Precision Measurement of the fibres of the ALFA-Detector

Dennis Petschull

Physikalisches Institut Universität Hamburg

August 23, 2007

Outline

- Motivation
- 2 Precision Measurement
- Measurement results
- 4 Automation
- Summary

Outline

- Motivation
- Precision Measurement
- Measurement results
- 4 Automation
- 5 Summary

What is ALFA?

- Absolute Luminosity For ATLAS
- Forward Detectors at ~240m distance
- Measure elastic scattering at very small angles
 - → Absolute Luminosity at IP of ATLAS

- "Roman Pots" very close to the LHC Beam (mm-range)
- Scintillating fibres on 10 metal plates
 - 64 fibres on each side
 - 0.5 x 0.5 mm²
 - glued to the plate

What is ALFA?

- Absolute Luminosity For ATLAS
- Forward Detectors at ~240m distance
- Measure elastic scattering at very small angles
 - → Absolute Luminosity at IP of ATLAS

- "Roman Pots" very close to the LHC Beam (mm-range)
- Scintillating fibres on 10 metal plates
 - 64 fibres on each side
 - 0.5 x 0.5 mm²
 a glued to the plate

What is ALFA?

- Absolute Luminosity For ATLAS
- Forward Detectors at ~240m distance
- Measure elastic scattering at very small angles
 - ⇒ Absolute Luminosity at IP of ATLAS

- "Roman Pots" very close to the LHC Beam (mm-range)
- Scintillating fibres on 10 metal plates
 - 64 fibres on each side
 - 0.5 x 0.5 mm²
 - glued to the plate

What is ALFA?

- Absolute Luminosity For ATLAS
- Forward Detectors at ~240m distance
- Measure elastic scattering at very small angles
 - ⇒ Absolute Luminosity at IP of ATLAS

- "Roman Pots" very close to the LHC Beam (mm-range)
- Scintillating fibres on 10 metal plates
 - 64 fibres on each side
 - 0.5 x 0.5 mm²
 - alued to the plate

What is ALFA?

- Absolute Luminosity For ATLAS
- Forward Detectors at ~240m distance
- Measure elastic scattering at very small angles
 - ⇒ Absolute Luminosity at IP of ATLAS

- "Roman Pots" very close to the LHC Beam (mm-range)
- Scintillating fibres on 10 metal plates
 - 0.5 x 0.5 mm²
 glued to the plate

What is ALFA?

- Absolute Luminosity For ATLAS
- Forward Detectors at ~240m distance
- Measure elastic scattering at very small angles
 - ⇒ Absolute Luminosity at IP of ATLAS

- "Roman Pots" very close to the LHC Beam (mm-range)
- Scintillating fibres on 10 metal plates
 - 64 fibres on each side
 - 0.5 x 0.5 mm²
 - glued to the plate

What is ALFA?

- Absolute Luminosity For ATLAS
- Forward Detectors at ~240m distance
- Measure elastic scattering at very small angles
 - ⇒ Absolute Luminosity at IP of ATLAS

- "Roman Pots" very close to the LHC Beam (mm-range)
- Scintillating fibres on 10 metal plates
 - 64 fibres on each side
 - 0.5 x 0.5 mm²
 - glued to the plate

What is ALFA?

- Absolute Luminosity For ATLAS
- Forward Detectors at ~240m distance
- Measure elastic scattering at very small angles
 - ⇒ Absolute Luminosity at IP of ATLAS

- "Roman Pots" very close to the LHC Beam (mm-range)
- Scintillating fibres on 10 metal plates
 - 64 fibres on each side
 - 0.5 x 0.5 mm²
 - glued to the plate

What is ALFA?

- Absolute Luminosity For ATLAS
- Forward Detectors at ~240m distance
- Measure elastic scattering at very small angles
 - ⇒ Absolute Luminosity at IP of ATLAS

- "Roman Pots" very close to the LHC Beam (mm-range)
- Scintillating fibres on 10 metal plates
 - 64 fibres on each side
 - 0.5 x 0.5 mm²
 - glued to the plate

- Spatial Resolution much smaller than spot size of beam
 - \Rightarrow a resolution of $30\mu m$ is adequate
 - But: precision of gluing $\simeq 100 \mu m$!
- \Rightarrow Measure the "exact" position of the fibres to achieve a precision of $\leq 30 \mu m$

