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• Scattering of six massless particles


- The  are four-dimensional momenta


- Momentum conservation  5 independent momenta


- Four-dimensionality  4 independent momenta

pi

⇒

⇒

Setup

p4

p5

p6

p3p2

p1

• Regulate singularities in Dim Reg


- Loop momenta are in  dimensionsD = 4 − 2ϵ

• Consider theories with renormalisable power counting (e.g., QCD, but no gravity)

How to include these conditions? What are the simplifications? 

[J. Henn, T. Peraro, Y. Xu, and Y. Zhang, 2021]• Similar work, with the same conclusions
[J. M. Henn, A. Matijašić, J. Miczajka, T. Peraro, Y. Xu, and Y. Zhang, 2024 and 2025]
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Kinematics
• Variables


- With  and , need 


- Implement four-dimensional constraint: 

sij = (pi + pj)2 sijk = (pi + pj + pk)2 ⃗s = {s12, s23, s34, s45, s56, s16, s123, s234, s345}

Δ6 = G(p1, p2, p3, p4, p5) = 0

• Gram determinants


- Two-line Gram , and one-line Gram 


- Important property: vanish if any of the  (or ) are linearly dependent


- : degree 5 polynomial in , quadratic in each variable

G (u1…un
v1…vn) = det(2ui ⋅ vj) G(u1…un) = det(2ui ⋅ uj)

ui vi

Δ6 ⃗s
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p1 p5

p4

p3

p6

p2Kinematics — square roots

• 3-point-like square roots


- Planar: , 


- And also a `non-planar’ version: 

G(p1 + p2, p3 + p4) = − λ(s12, s34, s56) G(p2 + p3, p4 + p5) = − λ(s23, s45, s16)

G(p1 + p4, p2 + p3) = − λ(s14, s23, s56)

• 5-point-like square root(s)


- Levi-Civita contraction of 4 vectors:     ;    


- Take canonical choice: 


- All 5-point like roots polynomially related:  

tr5 = 4iεμνρσ pμ
1 pν

2 pρ
3 pσ

4 tr25 = G(1234)

Δ5 ≡ G(1234)

Δ5 Δ(5)
i1i2i3i4

= G (i1i2i3i4
1234 ) mod Δ6 = 0

λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc

from 5pt one mass, [S. Abreu, H. Ita, F. Moriello, B. Page, W. Tschernow, M. Zeng, 2020]
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Kinematics — 4d condition
• Solution 1: solve 


- choose variable to eliminate  breaks symmetry of the problem


- quadratic equation introduces extra square root  nested square roots

Δ6 = 0
⇒

⇒

• Solution 2: twistor variables


- four-dimensional variables, rationalise  


- distort phase-space, makes it harder to understand singularities 

Δ5

• Solution 3: work modulo 


- keeps full symmetry of the problem and doesn’t distort phase-space 


- expressions not unique, valid modulo . Unique when evaluated on 4d phase-space point

Δ6 = 0

Δ6 = 0 👍

 👎

 👎
 👎

👍

 👎
👍

[A. Hodges, 2009]
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p1 p5

p4

p3

p6

p2

G (ℓ1234
12345)

One-loop Warm-up
• “At one loop we only need bubbles, triangles and boxes”


- basis dependent and only up to terms that vanish when 


- beyond  pentagons contribute 


- ~ 6-dimensional pentagon, evanescent integral

ϵ → 0
ϵ0 p1 p5

p4

p3

p2

µ!!

μℓℓ = G(ℓ1234)

• For four-dimensional external legs, we never need hexagons (or bigger diagrams)


- one-line Gram version: 


- two-line Gram version: 


- trivial to write hexagon as linear combination of 6 pentagons 


- NB: not an IBP relation! 

