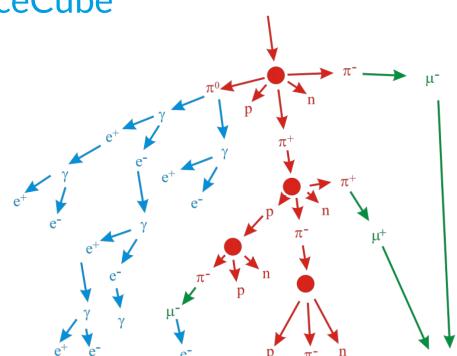
Towards Reducing the Computation Time for Air-Shower Simulations at IceCube

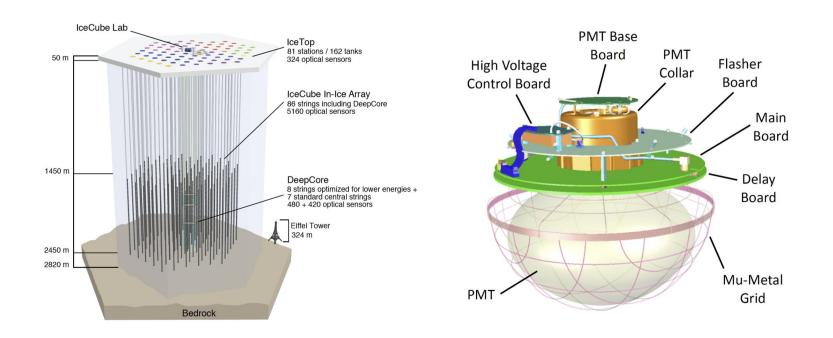
Navid K. Rad, Jakob van Santen

Adaptive Sampling Hackathon May 06, 2024



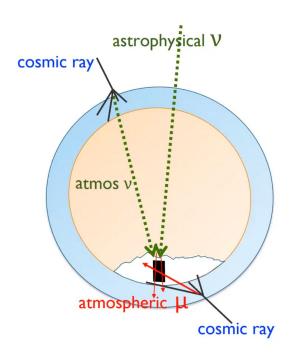
IceCube Neutrino Observatory

- Cubic-kilometer Neutrino detector
- 5160 Digital Optical Modules (DOM) in the glacial Antarctic ice (depths of 1450-2450m)
- Each DOM: a 25 cm PMT, high voltage power supply and digi & com. electronics



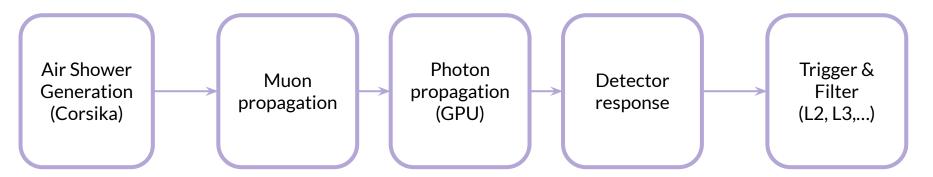
Background for high energy astrophysics neutrinos

- Atmospheric Muons and neutrinos:
 - Produced from the interaction of cosmic rays with the atmosphere
 - Even @ 1.5 km below ice, detected at high rates!
 - atmospheric muons: $\sim 1000/s \sim O(10^3) Hz$
 - atmospheric neutrinos: ~ 1/5min ~ O(10⁻³) Hz
 - astrophysical neutrinos ~ 1/month ~O(10⁻⁶) Hz
 - Need to reduce background by factors 10³-10⁹
- The challenge is the rare background events:
 - Muon + few or no other low energy muons
 - a lone atmospheric neutrino

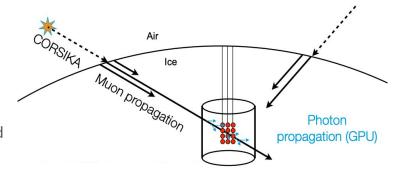


⇒ Very large simulations are needed!

