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ALFA Overview

What is ALFA?

Absolute Luminosity For ATLAS

Forward Detectors at ∼240m distance
Measure elastic scattering at very small angles

⇒ Absolute Luminosity at IP of ATLAS

Detector Layout

”Roman Pots” very close to the LHC Beam (mm-range)
Scintillating fibres on 10 metal plates

64 fibres on each side
0.5 x 0.5 mm2

glued to the plate
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Requirements on ALFA

Spatial Resolution much smaller than spot size of beam
⇒ a resolution of 30µm is adequate
But: precision of gluing ' 100µm !

⇒ Measure the ”exact” position of the fibres
to achieve a precision of ≤ 30µm
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The measurement

Pre-considerations

Get a linear equation for every fibre:
Measure the offset of the fibres in x-direction

Assume constant width of the fibres:
Measure the middle of the gaps between the fibres
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Equipment

The measuring equipment

Air damped table to compensate vibration

Monocular microscope, movable in x-, y- and z-direction
(precision ' 2µm)

CCD-Camera on microscope (5 megapixels)

Both connected to the PC

The microscope . . .

. . . has 12x zoom (upper side), a 10x zoom (lower side)
and a variable zoom (0.58x-7x) in the middle

. . . can be driven by Hand (Joystick) or by the PC
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The measurement

So far: manually

Define a coordinate system:
Choose upper precision hole as origin

Manually measure fibre offsets:
Use joystick to move to next gap and write down position
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Manual measurement

Disadvantages

It takes ∼2 hours for one row on each side of one plate
⇒ ∼12 hours for each plate ⇒ ∼120 hours for one detector
(10 plates)

Looking at same position, human eye gets tired after a
while → source of error

Advantages

Human eye itself is ”perfect” measuring machine
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Explanatory sketch

Pitch:

∆x (i) = xi+1−xi√
2

Offset from average:

∆x (i) = xi − [x1 + (Gap#i − 1) · stepavg]
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Comparison of pitch measurement

Average pitch: 0.492 mm Average pitch: 0.490 mm
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Comparison of offset from average



Motivation Precision Measurement Measurement results Automation Summary



Motivation Precision Measurement Measurement results Automation Summary

Results

The DESY measurements . . .

. . . could reproduce the CERN measurements within a
precision of 5 µm

. . . had a positive offset of ∼ 5µm on the v -side

. . . had a negative offset of ∼ 5µm on the u-side

Possible error sources

Systematic error
would accumulate from fibre to fibre

”Wrong” center of coordinate system
would lead to constant offset for each fibre
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Find center of circle from points on circumference

Two methods
1 3 points on circumference → 2 secants

middle-perpendicular of the 2 secants intersect in center of
circle

2 ≥ 10 points on circumference → fit circle
center of circle
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Find center of circle from points on circumference

Two methods
1 3 points on circumference → 2 secants

middle-perpendicular of the 2 secants intersect in center of
circle

2 ≥ 10 points on circumference → fit circle
center of circle

Implementation of above methods

Method 1 (self-written C++ program)
Pro: less then 10 points is enough
Con: not reliable enough, slow for ≥ 10 points

Method 2 (RFit program used in RICH-detectors)
Pro: fast, reliable, well tested
Con: more then 10 points needed
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Up next: Automatic measurement

Pre-considerations

Microscope has API for VisualC++, Delphi and LabView

Camera has FTP-Server/Client and Telnet-Server built-in

LabView has a wide range of image processing capabilities

⇒ use LabView + camera’s FTP-Server
1 get the image from the camera’s FTP-Server
2 process the image to find the gap
3 move the microscope into the region of the next gap
4 ⇒ 1
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First impressions from LabView’s image processing
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Summary

Q: Why ALFA?
A: Measure absolute Luminosity for

ATLAS.

Q: What kind of detector?
A: Scintillating Fiber Detector.

Q: What needs to be done?
A: Measure the ”exact” fibre position.

Q: Whats the outcome of the manual measurements?
A: The CERN measurements could be

reproduced.

Q: Whats up next?
A: Program LabView to automate the

process.
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