G(ℓ12345) = p( ⃗s) + ∑ ρi pi( ⃗s) + ∑ ρiρj pij( ⃗s) = 0

G (ℓ1234
12345) = q( ⃗s) + ∑ ρi qi( ⃗s) = 0

see e.g. [Z. Bern, L. J. Dixon, and D. A. Kosower, 1993]

see e.g. [J. Gluza, K. Kajda, and D. A. Kosower, 2010]
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Two-Loop Planar Integrals
• Six topologies, can be embedded in the first two (double pentagon and hexabox)
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Two-Loop Integrals — counting masters

(G (ℓ11234
12345 ) = G (ℓ21234

12345 ) = 0)IBP relations +

8  5→ 3  1→ 2  1→

2  1→ 4  3→ 9  7→

• Drop in number of masters from four-dimensional external legs
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Two-Loop Integrals — evanescent integrals
• How many integrals can we make ? Can we remove a complete topology?𝒪(ϵ)

- Integrand is polynomial in components of  and ℓ1 ℓ2

- There are 11 independent integration variables (that cannot be trivially integrated over)

- Renormalisable power counting: 5 powers of , 5 powers of , 8 powers of   UV finite!ℓ1 ℓ2 ℓ1 ∪ ℓ2 ⇒
- Transverse variables:  ; α1 = εμνρσℓ

μ
1 pν

1 pρ
2 pσ

3 α2 = εμνρσℓ
μ
2 pν

4 pρ
5 pσ

6

- First set of 11 independent variables: {ρ1, …, ρ9, α1, α2}
- Integrand is polynomial in  and  ; monomials with  belong to lower topology  polynomial in  onlyρi αi ρi ⇒ αi

- Count independent monomials in  and  that satisfy power counting  33-dimensional spaceα1 α2 ⇒

see also [J. Gluza, K. Kajda, and D. A. Kosower, 2010]
[G. Gambuti, D. A. Kosower, P. P. Novichkov, and L. Tancredi, 2023]
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Two-Loop Integrals — evanescent integrals
• Can we fill the 33-dimensional space with evanescent integrals?

μij = ℓϵ
i ⋅ ℓϵ

j = G (
ℓi1234
ℓj1234)α1 = εμνρσℓ

μ
1 pν

1 pρ
2 pσ

3 α2 = εμνρσℓ
μ
2 pν

4 pρ
5 pσ

6

- new set of variables:

- soft regions of :ℓ1 ℓ1 − p1 ∼ λ, ℓ1 − p1 − p2 ∼ λ

- collinear regions of :ℓ1 ℓ1 // p1, ℓ1 − p1 // p2, ℓ1 − p1 − p2 // p3
}  vanish in these 

limits!
α1, μ11, μ12

- consider monomials mβ = αβ1
1 αβ2

2 μβ3
11μβ4

22μβ5
12, for βi ≥ 0

- finite integrals: 1 ≤ β1 + 2β3 + β5 ≤ 5 , 1 ≤ β2 + 2β4 + β5 ≤ 5 , β1 + β2 + 2β3 + 2β4 + 2β5 ≤ 8

- evanescent integrals: β3 + β4 + β5 ≥ 1

- there are 165 monomials leading to evanescent integrals, but not independent on maximal cut
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Two-Loop Integrals — evanescent integrals
• Can we fill the 33-dimensional space with evanescent integrals?

{μ12, α2μ12, α2μ11, α1μ12, α1μ22, μ2
12, μ12μ22, μ11μ12, μ11μ22, α2

2 μ11, α1α2μ22, α1α2μ11, α2
1 μ22, α2μ2

12, α2μ12μ22, α2μ11μ12, α2μ2
11, α1μ2

22, α1μ11μ12, μ3
12,

μ2
12μ22, μ12μ2

22, μ11μ2
12, μ2

11μ12, α1α2μ2
22, α1α2μ2

11, α2μ3
12, α2μ2

12μ22, α2μ11μ2
12, α2μ2

11μ12, μ4
12, μ3

12μ22, μ11μ3
12}

- Evaluate evanescent monomials on on-shell configurations of  and ℓ1 ℓ2

- There are 33 independent monomials!

