(qj) =

hj|�
µ
|qj ]

p
2[jqj ]

. (2.14)

With these, we find that the helicity amplitudes for the two processes can be written
in a very compact form. Specifically, for the quark-induced channel, we write

A
L++
qq =

2[34]2

h13i[23]
↵(x, y) , A

L+�
qq =

2h24i[13]

h23i[24]
�(x, y) ,

A
L�+
qq =

2h23i[41]

h24i[32]
�(x, y) , A

L��
qq =

2h34i2

h31i[23]
�(x, y) .

(2.15)

with

↵(x, y) =
t

2

✓
F2 �

t

2
F3 + F4

◆
, �(x, y) =

t

2

⇣
s

2
F3 + F4

⌘
,

�(x, y) =
s t

2u

✓
F2 � F1 �

t

2
F3 �

t

s
F4

◆
, �(x, y) =

t

2

✓
F1 +

t

2
F3 � F4

◆
.

(2.16)

Instead, for the gluon fusion channel, we find

A
++++
gg =

[12][34]

h12ih34i
f++++(x, y) , A

�+++
gg =

h12ih14i[24]

h34ih23ih24i
f�+++(x, y) ,

A
+�++
gg =

h21ih24i[14]

h34ih13ih14i
f+�++(x, y) , A

++�+
gg =

h32ih34i[24]

h14ih21ih24i
f++�+(x, y) ,

A
+++�
gg =

h42ih43i[23]

h13ih21ih23i
f+++�(x, y) , A

��++
gg =

h12i[34]

[12]h34i
f��++(x, y) ,

A
�+�+
gg =

h13i[24]

[13]h24i
f�+�+(x, y) , A

+��+
gg =

h23i[14]

[23]h14i
f+��+(x, y) , (2.17)

with the helicity coefficients given by the following combinations of form factors

f++++(x, y) =
t
2

4

✓
2G6

u
�

2G3

s
� G1

◆
+ G8

⇣
s

u
+

u

s
+ 4

⌘
+

t

2
(G2 � G4 + G5 � G7) ,

– 6 –

With only 2 series, reliable numerical evaluation across large portion of phase space due to cancellation 
of unphysical singularities in full amplitude

 [Becchetti, Coro, Nega, LT, Wagner ’25]

From analytic representation, we can obtain few fast converging series expansions for numerical evaluation:



NUMERICAL RESULTS: TOP CORRECTIONS TO  pp → γγ
with base 10, and multiply the result by minus one,

� log10 (|⌦X,max|) . (7.6)

The result for the finite part of all the bare two-loop helicity amplitudes is shown in fig. 5
and fig. 6, where we have taken in every point the best value of the four expansions available.
Note that we treated ⌦h and ⌦l as defined in eq. (7.5) separately.
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Figure 5: Number of digits of precision obtained for the finite part of the bare helicity
amplitudes in the gluon-fusion channel. The horizontal axis corresponds to s/m

2, the
vertical axis to t/m
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 [Becchetti, Coro, Nega, LT, Wagner to appear soon]

x ∝ log (1 +
s − 4m2

4m2 )
push  singularity to infinitys = 0

Preliminary: extend the convergence using “Bernoulli-like” variables in 2 dimensions

roughly
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��++ (c) f (2,b)
�+�+

(d) f (2,b)
+��+ (e) f (2,b)

�+++ (f) f (2,b)
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(g) f (2,b)
++�+ (h) f (2,b)

+++�

Figure 5: Number of digits of precision obtained for the finite part of the bare helicity
amplitudes in the gluon-fusion channel. The horizontal axis corresponds to s/m

2, the
vertical axis to t/m

2.
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x ∝ log (1 +
s − 4m2

4m2 )
push  singularity to infinitys = 0

push convergence to very high values of s

 [Becchetti, Coro, Nega, LT, Wagner to appear soon]

small mass expansion nicely complements the rest

roughly

Preliminary!!!!!!

Preliminary: extend the convergence using “Bernoulli-like” variables in 2 dimensions



CONCLUSIONS
- Elliptic amplitudes are fundamental building blocks in QFT, for precision collider physics and beyond 

- Controlling them “analytically” requires understanding relations among integrals, analytic continuation, 

and being able to evaluate them numerically (i.e. doing series expansions, see Matthias’ talk) 

- Choosing good integrals to make analytic structure manifest has been fundamental to solve many 

polylogarithmic problems 

- I described today a path towards the generalization of those ideas to elliptic amplitudes and beyond 

- Thanks to these developments, first “fully analytic” results obtained for elliptic amplitudes and more!