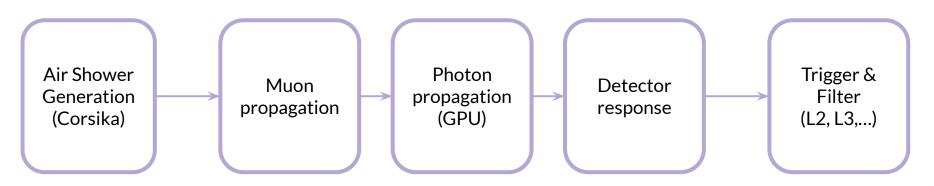
IceCube simulation chain:



- CORSIKA simulates Air Shower:
 - Interaction of the primary cosmic rays with atmospheric nuclei
 - EM and Hadronic showers, π^{\pm} , π^{0} , K, μ , ν are produced and propagated to the ice surface
- Muons are propagated through the ice:
 - account for the stochastic energy losses
- Photon propagation:
 - ice properties depend on depth ⇒ photons need to be tracked individually...
 - The most computationally intensive part of simulation (but parallelizable)



IceCube simulation chain:

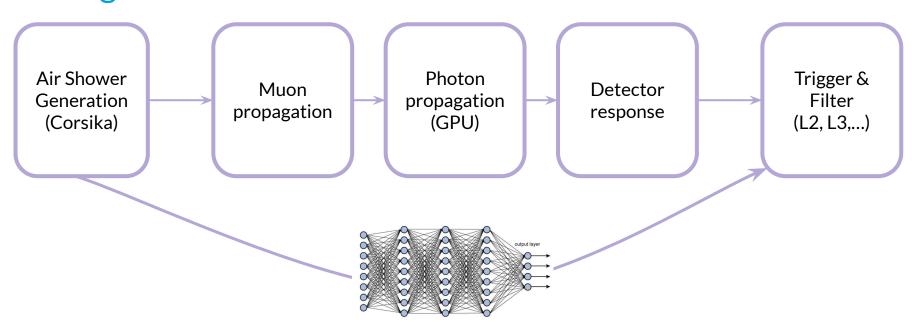


The Problem:

a few % of generated air-showers pass the L2 filtering a few % L2 filtered pass the L3 selection

⇒ lots of wasted CPU & GPU power

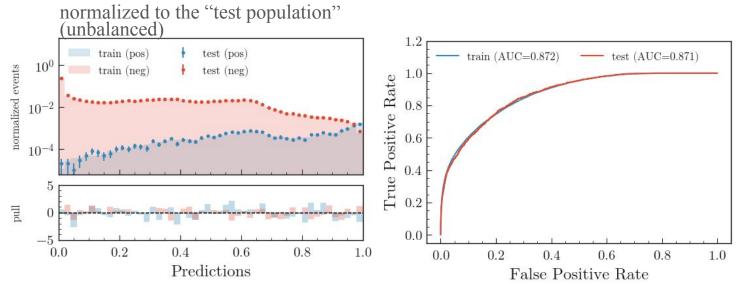
Taking a shortcut?



Use a Neural Net to try to predict probability that a certain air shower will pass the Filtering

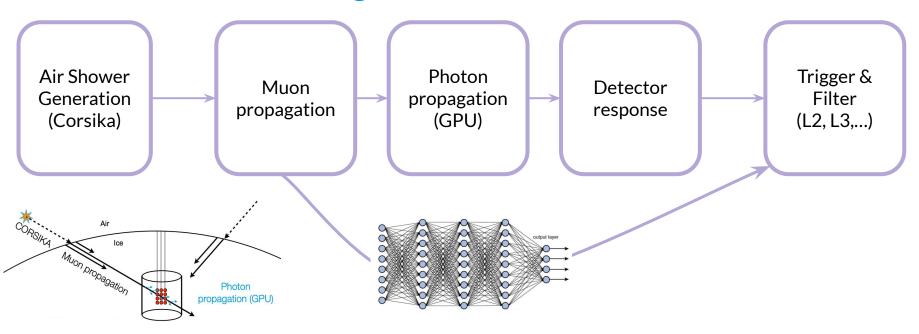
Model Predictions (based only on **primaries**)

- Train and hyper tune a NN on the available simulations
 - Balance training set by uniform undersampling the majority class
 - Positive: shower passed the filtering
 - Negative: shower failed



⇒ Peak at 0! turn out to be events with no muons produced in the shower

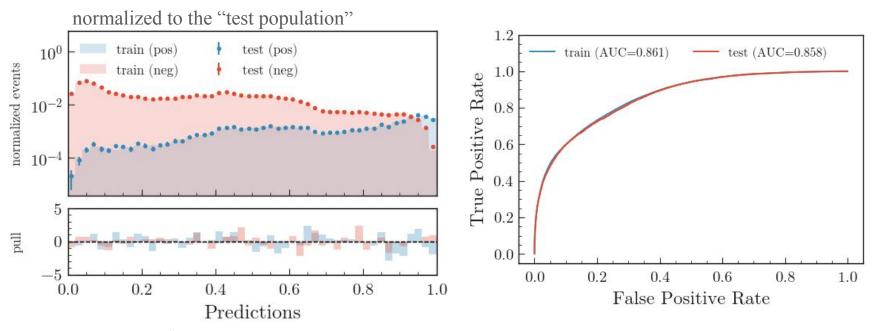
Can we do better using the **muon** information?



