
Towards Reducing the Computation Time for
Air-Shower Simulations at IceCube

1

Navid K. Rad, Jakob van Santen

Adaptive Sampling Hackathon
May 06, 2024

IceCube Neutrino Observatory
○ Cubic-kilometer Neutrino detector
○ 5160 Digital Optical Modules (DOM) in the glacial Antarctic ice (depths of 1450-2450m)
○ Each DOM: a 25 cm PMT, high voltage power supply and digi & com. electronics

2

Background for high energy astrophysics neutrinos

● Atmospheric Muons and neutrinos:
○ Produced from the interaction of cosmic rays with the

atmosphere

○ Even @ 1.5 km below ice, detected at high rates!

● atmospheric muons: ~1000/s ~ O(103) Hz

● atmospheric neutrinos: ~ 1/5min ~ O(10-3) Hz

● astrophysical neutrinos ~ 1/month ~O(10-6) Hz

○ Need to reduce background by factors 103-109

● The challenge is the rare background events:
○ Muon + few or no other low energy muons

○ a lone atmospheric neutrino

⇒ Very large simulations are needed!

3

IceCube simulation chain:

● CORSIKA simulates Air Shower:
○ Interaction of the primary cosmic rays with atmospheric nuclei

○ EM and Hadronic showers, 𝜋±, 𝜋0 , K, μ, 𝜈 are produced and

propagated to the ice surface

● Muons are propagated through the ice:
○ account for the stochastic energy losses

● Photon propagation:
○ ice properties depend on depth ⇒ photons need to be tracked

individually…
○ The most computationally intensive part of simulation

(but parallelizable)

4

Air Shower
Generation

(Corsika)

Muon
propagation

Photon
propagation

(GPU)

Detector
response

Trigger &
Filter

(L2, L3,…)

IceCube simulation chain:

5

Air Shower
Generation

(Corsika)

Muon
propagation

Photon
propagation

(GPU)

Detector
response

Trigger &
Filter

(L2, L3,…)

The Problem:
a few % of generated air-showers pass the L2 filtering

a few % L2 filtered pass the L3 selection

⇒ lots of wasted CPU & GPU power

Taking a shortcut?

6

Air Shower
Generation

(Corsika)

Muon
propagation

Photon
propagation

(GPU)

Detector
response

Trigger &
Filter

(L2, L3,…)

Use a Neural Net to try to predict
probability that a certain air shower will

pass the Filtering

Model Predictions (based only on primaries)

7

⇒ Peak at 0! turn out to be events with no muons produced in the shower

● Train and hyper tune a NN on the available simulations
○ Balance training set by uniform undersampling the majority class
○ Positive: shower passed the filtering
○ Negative: shower failed

normalized to the “test population”
(unbalanced)

Can we do better using the muon information?

8

Air Shower
Generation

(Corsika)

Muon
propagation

Photon
propagation

(GPU)

Detector
response

Trigger &
Filter

(L2, L3,…)

Use a Neural Net to try to predict
probability that a certain air shower will

pass the Filtering

Require at least 1 muon in the shower

9
⇒ no more “low hanging fruits” so the model can focus on the difficult cases

● Use muon/muon bundle information as well:
● Remove events without a muon from training

normalized to the “test population”

Quantifying the gain in computation time
● Assumptions:

○ air shower generation time << simulation time

○ evaluation time of the model << simulation time

○ computation time goes as N
accepted

● Method:
1. Use predicted score (p

i
) as “acceptance probability” of the event

2. Assign a corresponding weight to each event as w
i
=1/p

i

3. Scan the minimum acceptance probability threshold (avoid very large weights)

● Simple “speed up” Metric:

○ N
eff

: effective sample size of the accepted positive events

 (size of an unweighted sample that would have same relative uncertainty)

○ N
accepted

: number of accepted events (sampled based on their p
i
)

10

Potential gain in computation time

○ Nearly Ideal: “prediction” based on truth information → Best case
○ Uniform: “prediction” based on uniform distribution → Worst case

11
⇒ Improvement of about 1.5x compare to default scenario

*normalized w.r.t to the ‘default’

Let’s take it to the next level (Level3)

12

Air Shower
Generation

(Corsika)

Muon
propagation

Photon
propagation

(GPU)

Detector
response L3

● L3 Filter:

○ Reconstruct cascades and tracks (here only cascades are used)

○ Closer to the analysis level.

○ Only 0.5% of L2 events are reconstructed cascades

Next filtering Level (L3)

13

● Much larger imbalance (1:10,000)
● challenging to get large enough sample for training

balanced populations

⇒ fresh results! still needs to be hypertuned

Potential gain in computation time (Level3 Model)

○ Nearly Ideal: “prediction” based on truth information → Best case
○ Uniform: “prediction” based on uniform distribution → Worst case

14

*normalized w.r.t to the ‘default’

Playing with custom loss function?

15

● Toy test:
○ assign arbitrary “pseudo scores” to positive and negative events
○ different “degrees of separation” represent evolution of “pseudo epochs”
○ test the behavior of different loss functions

● Proof of concept that acceleration is possible!

