Planar Six-Point Feynman Integrals for Four-Dimensional Gauge Theories

Samuel Abreu with Pier Monni, Ben Page, Johann Usovitsch

arXiv:2412.19884

25th of July, 2025 — Loop Summit 2, Cadenabbia

Outline

- Setup
- Kinematics
- One-Loop Warm-Up
- Two-Loop Planar Integrals
- Summary and Discussion

Setup

- Scattering of six massless particles
 - The p_i are four-dimensional momenta
 - Momentum conservation ⇒ 5 independent momenta
 - Four-dimensionality ⇒ 4 independent momenta

- Regulate singularities in Dim Reg
 - Loop momenta are in $D=4-2\epsilon$ dimensions
- Consider theories with renormalisable power counting (e.g., QCD, but no gravity)

How to include these conditions? What are the simplifications?

Similar work, with the same conclusions

[J. Henn, T. Peraro, Y. Xu, and Y. Zhang, 2021]

[J. M. Henn, A. Matijašić, J. Miczajka, T. Peraro, Y. Xu, and Y. Zhang, 2024 and 2025]

Kinematics

Variables

- With $s_{ij} = (p_i + p_j)^2$ and $s_{ijk} = (p_i + p_j + p_k)^2$, need $\vec{s} = \{s_{12}, s_{23}, s_{34}, s_{45}, s_{56}, s_{16}, s_{123}, s_{234}, s_{345}\}$
- Implement four-dimensional constraint: $\Delta_6 = G(p_1, p_2, p_3, p_4, p_5) = 0$

Gram determinants

- Two-line Gram $G\begin{pmatrix} u_1 \dots u_n \\ v_1 \dots v_n \end{pmatrix} = \det(2u_i \cdot v_j)$, and one-line Gram $G(u_1 \dots u_n) = \det(2u_i \cdot u_j)$
- Important property: vanish if any of the u_i (or v_i) are linearly dependent
- Δ_6 : degree 5 polynomial in \vec{s} , quadratic in each variable