Use a Neural Net to try to predict probability that a certain air shower will pass the Filtering

Require at least 1 muon in the shower

- Use muon/muon bundle information as well:
- Remove events without a muon from training



⇒ no more "low hanging fruits" so the model can focus on the difficult cases

Quantifying the gain in computation time

Assumptions:

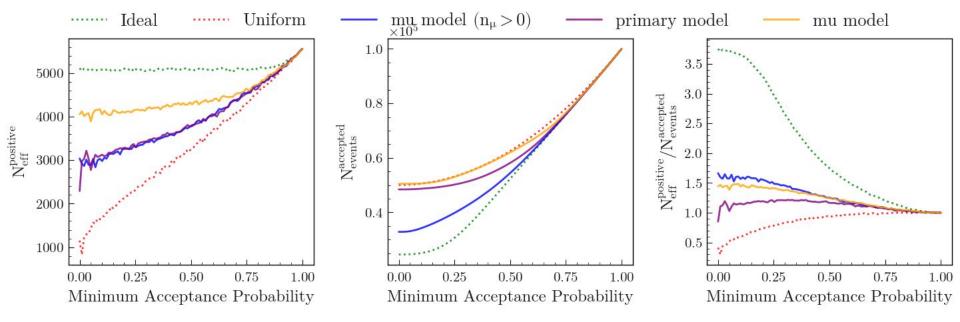
- air shower generation time << simulation time
- evaluation time of the model << simulation time
- \circ computation time goes as $N_{accepted}$

Method:

- 1. Use predicted score (p_i) as "acceptance probability" of the event
- 2. Assign a corresponding weight to each event as $\mathbf{w_i} = \mathbf{1/p_i}$
- 3. Scan the minimum acceptance probability threshold (avoid very large weights)
- ullet Simple "speed up" Metric: speedup = $N_{eff}^{positive}/N_{accepted}$
 - $N_{ ext{eff}}$: effective sample size of the **accepted positive events** $N_{eff}(w) = rac{(\sum_i w_i)^2}{\sum_i w_i^2}$ (size of an unweighted sample that would have same relative uncertainty)
 - \circ N_{accepted} : number of accepted events (sampled based on their p_i)

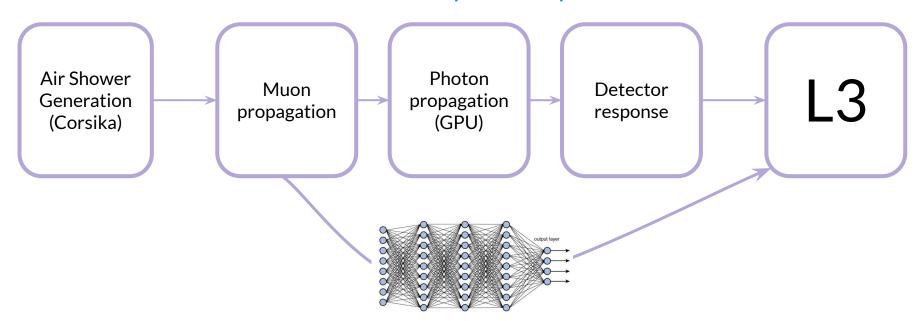
Potential gain in computation time

- **Nearly Ideal:** "prediction" based on truth information → Best case
- Uniform: "prediction" based on uniform distribution → Worst case



⇒ Improvement of about 1.5x compare to default scenario

Let's take it to the next level (Level3)