- Spatial Resolution much smaller than spot size of beam
 - \Rightarrow a resolution of $30\mu m$ is adequate
 - But: precision of gluing $\simeq 100 \mu m$
- \Rightarrow Measure the "exact" position of the fibres to achieve a precision of $\leq 30 \mu m$

- Spatial Resolution much smaller than spot size of beam
 - \Rightarrow a resolution of $30\mu m$ is adequate
 - But: precision of gluing $\simeq 100 \mu m$!
- ⇒ Measure the "exact" position of the fibres to achieve a precision of ≤ 30μm

- Spatial Resolution much smaller than spot size of beam
 - \Rightarrow a resolution of $30\mu m$ is adequate
 - But: precision of gluing $\simeq 100 \mu m$!
- ⇒ Measure the "exact" position of the fibres to achieve a precision of ≤ 30μm

Outline

- Motivation
- Precision Measurement
- Measurement results
- 4 Automation
- 5 Summary

The measurement

Pre-considerations

- Get a linear equation for every fibre:
 - Measure the offset of the fibres in x-direction
- Assume constant width of the fibres:
 - Measure the middle of the gaps between the fibres

The measurement

Pre-considerations

- Get a linear equation for every fibre:
 - Measure the offset of the fibres in x-direction
- Assume constant width of the fibres:
 - Measure the middle of the gaps between the fibres

The measuring equipment

- Air damped table to compensate vibration
- Monocular microscope, movable in x-, y- and z-direction (precision $\simeq 2\mu m$)
- CCD-Camera on microscope (5 megapixels)
- Both connected to the PC

- ...has 12x zoom (upper side), a 10x zoom (lower side) and a variable zoom (0.58x-7x) in the middle
- ...can be driven by Hand (Joystick) or by the PC

The measuring equipment

- Air damped table to compensate vibration
- Monocular microscope, movable in x-, y- and z-direction (precision ~ 2μm)
- CCD-Camera on microscope (5 megapixels)
- Both connected to the PC

- ...has 12x zoom (upper side), a 10x zoom (lower side) and a variable zoom (0.58x-7x) in the middle
- ...can be driven by Hand (Joystick) or by the PC

The measuring equipment

- Air damped table to compensate vibration
- Monocular microscope, movable in x-, y- and z-direction (precision ~ 2μm)
- CCD-Camera on microscope (5 megapixels)
- Both connected to the PC

- ...has 12x zoom (upper side), a 10x zoom (lower side) and a variable zoom (0.58x-7x) in the middle
- ...can be driven by Hand (Joystick) or by the PC

The measuring equipment

- Air damped table to compensate vibration
- Monocular microscope, movable in x-, y- and z-direction (precision ~ 2μm)
- CCD-Camera on microscope (5 megapixels)
- Both connected to the PC

- ...has 12x zoom (upper side), a 10x zoom (lower side) and a variable zoom (0.58x-7x) in the middle
- ...can be driven by Hand (Joystick) or by the PC

The measuring equipment

- Air damped table to compensate vibration
- Monocular microscope, movable in x-, y- and z-direction (precision ~ 2μm)
- CCD-Camera on microscope (5 megapixels)
- Both connected to the PC

- ...has 12x zoom (upper side), a 10x zoom (lower side) and a variable zoom (0.58x-7x) in the middle
- ...can be driven by Hand (Joystick) or by the PC

The measuring equipment

- Air damped table to compensate vibration
- Monocular microscope, movable in x-, y- and z-direction (precision ~ 2μm)
- CCD-Camera on microscope (5 megapixels)
- Both connected to the PC

- ...has 12x zoom (upper side), a 10x zoom (lower side) and a variable zoom (0.58x-7x) in the middle
- ...can be driven by Hand (Joystick) or by the PC

lotivation Precision Measurement Measurement results Automation Summary

The measurement

So far: manually

- Define a coordinate system:
 - Choose upper precision hole as origin
- Manually measure fibre offsets:
 - Use joystick to move to next gap and write down position

The measurement

So far: manually

- Define a coordinate system:
 - Choose upper precision hole as origin
- Manually measure fibre offsets:
 - Use joystick to move to next gap and write down position

Manual measurement

Disadvantages

- It takes ~2 hours for one row on each side of one plate
 - \Rightarrow ~12 hours for each plate \Rightarrow ~120 hours for one detector (10 plates)
- Looking at same position, human eye gets tired after a while → source of error

Advantages

• Human eye itself is "perfect" measuring machine

Manual measurement

Disadvantages

- It takes ~2 hours for one row on each side of one plate
 - ⇒ ~12 hours for each plate ⇒ ~120 hours for one detector (10 plates)
- Looking at same position, human eye gets tired after a while → source of error

