
Recent developments of the FORM computer algebra system

Loop Summit 2, Cadenabbia

Josh Davies

21st July, 2025

A brief history

0.0 (1984): work starts, 1.0 (1989): free, 2.0 (1991): commercial, 3.0 (2000): free

3.1+ (2006): early TFORM, ParFORM developments, gzip compression of sort files [doi]

3.2 (2007): #system, #pipe, #external [doi]
demonstrates use of e.g. Fermat, Reduce for poly GCD

3.3 (2007): TFORM, pthreads-based parallelization [doi]

3.3+ (2008): use of GMP for large integer operations, experimental polyratfun [doi]

3.3+ (2010): open source release, forum, test suite, effort to generate community involvement [doi]

4.0 (2013): improved rational polynomials, factorization, mul etc, extrasymbol, [doi]
transform, checkpointing

4.1 (2013): expression optimization [doi]

4.2 (2017): id,all, improved expression optimization, polyratfun expansion, dictionaries, [doi]
spectators, 0-dim tables, argtoextrasymbol, new transform and combinatorics functions

4.2.1 (2020): topology generator, topologies [doi]

1/18

https://doi.org/10.1016/j.nuclphysbps.2006.09.026
https://doi.org/10.1016/j.cpc.2006.11.007
https://doi.org/10.1016/j.cpc.2010.04.009
https://doi.org/10.1016/j.nuclphysbps.2008.09.076
https://doi.org/10.22323/1.131.0012
https://doi.org/10.1016/j.cpc.2012.12.028
https://doi.org/10.1016/j.cpc.2014.08.008
https://arxiv.org/abs/1707.06453
https://doi.org/10.1088/1742-6596/1525/1/012013

What’s next? Towards FORM 5
Changes over the last few years:
• Deprecations
• Bug fixes/changes
• Smaller new features
• Diagram generator
• Floating-point coefficients

Testing

Ideas for the future
• Easier, shorter term (for FORM 5?)
• Harder, longer term

New repository location: https://github.com/form-dev/form
• old link forwards to new (https://github.com/vermaseren/form)

2/18

https://github.com/form-dev/form
https://github.com/vermaseren/form

Deprecations
Features which will be present in FORM 5 release, but with “deprecated” status.

To our knowledge these are not used, and are a maintenance burden – maybe removed completely?

• Native Windows support: [#623]
• Windows Subsystem for Linux (WSL) exists

• 32-bit system support: [#624]
• various tests already fail for 32-bit builds and are skipped
• “real physics problems” are all run on 64-bit machines

• ParFORM: [#625]
• various tests already fail for ParFORM and are skipped
• test suite under valgrind already disabled for ParFORM (slow)
• TFORM scales better, and modern CPUs already out-scale TFORM

• Checkpoint mechanism: [#626]
• current state is almost certainly buggy, not well tested

Use of these features in FORM 5 prints a warning:
• Silence with FORM IGNORE DEPRECATION=1 env. var. or -ignore-deprecation cmd opt.
• If you use any of these features regularly, comment on the corresponding issue!

3/18

https://github.com/vermaseren/form/issues/623
https://github.com/vermaseren/form/issues/624
https://github.com/vermaseren/form/issues/625
https://github.com/vermaseren/form/issues/626

Bug fixes/changes
Many (>50?) bug fixes made over the last few years, including:
• sorting related [#513] [#527] [#529] [#565] [#593] [#691]
• Load-ing save files [#594]
• pattern matching [#583] [#601]
• ...