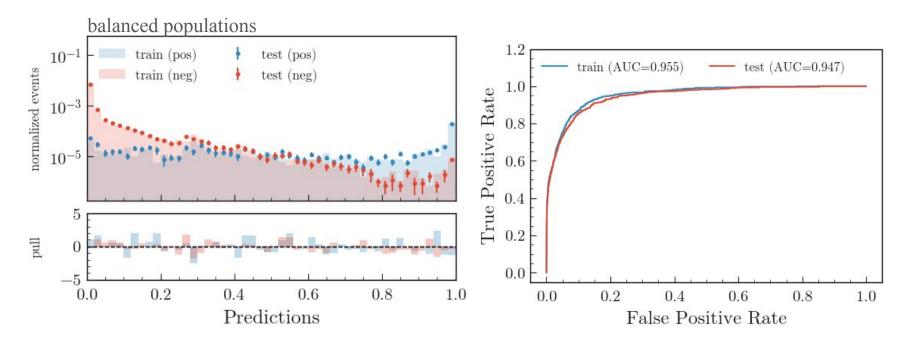


• L3 Filter:

- Reconstruct cascades and tracks (here only cascades are used)
- Closer to the analysis level.
- Only 0.5% of L2 events are reconstructed cascades

Next filtering Level (L3)

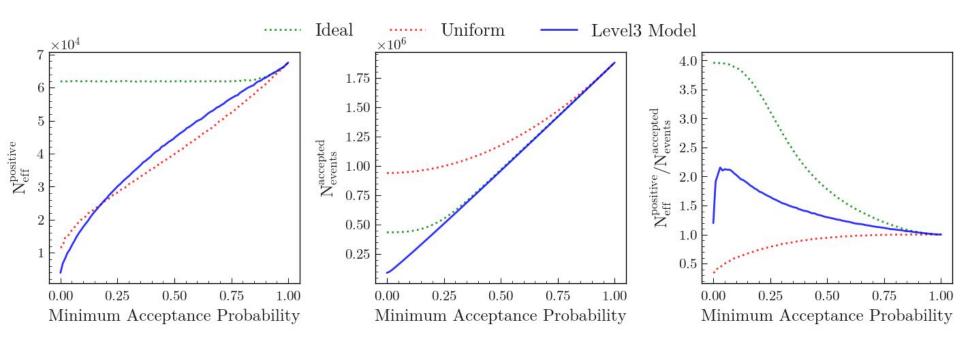
- Much larger imbalance (1:10,000)
- challenging to get large enough sample for training



⇒ fresh results! still needs to be hypertuned

Potential gain in computation time (Level3 Model)

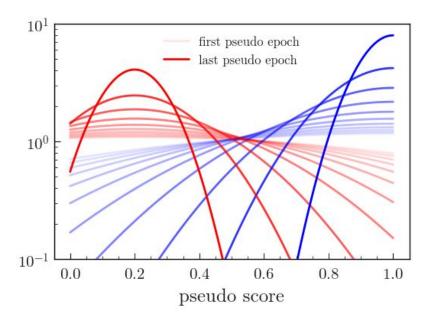
- **Nearly Ideal:** "prediction" based on truth information → Best case
- Uniform: "prediction" based on uniform distribution → Worst case

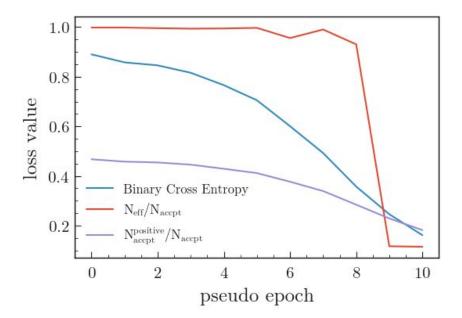


Playing with custom loss function?

Toy test:

- assign arbitrary "pseudo scores" to positive and negative events
- different "degrees of separation" represent evolution of "pseudo epochs"
- test the behavior of different loss functions