- For renormalisable power counting, we can make the whole double pentagon topology !𝒪(ϵ)

⇒
NB: the single master 
in the hexabox 
topology can also be 
made , but it is 
very easy to compute 
so we keep it

𝒪(ϵ)
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Two-Loop Integrals — Hexabox Topology

• Approach: DEs in canonical basis, powered by finite field tech

• Difficulty 2: fast enough IBPs  KIRA with finite fields⇒

• Difficulty 3: pure basis for double-box

- Start from on-shell pure basis

- Functional reconstruction techniques for rotation matrix, many non-trivial technical improvements to 
account for  conditionΔ6 = 0

• Difficulty 1: four-dimensional differential operators  build them numerically⇒

[A.V. Kotikov, 1991] [E. Remiddi, 1997] [T. Gehrmann and E. Remiddi, 1999]
[J. Henn, 2013] [A. von Manteuffel and R. M. Schabinger, 2014] [T. Peraro, 2016]

[J. Klappert, F. Lange, P. Maierhöfer, and J. Usovitsch, 2021]

similar to [J. Henn, T. Peraro, Y. Xu, and Y. Zhang, 2021]

- Go off-shell and rotate with Magnus expansion [M. Argeri, S. Di Vita, P. Mastrolia, E. Mirabella, J. Schlenk, U. Schubert, and L. Tancredi, 2014]

ideas from [G. De Laurentis and B. Page, 2022]
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Two-Loop Integrals — Hexabox Topology

• 202 master integrals, in 126 different sectors

dI = ϵ M I , M = Mα d log Wα

- 185 are five-point one-mass topologies. All this for 17 new integrals!

• 128 letters, only 11 new ones (associated with six-point topologies)

- 9 appear in the differential equation on the maximal cut, 2 appear in the off-shell penta-triangle

- 2 `off-shell letters’ are odd under , 9 `on-shell’ letters are evenΔ5

• Closure of the alphabet under dihedral symmetry: 245 letters

• From here we know how to proceed to get basis of functions, evaluate integrals, … 
see Simon’s talk from Monday
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Two-Loop Integrals — Numerical Checks

P1 = {x1 = − 1,x2 = − 24,x3 = 9,x4 = 54,x5 = 38,x6 = − 97,x7 = 3,x8 = 95}
= {s12 = − 1,s23 = − 38,s34 = −

1039
6

, s45 = − 2712776,s56 = − 50409,s16 = − 1662120,s123 = − 95,s234 = − 19926,s345 = − 2752175}

P2 = {x1 = − 1,x2 = − 74,x3 = 7,x4 = 53,x5 = 34,x6 = − 68,x7 = − 91,x8 = 76}
= {s12 = − 1,s23 = − 34,s34 = −

827628
37

, s45 = − 7995952,s56 = − 147756,s16 = − 4804450,s123 = − 76,s234 = − 56882,s345 = − 6669452} .

• Two four-dimensional rational points (start from twistor variables)

• Compute with AMFlow at  and P1 P2

• Evolve from  to  with DiffExpP1 P2
} Everything agrees  DE is correct!⇒

- NB: DiffExp evolution in twistor space to ensure we stay in four-dimensional kinematics

[X. Liu and Y.-Q. Ma, 2023]

[M. Hidding, 2020]

[J. Henn, T. Peraro, Y. Xu, and Y. Zhang, 2021]
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Summary and discussion
• Strong impact of four-dimensional kinematics beyond five-point integrals

- Reduced number of masters
- Decouple topologies at 𝒪(ϵ)

• Possible to work with Mandelstam variables modulo four-dimensional condition
- Keeps symmetry of problem

- More transparent interpretation of singularities of differential equation

- Non-trivial generalisation of functional reconstruction technology

• Not a lot of new information in the genuine six-point integrals… 
- 17 new integrals, 11 new letters
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Summary and discussion

• Solving the four-dimensional DE
- Are twistors really the only way?

• Beyond six points
- Do we see even more simplification?

• What to do with the integrals?
- one-loop six-gluon amplitudes are already very very complicated…

see e.g. [P. Bargiela, T. Yang, 2025]
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Summary and discussion

• Solving the four-dimensional DE
- Are twistors really the only way?

• Beyond six points
- Do we see even more simplification?

• What to do with the integrals?
- one-loop six-gluon amplitudes are already very very complicated…

see e.g. [P. Bargiela, T. Yang, 2025]

Thank you
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