Notable changes:
• Expression optimizer no longer requires output to fit in workspace [#535]

• extra memory allocated if necessary, no need to set huge workspace

• multirun mode always used, and uses more PID digits [#591]
• xformxxx.sc0 −→ xform1234567.sc0
• -M cmd. opt. does nothing

• Fortran literal float suffix corrected [#584]
• gfortran: (Real*8): the integer 2147483648 is too large
• −→ integers ≥ 231 have a .D0 suffix

Fixes/changes are all in the master branch — use and test this please!
4/18

https://github.com/vermaseren/form/pull/513
https://github.com/vermaseren/form/pull/527
https://github.com/vermaseren/form/pull/529
https://github.com/vermaseren/form/pull/565
https://github.com/vermaseren/form/pull/593
https://github.com/form-dev/form/pull/691
https://github.com/vermaseren/form/pull/594
https://github.com/vermaseren/form/pull/583
https://github.com/vermaseren/form/pull/601
https://github.com/vermaseren/form/pull/535
https://github.com/vermaseren/form/pull/591
https://github.com/vermaseren/form/pull/584

Smaller new features (I)
Sort buffer reallocation: (request: Markus Loechner, Zurich Workshop) [#537] [#529]
• Reallocate LargeBuffer and SmallBuffer – reduce Resident Set Size
• #sortreallocate – now, before starting this module
• On sortreallocate; – at the start of every module
✓ Useful when running with memory constraints
✘ Potentially noticeable performance impact (On: 10%? “it depends”?)

Small MINCER test:

5/18

https://github.com/vermaseren/form/pull/537
https://github.com/vermaseren/form/pull/529

Smaller new features (II)

Zstandard compression support: (idea: Vitaly Magerya, Zurich Workshop) [#541]
• Uses zlibWrapper, very little code modification [zlibWrapper]
• On Compress,zstd; – new default behaviour
• On Compress,gzip; – old default behaviour, uses zlib
• Simple (best case) benchmark: 8% faster, 6% smaller sort file

• additional benefit if sort files are on slow HDD?

Read-only TableBases: (by: Florian Herren, Zurich Workshop) [#531]
• TableBase "name.tbl" open, readonly;

• Can now open files without write permissions
• provide read-only TableBase access to collaborators
• protect large, expensive TableBase from yourself!

Numerical evaluation of constants: (by: Florian Lorkowski, Zurich Workshop) [#532]
• Arbitrary-precision evaluation of e (ee), γE (em), π (pi) using MPFR library

6/18

https://github.com/vermaseren/form/pull/541
https://github.com/facebook/zstd/tree/dev/zlibWrapper
https://github.com/vermaseren/form/pull/531
https://github.com/vermaseren/form/pull/532

Smaller new features (III)
Backtracing: [#526]
• Effort to ease debugging, particularly for crashes of long-running jobs.
• On backtrace; – on by default, if enabled at compile time

• use eu-addr2line or addr2line to print stack on crash (elfutils)

• Small performance impact, ∼1%
• -g -fno-omit-frame-pointer, -rdynamic, form binary 2.5MB → 13MB
• Not enabled by default, needs: configure --enable-backtrace

• My recommendation: always enable, particularly for long-running jobs!

Program terminating at gcd-simple.frm Line 10 -->
Terminate called from polywrap.cc:156 (poly_gcd)
Backtrace:
0: TerminateImpl at startup.c:1870:10
1: poly_gcd at polywrap.cc:158:32
2: GCDfunction3 at ratio.c:1205:2
3: GCDfunction at ratio.c:1061:6
4: Generator at proces.c:4012:9
5: CatchDollar at dollar.c:112:6
6: PreProcessor at pre.c:1129:26
7: main at startup.c:1746:2

7/18

https://github.com/vermaseren/form/pull/526

Smaller new features (IV)

Cancel IntoHide plans: NIntoHide [#671]
• (now that IntoHide is fixed – marks all active expr for hide at module end)
• similar to Drop/NDrop, Hide/NHide etc.