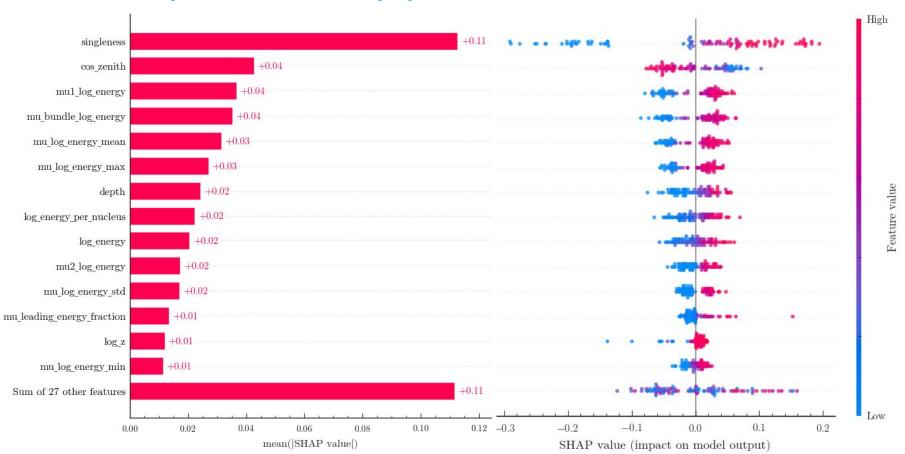


Summary and Outlook

- Proof of concept that acceleration is possible!
- Current challenges:
 - very large imbalance in sample (~ 1:10,000 at L3)
 - means having to process and store lots of unused events.
 - possibly try different undersampling techniques
- Dedicated loss:
 - Q: How to deal with a loss function which depends on sample size (batch size dependent?)
 - Q: Current speed up metric requires sampling based on p_i values... how to incorporate "sampling" in the loss function?
 - Better to use a more realistic time estimates
 - Simulation time ~ number of photons
- Run through the full generation with and without adaptive sampling

Backup

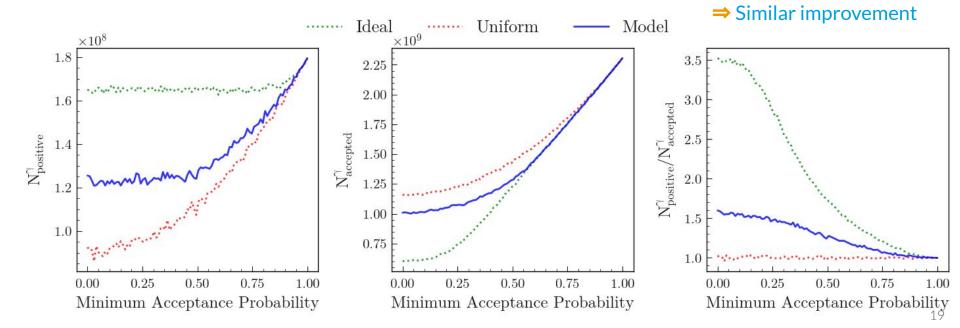
Feature importance: Shaply Values



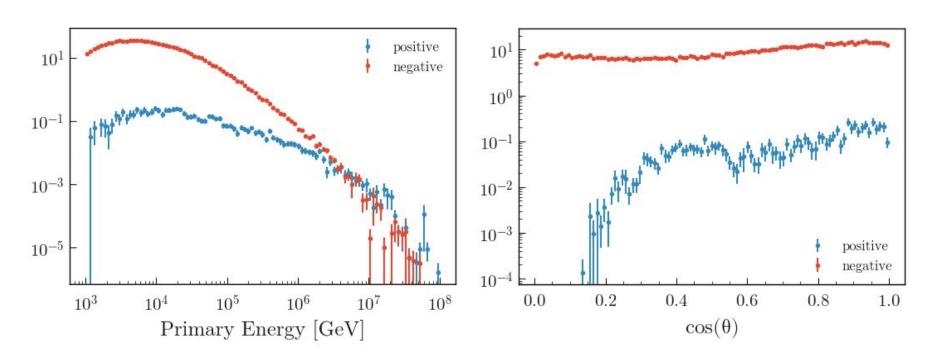
Potential gain in CPU time (slightly more realistic)

- **Modify Assumptions:**
 - CPU time $\frac{1}{1}$ goes as $N(\gamma)$
- $N_{
 m positive}(\gamma)/N_{
 m accepted}(\gamma)$ Slight more realistic "speed up" Metric:

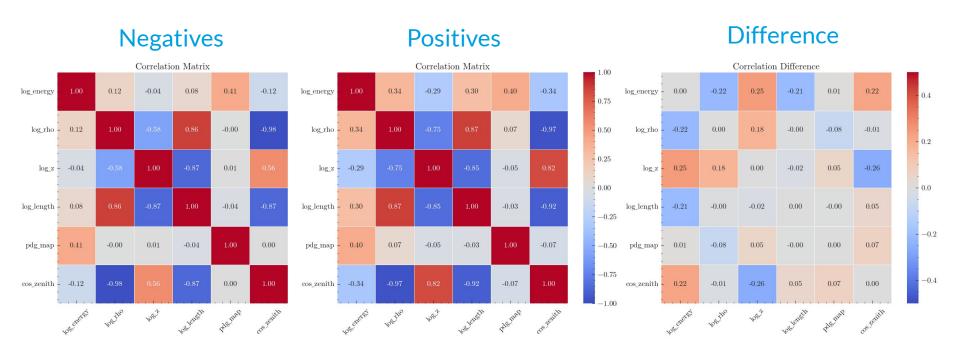
 - $N_{accepted}(\gamma)$: total number of photons in the accepted events $N_{positive}(\gamma)$: total number of photons in the accepted positive events



Primary Distributions



Primary Correlations



IceCube simulation challenges:

• The challenge:

- Majority of the simulated showers are not triggered and do not pass the initial filtering (~2%)
- Lots of CPU+GPU time is wasted on showers that are thrown away, way before getting to the analysis level.

Many attempted solutions:

- Bias the generated distributions:
 - e.g. on average proton primaries end up with lower muon multiplicity
- Parametrize the muon bundle properties
- Hard energy cut: kill the shower if no particles about the energy threshold remain
- Soft energy cut: rejection probability based on the expected number of muons above certain energy
 - ⇒ Only work in specific cases, and only to some degree... need a more general solution!

Current solutions

Parametrize the problem:

 MUGUN: generates muons based a parametrization of muon bundle properties under the ice

Importance Sampling

- Bias the generated distributions so more likely to pass the filtering
 - Primary compositions:
 - Proton primaries more likely to produce single high-energy muons
- Apply minimum energy requirement for the muons in the shower:
 - hard requirement: kill the shower if no muons above a certain energy threshold (ICECUBE1)
 - soft requirement (muon biasing): reject the shower based on the probability of the primary of a given energy to produce a muon above a certain energy

Muon Biasing (JVS)

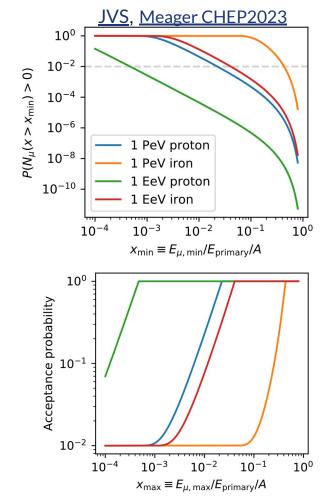
• Elbert's formula gives the probability of having N muons above a certain energy threshold:

$$\left\langle N_{\mu} \left(\frac{E_{\mu}}{E_{\text{primary}}/A} > x_{\text{min}} \right) \right\rangle = 14.5 \frac{A^2}{E_{\text{primary}} \cos \theta} x_{\text{min}}^{-1.757} (1 - x_{\text{min}})^{5.25}$$

- User specifies a "bias factor" (acceptance fraction)
- Muon energy threshold is chosen to match the probability of having at least 1 muon

$$1 - p_{\text{kill}}(x_{\mu}) = \begin{cases} 1, & x_{\mu} \ge x_{\min} \\ \frac{1 - \exp(-\langle N_{\mu}(x > x_{\min}) \rangle)}{1 - \exp(-\langle N_{\mu}(x > x_{\mu}) \rangle)}, & x_{\mu} < x_{\min} \end{cases}$$

⇒ Could this be generalized?



Model: "Primary Hypertuned"

Layer	Size	Activation Param #
batch normalization	====== 8	32
Dense 0	224	leaky relu 2016
dropout	224	1 0
Dense 1	224	leaky relu 50400
Dense 2	224	leaky relu 50400
Dense 3	112	leaky relu 25200
Dense 4	112	leaky relu 12656
Dense_5	112	leaky_relu 12656
Dense 6	56	leaky relu 6328
Dense_7	56	leaky_relu 3192
Dense 8	56	leaky_relu 3192
Dense_9	28	leaky_relu 1596
Dense_10	28	leaky_relu 812
Dense_11	28	leaky_relu 812
Dense_12	14	leaky_relu 406
Dense_13	14	leaky_relu 210
Dense_14	14	leaky_relu 210
Dense_15	8	leaky_relu 120
dense	1	9

Total params: 170,247
Trainable params: 170,231

Non-trainable params: 16