-2 s12 s123 s16 2 s34 + 2 s123 2 s16 2 s34 + 2 s12 s123 s16 s23 s34 + 2 s12 s123 s16 s234 s34 - 2 s123 2 s16 s234 s34 - $2 \text{ s} 12 \text{ s} 123 \text{ s} 23 \text{ s} 234 \text{ s} 34 + 2 \text{ s} 123^2 \text{ s} 16 \text{ s} 34^2 + 2 \text{ s} 123 \text{ s} 16^2 \text{ s} 34^2 - 2 \text{ s} 123 \text{ s} 16 \text{ s} 23 \text{ s} 34^2 - 2 \text{ s} 12 \text{ s} 123 \text{ s} 16 \text{ s} 23 \text{ s} 345 + 2 \text{ s} 123 \text{ s} 16 \text{ s} 23 \text{ s} 34^2 - 2 \text{ s} 123 \text{ s} 16 \text{ s} 23 \text{ s} 345 + 2 \text{ s} 123 \text{ s} 16 \text{ s} 23 \text{ s} 34^2 - 2 \text{ s} 123 \text{ s} 16 \text{ s} 34^2 - 2 \text{ s} 123 \text{ s} 16 \text{ s} 34^2 - 2 \text{ s} 123 \text{ s} 16 \text{ s} 23 \text{ s} 34^2 - 2 \text{ s} 123 \text{ s} 16 \text{ s} 23 \text{ s} 34^2 - 2 \text{ s} 123 \text{ s} 16 \text{ s} 24^2 - 2 \text{ s} 123 \text{ s} 16 \text{ s} 24^2 - 2 \text{ s} 123 \text{ s} 16 \text{ s} 24^2 - 2 \text{ s} 123 \text{ s} 16 \text{ s} 24^2 - 2 \text{ s} 123 \text{ s} 16 \text{ s} 24^2 - 2 \text{ s} 123 \text{ s} 16 \text{ s} 24^2 - 2 \text{ s} 123 \text{ s} 16 \text{ s} 24^2 - 2 \text{ s} 123 \text{ s} 16 \text{ s} 24^2 - 2 \text{ s} 123 \text{ s} 16 \text{ s} 24^2 - 2 \text{ s} 123 \text{ s} 16 \text{ s} 24^2 - 2$ 2 s12 s123 s16 s234 s345 - 2 s123² s16 s234 s345 + 2 s12 s123 s23 s234 s345 - 2 s12 s123 s234² s345 + 2 s123² s234² s345 -2 s123² s16 s34 s345 + 2 s123 s16 s23 s34 s345 - 2 s123² s234 s34 s345 - 4 s123 s16 s234 s34 s345 + 2 s123 s23 s234 s34 s345 + 2 s123² s234 s345² - 2 s123 s23 s234 s345² + 2 s123 s234² s345² + 2 s12² s16 s23 s45 - 2 s12² s16 s234 s45 + 2 s12 s123 s16 s234 s45 - 2 s12² s23 s234 s45 + 2 s12² s234² s45 - 2 s12 s123 s234² s45 + 2 s12 s123 s16 s34 s45 -4 s12 s16 s23 s34 s45 + 2 s12 s123 s234 s34 s45 + 2 s12 s16 s234 s34 s45 + 2 s123 s16 s234 s34 s45 + 2 s12 s23 s234 s34 s45 2 s123 s16 s34² s45 + 2 s16 s23 s34² s45 - 4 s12 s123 s234 s345 s45 + 2 s12 s23 s234 s345 s45 - 2 s12 s234² s345 s45 - $2 s123 s234^2 s345 s45 + 2 s123 s234 s34 s345 s45 - 2 s23 s234 s34 s345 s45 + 2 s12^2 s234 s45^2 + 2 s12 s234^2 s45^2 - 2 s23 s234 s345 s45 + 2 s234 s245 + 2 s244 + 2$ 2 s12 s234 s34 s45² + 2 s12 s16² s34 s56 - 2 s123 s16² s34 s56 - 4 s12 s16 s23 s34 s56 + 2 s123 s16 s23 s34 s56 + 2 s12 s23² s34 s56 + 2 s12 s16 s23 s345 s56 + 2 s123 s16 s23 s345 s56 - 2 s12 s232 s345 s56 - 2 s12 s16 s234 s345 s56 + 2 s123 s16 s234 s345 s56 + 2 s12 s23 s234 s345 s56 - 4 s123 s23 s234 s345 s56 + 2 s123 s16 s34 s345 s56 + 2 s123 s23 s34 s345 s56 + 2 s16 s23 s34 s345 s56 - $2 \text{ s}23^2 \text{ s}34 \text{ s}345 \text{ s}56 - 2 \text{ s}123 \text{ s}23 \text{ s}345^2 \text{ s}56 + 2 \text{ s}23^2 \text{ s}345^2 \text{ s}56 - 2 \text{ s}123 \text{ s}234 \text{ s}345^2 \text{ s}56 - 2 \text{ s}245^2 \text{ s}56 - 2 \text{ s}245^2 \text{ s}56 - 2 \text{ s}245^2 \text{ s}56 - 2 \text{ s$ 4 s12 s16 s23 s45 s56 + 2 s12 s16 s234 s45 s56 - 2 s123 s16 s234 s45 s56 + 2 s12 s23 s234 s45 s56 - 4 s12 s16 s34 s45 s56 + 2 s123 s16 s34 s45 s56 - 4 s12 s23 s34 s45 s56 - 4 s16 s23 s34 s45 s56 + 2 s12 s23 s345 s45 s56 + 2 s12 s234 s345 s45 s56 + 2 s123 s234 s345 s45 s56 + 2 s23 s234 s345 s45 s56 - 2 s123 s34 s345 s45 s56 + 2 s23 s34 s345 s45 s56 - 2 s12 s234 s45² s56 + $2 s12 s34 s45^2 s56 - 2 s16 s23 s345 s56^2 + 2 s23^2 s345 s56^2 + 2 s23 s345^2 s56^2 + 2 s16 s23 s45 s56^2 - 2 s23 s345 s45 s56^2$

Kinematics — square roots

3-point-like square roots

$$\lambda(a, b, c) = a^2 + b^2 + c^2 - 2ab - 2ac - 2bc$$

- Planar: $G(p_1 + p_2, p_3 + p_4) = -\lambda(s_{12}, s_{34}, s_{56}), G(p_2 + p_3, p_4 + p_5) = -\lambda(s_{23}, s_{45}, s_{16})$
- And also a `non-planar' version: $G(p_1 + p_4, p_2 + p_3) = -\lambda(s_{14}, s_{23}, s_{56})$

from 5pt one mass, [S. Abreu, H. Ita, F. Moriello, B. Page, W. Tschernow, M. Zeng, 2020]