● Current challenges:
○ very large imbalance in sample (~ 1:10,000 at L3)

■ means having to process and store lots of unused events.
■ possibly try different undersampling techniques

● Dedicated loss:
○ Q: How to deal with a loss function which depends on sample size (batch size

dependent?)
○ Q: Current speed up metric requires sampling based on p

i
 values… how to

incorporate “sampling” in the loss function?
■ Better to use a more realistic time estimates
■ Simulation time ~ number of photons

● Run through the full generation with and without adaptive sampling

Summary and Outlook

16

Backup

17

Feature importance: Shaply Values

18

Potential gain in CPU time (slightly more realistic)
● Modify Assumptions:

○ CPU time goes as N
accepted

 goes as N(𝛾)

● Slight more realistic “speed up” Metric:
○ N

accepted
(𝛾): total number of photons in the accepted events

○ N
positive

(𝛾) : total number of photons in the accepted positive events

19

⇒ Similar improvement

Primary Distributions

20

Primary Correlations

21

Negatives Positives Difference

● The challenge:
○ Majority of the simulated showers are not triggered and do not pass the

initial filtering (~2%)

○ Lots of CPU+GPU time is wasted on showers that are thrown away, way

before getting to the analysis level.

● Many attempted solutions:
○ Bias the generated distributions:

● e.g. on average proton primaries end up with lower muon multiplicity
○ Parametrize the muon bundle properties
○ Hard energy cut: kill the shower if no particles about the energy threshold

remain
○ Soft energy cut: rejection probability based on the expected number of

muons above certain energy

22

⇒ Only work in specific cases, and only to some degree… need a

more general solution!

IceCube simulation challenges:

● Parametrize the problem:
○ MUGUN: generates muons based a parametrization of muon bundle

properties under the ice

● Importance Sampling

○ Bias the generated distributions so more likely to pass the filtering
● Primary compositions:

● Proton primaries more likely to produce single high-energy
muons

○ Apply minimum energy requirement for the muons in the shower:
● hard requirement: kill the shower if no muons above a certain energy

threshold (ICECUBE1)
● soft requirement (muon biasing): reject the shower based on the

probability of the primary of a given energy to produce a muon above
a certain energy

23

Current solutions

Muon Biasing (JVS)

○ Elbert’s formula gives the probability of having N muons
above a certain energy threshold:

○ User specifies a “bias factor” (acceptance fraction)

○ Muon energy threshold is chosen to match the probability of
having at least 1 muon

24

⇒ Could this be generalized?

JVS, Meager CHEP2023

https://indico.desy.de/event/41402/contributions/153914/attachments/85441/113507/Biased%20CORSIKA%20for%20IceCube.pdf
https://indico.jlab.org/event/459/contributions/11830/attachments/9276/13450/Meagher_2023May_CHEP_Parallel_Air_Shower.pdf

25

Model: "sequential"

 Layer (type) Output
Shape Param #
==================================
==================================
==================================
==================
 batch_normalization (BatchNormalization)
(None, 8) 32

 Dense_0_224_leaky_relu (Dense)
(None, 224) 2016

 dropout (Dropout)
(None, 224) 0

 Dense_1_224_leaky_relu (Dense)
(None, 224) 50400

 Dense_2_224_leaky_relu (Dense)
(None, 224) 50400

 Dense_3_112_leaky_relu (Dense)
(None, 112) 25200

 Dense_4_112_leaky_relu (Dense)
(None, 112) 12656

 Dense_5_112_leaky_relu (Dense)
(None, 112) 12656

 Dense_6_56_leaky_relu (Dense)
(None, 56) 6328

 Dense_7_56_leaky_relu (Dense)
(None, 56) 3192

 Dense_8_56_leaky_relu (Dense)
(None, 56) 3192

 Dense_9_28_leaky_relu (Dense)
(None, 28) 1596

 Dense_10_28_leaky_relu (Dense)
(None, 28) 812

 Dense_11_28_leaky_relu (Dense)
(None, 28) 812

 Dense_12_14_leaky_relu (Dense)
(None, 14) 406

 Dense_13_14_leaky_relu (Dense)
(None, 14) 210

 Dense_14_14_leaky_relu (Dense)
(None, 14) 210

 Dense_15_8_leaky_relu (Dense)
(None, 8) 120

 dense (Dense)
(None, 1) 9

==================================
==================================
==================================
==================
Total params: 170247 (665.03 KB)
Trainable params: 170231 (664.96 KB)
Non-trainable params: 16 (64.00 Byte)

Model: "Primary Hypertuned"
__
Layer | Size | Activation | Param #
==
batch_normalization | 8 | | 32
Dense_0 | 224 | leaky_relu | 2016
dropout | 224 | | 0
Dense_1 | 224 | leaky_relu | 50400
Dense_2 | 224 | leaky_relu | 50400
Dense_3 | 112 | leaky_relu | 25200
Dense_4 | 112 | leaky_relu | 12656
Dense_5 | 112 | leaky_relu | 12656
Dense_6 | 56 | leaky_relu | 6328
Dense_7 | 56 | leaky_relu | 3192
Dense_8 | 56 | leaky_relu | 3192
Dense_9 | 28 | leaky_relu | 1596
Dense_10 | 28 | leaky_relu | 812
Dense_11 | 28 | leaky_relu | 812
Dense_12 | 14 | leaky_relu | 406
Dense_13 | 14 | leaky_relu | 210
Dense_14 | 14 | leaky_relu | 210
Dense_15 | 8 | leaky_relu | 120
dense | 1 | | 9
==
Total params: 170,247
Trainable params: 170,231
Non-trainable params: 16