Human-readable statistics: [#678]
• On HumanStats;, off by default

Time = 0.00 sec Generated terms = 1234567890 (1 B)
test Terms in output = 1234 (1 K)

Bytes used =123456789000 (115 GiB)

8/18

https://github.com/form-dev/form/pull/671
https://github.com/form-dev/form/pull/678

Smaller new features (V)
FLINT interface v1: [#644]
• Interface to Fast Library for Number Theory [FLINT]
• Implements most (so far) of the poly class functionality

• PolyRatFun, FactArg, FactDollar, div , rem , mul , gcd , inverse
• still missing: Expression factorization (Factorize), Modulus mode: to do!

• On flint; (default)
• Great performance, esp. for multivariate:

• forcer test reduction, ep-exact
• 753s → 521s (1.5x)

• mbox1l (1-loop box, vars: d , q12, q13, q33,m2)
• mbox1l(2,2,2,1): 3.0s → 1.2s (2.5x)
• mbox1l(3,2,2,2): 54s → 4.0s (14x)
• mbox1l(3,3,2,2): 221s → 7.7s (29x)

• [Takahiro’s polybench]

• Developed and tested with FLINT >= v3.0.1
• testing since Liverpool Workshop: req. v3.2.0

Fe
rm

at

FL
IN

T

FO
RM

M
at

he
m

at
ic
a

re
FO

RM

Si
ng

ul
ar

Sy
m

bo
lic

a

10 3

10 2

10 1

100

101

102

E
la

p
se

d
 t

im
e
 (

s)

nontrivial-gcd (uniform, # vars = 5, max degrees = 40, max # terms = 60)

9/18

https://github.com/vermaseren/form/pull/644
https://flintlib.org/
https://github.com/tueda/polybench

Diagram Generator
Interface to the GRACE generator of Toshiaki Kaneko [Comput. Phys. Commun. 92 (1995) 127-152]
• re-programmed as a C++ library

FORM-style syntax to use it: [Manual]
• Define a Model containing Particle and Vertex

• Particle particlename[,antiparticlename][,<sign><number>][,external];

• Vertex particle1,...,particlen:coupling;

Model PHI3;
Particle phi,1;
Vertex phi,phi,phi:g;

EndModel;

Model QCD;
Particle qua,QUA,-2;
Particle gho,GHO,-1;
Particle glu,+3;
Vertex qua,QUA,glu:g;
Vertex gho,GHO,glu:g;
Vertex glu,glu,glu:g;
Vertex glu,glu,glu,glu:gˆ2;

EndModel;

10/18

https://doi.org/10.1016/0010-4655(95)00122-6
https://www.nikhef.nl/~form/maindir/documentation/reference/html/manual.html#x1-36300021

Diagram Generator (II)
Generate diagrams using

diagrams_(model,set_of_input_particles,set_of_output_particles,
set_of_external_momenta,set_of_internal_momenta,
number_of_loops_or_coupling_constants,options)

For e.g.:

Vector Q1,...,Q7,p0,...,p21;
Set QQ:Q1,...,Q7;
Set pp:p1,...,p21;
Set empty:;
Local test = diagrams_(QCD, {glu,glu}, empty,

QQ, pp,
2, ‘OnePI_’+‘NoTadpoles_’+‘Symmetrize_’);

test =
- topo_(1)*node_(1,1,glu(-Q1))*node_(2,1,glu(-Q2))*

node_(3,g,qua(-p2),QUA(-p1),glu(Q1))*
node_(4,g,qua(p1),QUA(p2),glu(Q2))

+ ...
11/18

Diagram Generator (III)

Output options:
• nonodes , withedges , topologiesonly

Filtering options: work-in-progress

• plan: align the keywords with Qgraf for easy transition
• onepi /onepr
• onshell /offshell
• nosigma /sigma
• nosnail /snail
• notadpole /tadpole
• simple /notsimple
• bipart /nonbipart
• cycli /cyclr
• floop

Systematic and detailed testing still required before FORM 5 release!

12/18

Floating-point coefficients

FORM 5 has support for arbitrary precision floating-point coefficients.