5-point-like square root(s)

- Levi-Civita contraction of 4 vectors: ${\rm tr}_5=4i\varepsilon_{\mu\nu\rho\sigma}p_1^\mu p_2^\nu p_3^\rho p_4^\sigma$; ${\rm tr}_5^2=G(1234)$
- Take canonical choice: $\sqrt{\Delta_5} \equiv \sqrt{G(1234)}$
- All 5-point like roots polynomially related: $\sqrt{\Delta_5}\sqrt{\Delta_{i_1i_2i_3i_4}^{(5)}}=G\left(\frac{i_1i_2i_3i_4}{1234}\right)\mod\Delta_6=0$

Kinematics — 4d condition

- Solution 1: solve $\Delta_6 = 0$
 - choose variable to eliminate \Rightarrow breaks symmetry of the problem $\stackrel{\frown}{\checkmark}$
 - quadratic equation introduces extra square root ⇒ nested square roots

- Solution 2: twistor variables [A. Hodges, 2009]
 - four-dimensional variables, rationalise $\sqrt{\Delta_5}$
 - distort phase-space, makes it harder to understand singularities 🔑

- Solution 3: work modulo $\Delta_6 = 0$
 - keeps full symmetry of the problem and doesn't distort phase-space
 - expressions not unique, valid modulo $\Delta_6=0$. Unique when evaluated on 4d phase-space point |+|

One-loop Warm-up

- "At one loop we only need bubbles, triangles and boxes"
 - basis dependent and only up to terms that vanish when $\epsilon
 ightarrow 0$
 - beyond ϵ^0 pentagons contribute
 - ~ 6-dimensional pentagon, evanescent integral

$$\mu_{\ell\ell} = G(\ell 1234)$$

see e.g. [Z. Bern, L. J. Dixon, and D. A. Kosower, 1993]

• For four-dimensional external legs, we never need hexagons (or bigger diagrams)

- one-line Gram version:
$$G(\ell 12345) = p(\vec{s}) + \sum \rho_i p_i(\vec{s}) + \sum \rho_i \rho_j p_{ij}(\vec{s}) = 0$$

- two-line Gram version: $G\left(\frac{\ell 1234}{12345}\right) = q(\vec{s}) + \sum \rho_i q_i(\vec{s}) = 0$
- trivial to write hexagon as linear combination of 6 pentagons
- NB: not an IBP relation!

see e.g. [J. Gluza, K. Kajda, and D. A. Kosower, 2010]

Two-Loop Planar Integrals

• Six topologies, can be embedded in the first two (double pentagon and hexabox)

Two-Loop Integrals — counting masters

Drop in number of masters from four-dimensional external legs

Two-Loop Integrals — evanescent integrals

• How many integrals can we make $\mathcal{O}(\epsilon)$? Can we remove a complete topology?

see also [J. Gluza, K. Kajda, and D. A. Kosower, 2010] [G. Gambuti, D. A. Kosower, P. P. Novichkov, and L. Tancredi, 2023]

- Integrand is polynomial in components of ℓ_1 and ℓ_2
- There are 11 independent integration variables (that cannot be trivially integrated over)
- Renormalisable power counting: 5 powers of ℓ_1 , 5 powers of ℓ_2 , 8 powers of $\ell_1 \cup \ell_2 \Rightarrow$ UV finite!
- Transverse variables: $\alpha_1=\varepsilon_{\mu\nu\rho\sigma}\ell_1^\mu p_1^\nu p_2^\rho p_3^\sigma$; $\alpha_2=\varepsilon_{\mu\nu\rho\sigma}\ell_2^\mu p_4^\nu p_5^\rho p_6^\sigma$
- First set of 11 independent variables: $\left\{
 ho_1,...,
 ho_9,lpha_1,lpha_2
 ight\}$
- Integrand is polynomial in ho_i and $lpha_i$; monomials with ho_i belong to lower topology \Rightarrow polynomial in $lpha_i$ only
- Count independent monomials in α_1 and α_2 that satisfy power counting \Rightarrow 33-dimensional space

Two-Loop Integrals — evanescent integrals

- Can we fill the 33-dimensional space with evanescent integrals?
 - new set of variables:

- new set of variables:
$$\alpha_1 = \varepsilon_{\mu\nu\rho\sigma} \ell_1^{\mu} p_1^{\nu} p_2^{\rho} p_3^{\sigma} \qquad \alpha_2 = \varepsilon_{\mu\nu\rho\sigma} \ell_2^{\mu} p_4^{\nu} p_5^{\rho} p_6^{\sigma} \qquad \mu_{ij} = \ell_i^{\epsilon} \cdot \ell_j^{\epsilon} = G \begin{pmatrix} \ell_i 1234 \\ \ell_j 1234 \end{pmatrix} \qquad 3$$

- $\begin{array}{lll} \text{- soft regions of } \ell_1 \colon & \ell_1 p_1 \sim \lambda, & \ell_1 p_1 p_2 \sim \lambda \\ \text{- collinear regions of } \ell_1 \colon & \ell_1 / / p_1, & \ell_1 p_1 / / p_2, & \ell_1 p_1 p_2 / / p_3 \end{array} \right\} \begin{array}{l} \alpha_1, \mu_{11}, \mu_{12} \text{ vanish in these} \\ \text{limits!} \end{array}$

$$\ell_1 // p_1$$
,

$$\ell_1 - p_1 // p_2,$$

$$\ell_1 - p_1 - p_2 // p_3$$

- consider monomials $m_\beta=\alpha_1^{\beta_1}\alpha_2^{\beta_2}\mu_{11}^{\beta_3}\mu_{22}^{\beta_4}\mu_{12}^{\beta_5},$ for $\beta_i\geq 0$
- finite integrals: $1 \le \beta_1 + 2\beta_3 + \beta_5 \le 5$, $1 \le \beta_2 + 2\beta_4 + \beta_5 \le 5$, $\beta_1 + \beta_2 + 2\beta_3 + 2\beta_4 + 2\beta_5 \le 8$
- evanescent integrals: $\beta_3 + \beta_4 + \beta_5 \ge 1$
- there are 165 monomials leading to evanescent integrals, but not independent on maximal cut

Two-Loop Integrals — evanescent integrals

- Can we fill the 33-dimensional space with evanescent integrals?
 - Evaluate evanescent monomials on on-shell configurations of ℓ_1 and ℓ_2
 - There are 33 independent monomials!

 $\left\{ \mu_{12}, \alpha_{2}\mu_{12}, \alpha_{2}\mu_{11}, \alpha_{1}\mu_{12}, \alpha_{1}\mu_{22}, \mu_{12}^{2}, \mu_{12}\mu_{22}, \mu_{11}\mu_{12}, \mu_{11}\mu_{22}, \alpha_{2}^{2}\mu_{11}, \alpha_{1}\alpha_{2}\mu_{22}, \alpha_{1}\alpha_{2}\mu_{11}, \alpha_{1}^{2}\mu_{22}, \alpha_{2}\mu_{12}^{2}, \alpha_{2}\mu_{12}^{2}, \alpha_{2}\mu_{11}\mu_{12}, \alpha_{2}\mu_{12}^{2}, \alpha_{1}\mu_{11}\mu_{12}, \mu_{12}^{3}, \mu_{12}^{2}\mu_{22}, \mu_{11}\mu_{12}^{2}, \mu_{12}^{2}\mu_{22}, \mu_{11}\mu_{12}^{2}, \mu_{12}^{2}\mu_{22}, \alpha_{1}\alpha_{2}\mu_{11}^{2}, \alpha_{2}\mu_{12}^{3}, \alpha_{2}\mu_{12}^{2}\mu_{22}, \alpha_{2}\mu_{11}\mu_{12}^{2}, \alpha_{2}\mu_{11}^{2}\mu_{12}, \mu_{12}^{4}, \mu_{12}^{4}\mu_{12}^{2}, \mu_{11}^{4}\mu_{12}^{3} \right\}$

- For renormalisable power counting, we can make the whole double pentagon topology $\mathcal{O}(\epsilon)$!

