

Sampling Methods of SmartBKG

Boyang Yu¹, Nikolai Hartmann¹, Thomas Kuhr¹

¹ Ludwig-Maximilians-Universität München
Sampling Techniques Hackathon, May 6th, 2024

Normal Monte Carlo Simulation data flow

Simulation with SmartBKG selection

Tree Structures of Particle Decay

1

Graph Neural Network

Dataset:

- Each event (each Graph):
 - ightharpoonup Decay of $\Upsilon(4S) \to B^0 \bar{B}^0$
 - Particles (Nodes)
 - Mother/Daughter relations (two way Edges) + self loops
 - Each particle (each **Node**)
 - > PDG id
 - > 8 Features: Production time, Energy, Position (3d), Momentum (3d)
- Label per event: Pass/Fail after the skims
 - * FEI Hadronic B0, retention rate 4.25%
- Other event level **attributions** for the studies of sampling methods: e.g. M_{bc} , ΔE etc.

NN Performance

NN output distribution

Visualization of Node/Edge-Attentions

Y(4S)

Bias due to False-Negatives with Naive Filtering

Skim NN	Positive	Negative
Pass	True-Positive (TP)	False-Negative (FN)
Fail	False-Positive (FP)	True-Negative (TN)

How to correct the bias brought by False-Negatives

- Reject events more carefully and cleverly-> sampling methods
 - Reduce False-Negatives but also True-Negatives, lower speedup
- Simulate **Pass** distribution with **True-Positive** events -> weights
 - Hard to have perfect simulation, still biased
- Studied:
 - With random sampling:
 - With weights: Importance sampling
 - Without weights: Rejection sampling
 - Without random sampling:
 - With weights: Reweighing

Speedup:
$$s = \frac{t_{no_filter}}{t_{filter}}$$

Effective Sample Size:
$$N_{eff} = \frac{(\sum \omega_i)^2}{\sum \omega_i^2}$$

Skim NN	Positive	Negative
Pass	True-Positive (TP)	False-Negative (FN)
Fail	False-Positive (FP)	True-Negative (TN)

Sampling methods

Importance Sampling

Rejection Sampling

Statistics lecture

- Sample x from q(x)
- Reweight with factor p(x)/q(x)
- Get simulated p(x)

Our modeling

- Predictions on all events to get q distribution
- Sample x from unitary distribution u(x)
- Sample q(x) from u(x)
- Reweight with factor 1/q(x)
- Get simulated p(x)=u(x)
- ⇔ Keep all events

- Sample x from Cq(x), u from unitary distribution
- Accept if Cq(x) < up(x)
- Get simulated p(x)
- Predictions on all events NN(x)
- Build q distribution and find best C
 - from binned NN(x)
 - from manual function to simulate NN(x)
- Build p distribution
 - from binned NN(x) of Pass events
- ⇔ Keep all Pass events

Sampling methods

Importance Sampling

- NN output directly as probability
- Equally binned NN output as probability

Reweighting

- GBDT classifier for True-Positive / False Positive, trained on selected event-level attributions
- Weight from CLF output
- Weight from equally/quantile binned CLF output

Rejection Sampling

- Binned NN(x) as Cq(x), binned NN(x_Pass) as p(x)
- Simulated function Cq(x), binned NN(x) as p(x)
 - q(x) simulating binned NN(x)
- Simulated function Cq(x_Pass) as Cq(x), binned NN(x_Pass) as p(x)
 - q(x_Pass) simulating binned NN(x_Pass)
- ps. Unitary function as Cq(x), binned NN(x) as $p(x) \Leftrightarrow Importance sampling$
 - q(x) simulating NN(x), therefore unitary

Sampling methods

Comparisons

	Importance Sampling	Reweighting	Rejection Sampling
Use of NN output	As selection probability	As selection criteria	As input to selection probability
Prior information	None	Pretrained CLF, Selection threshold	Proposal distribution
Weight	Inversed NN output	From CLF output	None
Loss to train NN	Speedup	Binary cross entropy	Binary cross entropy
Speedup	2.0	6.5	2.6
Bias	None	None for CLF variables Small for others	Small

Thank You for your Attention

Boyang Yu¹, Nikolai Hartmann¹, Thomas Kuhr¹ ¹ Ludwig-Maximilians-Universität München Sampling Techniques Hackathon, May 6th, 2024

Backup

$$g(x) = rac{{{{(x - 0.6)}^4} + 0.01}}{{\sum
olimits_0^1 {\Delta x} {\left[{{(x - 0.6)}^4} + 0.01
ight]}}}$$

$$c = 1.98$$

Chosen:

bins =
$$50$$
 c = 1.99

c = 8.8

Quantiled c = 7.7

Tagging method:

Retention rate after reconstruction and selection of tag-side B candidate:

FEI Skim	Hadronic B ⁺	Hadronic B ⁰
Mixed $(\Upsilon(4s) \to B^0 \bar{B}^0)$	5.62%	4.25%

Final Architecture: GAT+GAP

Quantitative Studies

Comparison

Parameters:

- $n_{\text{heads}} = 4$
- $n_{\text{layers}} = 6$
- n_units = 128
- batch_size = 128
- $n_{train} = 0.9M$
- $n_val = 0.1M$
- $n_{\text{test}} = 0.5M$

Loss:

• Entropy

EarlyStopping:

- patience = 3
- delta = 1e-5

	GCN(sep)	GAT(sep)	GAT(gen)	GAT+GAP(gen)
TrainingTime	3619.46s	4047.47s	3471.48s	5049.81s
AUCValues	0.90831	0.90937	0.90891	0.91216

Grid Search

Best Combinations

Batch- size	Number of units	AUC	Training Time
<mark>128</mark>	<mark>128</mark>	0.9117	<mark>5205</mark>
256	32	0.9105	4061
256	128	0.9105	2666
<mark>512</mark>	<mark>32</mark>	0.9117	<mark>3568</mark>
512	128	0.9115	2228
1024	<mark>32</mark>	0.9115	<mark>1716</mark>
1024	256	0.9102	3556

AUC Training Time

Network Sizes

# Units	# Parameters
32	120,527
64	459,951
128	1,808,495
256	7,184,367
512	28,651,247

Hyperparameter Optimization

Model	AUC
GCN(sep)	0.908
GAT(sep)	0.909
GAT(gen)	0.909
GATGAP(gen)	0.912

Batch Size	Number of Units	AUC	Training Time in s
128	16	0.9131	10940
512	32	0.9117	3568
128	128	0.9117	5205
1024	32	0.9115	1716
512	128	0.9115	2228
256	128	0.9115	2666
256	32	0.9115	4061

Number of Units	Number of Parameters
16	34,911
32	120,527
64	459,951
128	1,808,495

Final Configuration:

- GATGAP Model using PyTorch + Deep Graph Library (DGL)
- 6 layers with 4 attention heads each and 32 units for GAT output & global features $-> \approx 120 k$ parameters
- Batch size 1024 (GPU training)

Sampling Method:

Reweighting Method:

Studied reweighters:

- GBDT Reweighting
- Histogram Reweighting

Reweighting Method:

- Train a Gradient Boosting Decision Tree (GBDT) classifier with some event level variables to distinguish between True-Positve events and False-Negative events
- GBDT Reweighting: use the outputs of the classifier directly:

$$W = \frac{1}{p_{clf}} = \frac{1}{p_{TP}/p_{TP+FN}} = \frac{p_{pass_skim}}{p_{TP}}$$

 Histogram Reweighting: compare the score histogram of all the events that can pass the skim (True-Positive + False-Negative) with the score histogram of True-Positives to give each bin of score a scaling factor:

$$w = w_{bin_i|p_{clf} \in bin_i} = \frac{H_{pass_skim,i}}{H_{TP,i}}|_{p_{clf} \in bin_i}$$

Skim NN	Positive	Negative
Pass	True-Positive (TP)	False-Negative (FN)
Fail	False-Positive (FP)	True-Negative (TN)

Relative statistical uncertainty and effective sample size

Variable	Formula	Remark
NN outputs / Probabilities to pass	$\{p_i\}$	'i' refers to each event in the whole sample (batch)
Weights	$\{\omega_i\} = \left\{\frac{1}{p_i}\right\}$	Infinities (at $p_i=0$) are excluded and set to 0 Avoid the bias by construction
Relative statistical uncertainty	$S = \frac{\sqrt{\sum \omega_i^2 p_i}}{\sum \omega_i p_i}$	$\sum \omega_i^2 p_i = \sum \omega_i$ $\sum \omega_i p_i = N$ Here consider only passed events (label = 1)
Effective sample size	$N_{eff} = \frac{1}{S^2}$	Number of events needed to reach the same statistical uncertainty without sampling

Speedup rate

Variable	Formula	Remark
Skim retention rate	r = 0.05	Probability to pass the skim process
Times of different phases in ms	$t_{gen} = 0.08$ $t_{NN} = 0.63$ $t_{SR} = 97.04$	Taken from previous studies
Effective number of events after sampling	$n_{+} = \sum p_{i}$ $n_{-} = \sum (1 - p_{i})$	$\{p_i\}$ will be devided into two subsets where the events will/won't pass the skim process
Time consuming with NN filter	$t_{+} = [n_{TP}r + n_{FP}(1-r)](t_{gen} + t_{NN} + t_{SR})$ $t_{-} = [n_{FN}r + n_{TN}(1-r)](t_{gen} + t_{NN})$	Positive/Negative: Result of sampling True/False: Result of sampling == skim process
Time consuming without NN	$t_0 = N_{eff} (t_{gen} + t_{NN})$	To reach the same statistical uncertainty
(Inverse) Speedup rate	$R = \frac{t_+ + t}{t_0}$	The lower the better

Robustness:

Weak dependency of Speedup on t_{NN} and t_{SR} Safe to generalize

KS-Test

skim.WGs.ewp.inclusiveBplusToKplusNuNu

- Track cleanup:
 - $p_t > 0.1$
 - thetaInCDCAcceptance
 - dr<0.5 and abs(dz)<3.0
- Event cleanup:
 - 3 < nCleanedTracks < 11
- Kaon pre-cuts:
 - track cleanup + event cleanup + nPXDHits > 0
- K+ reconstruction
- Kaon cuts:
 - p_t rank=1
 - kaonID>0.01
- B+ reconstruction
- B+ cut:
 - mva_identifier: MVAFastBDT_InclusiveBplusToKplusNuNu_Skim > 0.5