• Enable with #startfloat precision([b]its,[d]igits),MZV=weight
• disable with #endfloat.
• coefficient printed as float (prec, nlimbs, exponent, limb-data)

• ToFloat evaluates rational coefficients in floating-point
• ToRational attempts to reconstruct rational coefficients from floating-point
• Evaluate triggers numerical evaluation of

• ee , em , pi
• mzv , mzvhalf , euler
• sqrt , ln , li2 , gamma , agm , sin , cos , tan , asin , acos , atan ,
sinh , cosh , tanh , asinh , acosh , atanh , (atan2)

• lin , hpl , mpl : work-in-progress (Coenraad Marinissen)

• Currently, uses ginac. Implement natively?
• Notation? hpl (i1,...,in,x), mpl (lst (i1,...,in),lst (x1,...,xn))

13/18

Testing
It is very helpful if people can already use the master branch for real work.
• It is supposed to be a “working version”. Nonetheless, we find a few bugs this way...
• Better to find bugs before v5 release, rather than after!

FORM has a test suite in the check directory (Jens Vollinga, Takahiro Ueda).
• Includes examples from the manual, new features, scripts reproducing (fixed) bugs.
• Runs on GitHub’s CI runners on commit: Ubuntu, macOS, Windows

• form, tform under valgrind, + coverage statistics.

The tests should be (much!) more comprehensive! Makes development easier.
• Add you own tests! See check/user.frm.

• Add fold containing your code *--#[GitHub username Test name :, and some assertions.
• Particularly scripts with tricky performance optimizations, or use rarely-used features.

☞ Should be fast-running, a few seconds at most. 30s under valgrind.
• Package authors should add tests! See check/extra directory.

• Ensure your package is not broken by future FORM modifications.

• Ask me for help!
14/18

Ideas for the future: easier, for v5?

Various bug fixes.

ModuleOption statistics;

• Enable statistics printing for single module only.

On InParallel;

• Multi-module InParallel; (which is hard to use)

Format C, kind;

• User-defined kind label for C print mode: C++11 has [user-defined literals].

#printmeminfo. Print memory usage info in log? Currently I use:
• #pipe echo "#message Current RSS: $(($(ps -o rss= ‘PID ’)/1024))M"

Your input here!

15/18

https://en.cppreference.com/w/cpp/language/user_literal.html

Ideas for the future: harder
Parallelize Local G = F;: loading from save files and spectators.
• This can be a big performance bottleneck for large expressions.

Compress the scratch files (.sc0, .sc1, .sc2) (zlib, zstd).
• Complication due to Bracket index.

• Disable compression if an index is created?
• Compress each bracket’s content separately? (possibly poor performance)

MAXSUBEXPRESSIONS: remove/improve limitation?
• annoying when loading enormous text files.

Factorized PolyRatFun

• Factorizing denominators has been beneficial for IBP reduction (FIRE+Symbolica).
• Saves on MaxTermSize budget.

Rational reconstruction from samples over prime fields.
• #startreconstruct ep,s,t ?

16/18

Ideas for the future: harder (II)
Namespaces:
• currently, package/procedure variables easily clash with user scripts
• namespacing would make writing these much cleaner
• #namespace? #package?

Trace performance: more control over trace operation
• automatic replacement of scalar products generated during tracing
• cancellations: repeatedly reduce longest γ strings and sort

Improved sorting:
• Try to sort faster: make fewer comparisons
• I’ve had several meetings with a Liverpool CS researcher on this.
• Work-in-progress “powersort” implementation: promising.

Your input here!

17/18

Conclusions

FORM is still widely used, and will continue to be!
• used directly for computation, by many people
• used by a variety of packages
• new packages are still being developed which use FORM

The workshops are driving participation in development from the wider community.
• We should continue to hold them annually! Likely next: Nikhef and CERN.

There has been a lot of development over the last few years!

Aim to release FORM 5 by the end of this year.

18/18

	Introduction
	