CUTTING-EDGE PROBLEMS ADDRESSED

Description References Geometry
Equal-mass banana graphs [41], this paper CY 2-, 3- and 4-folds
Single scale triangle graphs [41] Elliptic curve
3-loop corrections to the electron [58, 59] Sunrise elliptic curve,
and photon self-energies in QED banana K3 surface
3- and 4-loop ice cone integrals [41], this paper Two copies of sunrise elliptic

curve and banana K3 surface
Deformed CY operators this paper CY 2-, 3- and 4-folds
Equal-mass banana graphs with unpublished CY 1-, 2-, 3-folds
one massless propagator
Gravitational scattering [60, 61, 162] Sym. square of Legendre curve,
at 5PM-1SF CY 3-fold AESZ 3
Gravitational scattering this paper Apéry family of K3 surfaces,
at 5PM-2SF CY 3-fold
Generic three-mass sunset [41] Elliptic curve
2-loop 3-point integrals for gg ! H [170] Two-mass sunrise elliptic curve
2-parameter triangle graph [41] Elliptic curve
2-loop 4-point integrals for Bhabha unpublished Elliptic curve
and Møller scattering
2-loop 4-point integrals for diphoton [56] Elliptic curve
2-loop 4-point acnode integral unpublished Elliptic curve
(diagonal box)
3-parameter double box [41] Elliptic curve
2-loop 5-point integrals for tt̄+jet [57] Elliptic curve
3-loop two-mass banana graph unpublished K3 surface
4-loop two-mass banana graph unpublished CY 3-fold
Maximal cut of a non-planar [62] Hyperelliptic curve of genus 2
double box

Table 2. Summary of the different applications of the method of ref. [41]. We intend to release
the unpublished results listed above as part of future works in several different collaborations.
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RECAP: CONSTRUCTION OF CANONICAL BASES BEYOND POLYLOGS

1) For each geometry, identify the master integrals corresponding to the form of the first kind

This is a differential form without poles (holomorphic) — In elliptic case → ∫C

dx
y

y = (x − a1)(x − a2)(x − a3)(x − a4)
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4) Locally close to a singular point: rotate away the semi-simple part + clean up for a full -factorizationϵ



A TWO-POINT CORRELATOR: THE THREE-LOOP QED SELF-ENERGY

of these relations are independent is not an obstacle since, when trying to solve them, some relations will vanish
identically and for this reason will automatically be of no use.
The next step is to solve the system of these equations. Though there are several ways of thinking about what such

a solution might be, we prefer to look for the most general one. We then want to construct an algorithm that, for a
given topology and for any given initial set of powers of propagators, expresses an initial integral through a minimal
set of “simpler” integrals. The simpler integrals are usually those that either have denominators raised to small powers
or those that belong to simpler topologies. We then consider these “simpler”, but still non-trivial topologies, write
down a new set of recurrence relations for them, construct an algorithm that reduces any integral to even simpler
topologies and continue along these lines until we have an algorithm that completely solves the initial problem in
terms of a few master integrals. The final set of master integrals is found experimentally. There is no proof that the
set we find is indeed minimal with respect to integration-by-parts relations in the strict mathematical sense, but for
practical calculations this set of integrals is sufficient.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k)

FIG. 1. Examples of three-loop quark propagator diagrams corresponding to eleven integration topologies.

Our solution of the system of recurrence relations shows that it is possible to express any integral which belongs to
the above topologies through 18 master integrals. Most of these integrals have been calculated in the course of the
analytical calculation of the electron anomalous magnetic moment [10] and can be taken from there. It is remarkable
that a transition from the abelian theory to the non-abelian theory does not result in a significant increase in the
number of master integrals to be computed, although the number of basic topologies does. As compared to Ref. [10],
we need one additional master integral that corresponds to topology A and we also need one of the master integrals
of Ref. [10] to a higher order in the regularization parameter ε. For the QCD wave function renormalization constant
we also need the constant C1 (see [10] ) which was not computed in [10], because it mysteriously canceled in the

4

̂p ΣV(p2, m2) + m ΣS(p2, m2)

fully characterizes the geometry of the electron propagator one order lower in perturbation
theory.

Figure 2: Planar and non-planar top sector diagrams relevant for the calculation of the
three-loop electron propagator. From the graphs, one can see that there can never be a cut
through four massive particles, which excludes contributions proportional to the three-loop
massive banana graph.