NB: the single master in the hexabox topology can also be made $\mathcal{O}(\epsilon)$, but it is very easy to compute so we keep it

Two-Loop Integrals — Hexabox Topology

Approach: DEs in canonical basis, powered by finite field tech

[A.V. Kotikov, 1991] [E. Remiddi, 1997] [T. Gehrmann and E. Remiddi, 1999] [J. Henn, 2013]

[A. von Manteuffel and R. M. Schabinger, 2014] [T. Peraro, 2016]

- **Difficulty 1:** four-dimensional differential operators \Rightarrow build them numerically
- **Difficulty 2:** fast enough IBPs \Rightarrow KIRA with finite fields

[J. Klappert, F. Lange, P. Maierhöfer, and J. Usovitsch, 2021]

- Difficulty 3: pure basis for double-box
 - Start from on-shell pure basis

similar to [J. Henn, T. Peraro, Y. Xu, and Y. Zhang, 2021]

- Go off-shell and rotate with Magnus expansion [M. Argeri, S. Di Vita, P. Mastrolia, E. Mirabella, J. Schlenk, U. Schubert, and L. Tancredi, 2014]
- Functional reconstruction techniques for rotation matrix, many non-trivial technical improvements to account for $\Delta_6 = 0$ condition

ideas from [G. De Laurentis and B. Page, 2022]

Two-Loop Integrals — Hexabox Topology

$$dI = \epsilon MI$$
, $M = M_{\alpha} d \log W_{\alpha}$

- 202 master integrals, in 126 different sectors
 - 185 are five-point one-mass topologies. All this for 17 new integrals!
- 128 letters, only 11 new ones (associated with six-point topologies)
 - 9 appear in the differential equation on the maximal cut, 2 appear in the off-shell penta-triangle
 - 2 `off-shell letters' are odd under $\sqrt{\Delta_5}$, 9 `on-shell' letters are even
- Closure of the alphabet under dihedral symmetry: 245 letters
- From here we know how to proceed to get basis of functions, evaluate integrals, ...

Two-Loop Integrals — Numerical Checks

• Two four-dimensional rational points (start from twistor variables)

[J. Henn, T. Peraro, Y. Xu, and Y. Zhang, 2021]

$$P_{1} = \left\{ x_{1} = -1, x_{2} = -24, x_{3} = 9, x_{4} = 54, x_{5} = 38, x_{6} = -97, x_{7} = 3, x_{8} = 95 \right\}$$

$$= \left\{ s_{12} = -1, s_{23} = -38, s_{34} = -\frac{1039}{6}, s_{45} = -2712776, s_{56} = -50409, s_{16} = -1662120, s_{123} = -95, s_{234} = -19926, s_{345} = -2752175 \right\}$$

$$P_{2} = \left\{ x_{1} = -1, x_{2} = -74, x_{3} = 7, x_{4} = 53, x_{5} = 34, x_{6} = -68, x_{7} = -91, x_{8} = 76 \right\}$$

$$= \left\{ s_{12} = -1, s_{23} = -34, s_{34} = -\frac{827628}{37}, s_{45} = -7995952, s_{56} = -147756, s_{16} = -4804450, s_{123} = -76, s_{234} = -56882, s_{345} = -6669452 \right\}.$$

- Compute with AMFlow at P_1 and P_2
- Evolve from P_1 to P_2 with DiffExp

Everything agrees ⇒ **DE** is correct!

[X. Liu and Y.-Q. Ma, 2023]

[M. Hidding, 2020]

- NB: DiffExp evolution in twistor space to ensure we stay in four-dimensional kinematics

Summary and discussion

- Strong impact of four-dimensional kinematics beyond five-point integrals
 - Reduced number of masters
 - Decouple topologies at $\mathcal{O}(\epsilon)$
- Possible to work with Mandelstam variables modulo four-dimensional condition
 - Keeps symmetry of problem
 - More transparent interpretation of singularities of differential equation
 - Non-trivial generalisation of functional reconstruction technology
- Not a lot of new information in the genuine six-point integrals...
 - 17 new integrals, 11 new letters

Summary and discussion

- Solving the four-dimensional DE
 - Are twistors really the only way?
- Beyond six points
 - Do we see even more simplification? see e.g. [P. Bargiela, T. Yang, 2025]

- What to do with the integrals?
 - one-loop six-gluon amplitudes are already very very complicated...

Summary and discussion

- Solving the four-dimensional DE
 - Are twistors really the only way?
- Beyond six points
 - Do we see even more simplification? see e.g. [P. Bargiela, T. Yang, 2025]

- What to do with the integrals?
 - one-loop six-gluon amplitudes are already very very complicated...