2.1 The elliptic curve

While the elliptic curve appearing in the sunrise graph has already been studied at full
length in the literature [4, 17, 49–52], we recall here some of its properties for convenience
of the reader and to establish our notations. The elliptic curve associated to the maximal
cut of the two-loop sunrise (see fig. 3) can be defined in terms of the kinematical invariants
of the propagator by the following fourth-order equation

Y
2 = P4(X) = X

�
X � 4m2

��
X � (

p
p2 �m)2

��
X � (

p
p2 +m)2

�
. (2.10)

Figure 3: The two loop sunrise graph, whose maximal cut is associated to the elliptic
curve defined by eq. (2.10).

The periods of the elliptic curve satisfy the following second-order Picard-Fuchs equa-
tion
"✓

x
d

dx

◆2

+

✓
1

x� 1
+

9

x� 9
+ 2

◆✓
x
d

dx

◆
+

27

4(x� 9)
+

1

4(x� 1)
+ 1

#
$(x) = 0 , (2.11)

where we have used the dimensionless ratio x defined in eq. (2.1). It is well known that close
to any regular singular point, this equation admits two solutions, a regular one and one
which diverges logarithmically. In a neighborhood of a regular-singular point, we always
denote the regular or holomorphic solution by $0(x). Note that a solution, which is holo-
morphic at one regular singular point, need not be holomorphic at another regular-singular
point (see also refs. [28, 53]). If we discuss different regular singular points p at the same
time, we will use superscripts like $

[p]
0 (x) to indicate the solution that is holomorphic in a

neighborhood of the point p.
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a new basis of master integrals that fulfills a so-called ✏-factorized system of differential
equations [21]. More explicitly, we define a new basis of integrals ~J through

~J = A(✏, x)~I , (3.2)

and we would like to find a matrix A(✏, x) such that the new basis of master integrals fulfills

d

dx
~J = ✏G(x) ~J , ✏G(x) = ABA

�1 +
dA

dx
A

�1
. (3.3)

In this form, the differential equations can easily be solved as series expansion in ✏. The
matrix G(x) can in general be written as follows

G(x) =
X

i

Gi fi(x) , (3.4)

where Gi are numerical matrices and the fi(x) are functions of the kinematical variable
x. Importantly, the functions fi(x) determine the analytic structure of the solutions to all
orders in ✏. Using the language of differential forms we can write

fi(x)dx = !i , (3.5)

such that the system of differential equations takes the form

d ~J = ✏

 
X

i

Gi !i

!
~J . (3.6)

Its solutions can formally be written as a path-ordered exponential,

~J(x) = P exp

"
✏

X

i

Gi

Z

�
!i

#
~J0 , (3.7)

where P is the path-ordering operator, ~J0 is the boundary condition at x = x0 and � is a
path that connects the points x0 to the generic point x. In this form, it becomes obvious
that at all orders in ✏ the integrals ~J can be written as linear combinations of (Chen)
iterated integrals [14] over the forms !i. In the problem under study we only deal with one
kinematic variable and the ensuing iterated integrals are explicitly given by

I(!in , . . . ,!i1) =

Z x

x0

dxnfin(xn) . . .

Z x3

x0

dx2fi2(x2)

Z x2

x0

dx1fi1(x1) , (3.8)

where x0 is the chosen boundary point.
As already hinted at in the previous section, in the case of the three-loop self-energy

in QED, we find that the space of differential one-forms is larger than just dlog-forms, and
differential one-forms related to the elliptic curve of the two-loop equal mass sunrise integral
appear. In order to find an ✏-factorized basis, we proceed in two equivalent ways: first, using
an Ansatz as elucidated in refs. [25, 30, 54], and second, employing the algorithm described
in ref. [29]. We verified explicitly that both approaches generate the same ✏-factorized
basis, up to a rotation by a constant matrix. For the dlog-type integrals, we use a standard
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terms of a few master integrals. The final set of master integrals is found experimentally. There is no proof that the
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Our solution of the system of recurrence relations shows that it is possible to express any integral which belongs to
the above topologies through 18 master integrals. Most of these integrals have been calculated in the course of the
analytical calculation of the electron anomalous magnetic moment [10] and can be taken from there. It is remarkable
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number of master integrals to be computed, although the number of basic topologies does. As compared to Ref. [10],
we need one additional master integral that corresponds to topology A and we also need one of the master integrals
of Ref. [10] to a higher order in the regularization parameter ε. For the QCD wave function renormalization constant
we also need the constant C1 (see [10] ) which was not computed in [10], because it mysteriously canceled in the
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an explicit version expressed in terms of the basis integrals in eq. (2.9) can be found in the
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⌘16(⌧) are modular forms of �1(6). We will comment more on the connection to modular
forms in section 4.5.
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they are related to forms of the second kind with 
“double poles”  a hint for bootstrap program?→
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