Advantages

Human eve itself is "perfect" measuring machine

Manual measurement

Disadvantages

- It takes ~2 hours for one row on each side of one plate
 - ⇒ ~12 hours for each plate ⇒ ~120 hours for one detector (10 plates)
- Looking at same position, human eye gets tired after a while → source of error

Advantages

Human eve itself is "perfect" measuring machine

Manual measurement

Disadvantages

- It takes ~2 hours for one row on each side of one plate
 - ⇒ ~12 hours for each plate ⇒ ~120 hours for one detector (10 plates)
- Looking at same position, human eye gets tired after a while → source of error

Advantages

• Human eye itself is "perfect" measuring machine

Outline

- Motivation
- Precision Measurement
- Measurement results
- 4 Automation
- 5 Summary

Explanatory sketch

Pitch:

$$\Delta x^{(i)} = \frac{x_{i+1} - x_i}{\sqrt{2}}$$

Offset from average:

$$\Delta x^{(i)} = x_i - [x_1 + (Gap\#_i - 1) \cdot step_{avg}]$$

Comparison of pitch measurement

Average pitch: 0.492 mm

Average pitch: 0.490 mm

Comparison of offset from average

The DESY measurements . . .

- ullet . . . could reproduce the CERN measurements within a precision of 5 μm
- ullet ... had a positive offset of $\sim 5 \mu m$ on the v-side
- ... had a negative offset of $\sim 5\mu m$ on the *u*-side

- Systematic error
 - would accumulate from fibre to fibre
- "Wrong" center of coordinate system
 - would lead to constant offset for each fibre

The DESY measurements . . .

- ullet . . . could reproduce the CERN measurements within a precision of 5 μm
- ullet ... had a positive offset of $\sim 5 \mu m$ on the v-side
- ... had a negative offset of $\sim 5\mu m$ on the *u*-side

- Systematic error
 - would accumulate from fibre to fibre
- "Wrong" center of coordinate system
 - would lead to constant offset for each fibre

The DESY measurements . . .

- ullet . . . could reproduce the CERN measurements within a precision of 5 μm
- ullet ... had a positive offset of $\sim 5 \mu m$ on the v-side
- ... had a negative offset of $\sim 5\mu m$ on the *u*-side

- Systematic error
 - would accumulate from fibre to fibre
- "Wrong" center of coordinate system
 - would lead to constant offset for each fibre

The DESY measurements . . .

- ullet . . . could reproduce the CERN measurements within a precision of 5 μm
- ... had a positive offset of $\sim 5\mu m$ on the v-side
- ... had a negative offset of $\sim 5\mu m$ on the *u*-side

- Systematic error
 - would accumulate from fibre to fibre
- "Wrong" center of coordinate system
 - would lead to constant offset for each fibre

The DESY measurements . . .

- ullet . . . could reproduce the CERN measurements within a precision of 5 μm
- ... had a positive offset of $\sim 5\mu m$ on the v-side
- ... had a negative offset of $\sim 5\mu m$ on the *u*-side

- Systematic error
 - would accumulate from fibre to fibre
- "Wrong" center of coordinate system
 - would lead to constant offset for each fibre

Find center of circle from points on circumference

Two methods

- 3 points on circumference → 2 secants
 - middle-perpendicular of the 2 secants intersect in center of circle
- ② ≥ 10 points on circumference → fit circle
 - center of circle

Find center of circle from points on circumference

Two methods

- ① 3 points on circumference → 2 secants
 - middle-perpendicular of the 2 secants intersect in center of circle
- 2 ≥ 10 points on circumference → fit circle
 - center of circle

Find center of circle from points on circumference

Two methods

- ① 3 points on circumference → 2 secants
 - middle-perpendicular of the 2 secants intersect in center of circle
- ② ≥ 10 points on circumference → fit circle
 - center of circle

Implementation of above methods

- Method 1 (self-written C++ program)
 - Pro: less then 10 points is enough
 - ullet Con: not reliable enough, slow for \geq 10 points
- Method 2 (RFit program used in RICH-detectors)
 - Pro: fast, reliable, well tested
 - Con: more then 10 points needed

Outline

- Motivation
- Precision Measurement
- Measurement results
- 4 Automation
- 5 Summary

Pre-considerations

- Microscope has API for VisualC++, Delphi and LabView
- Camera has FTP-Server/Client and Telnet-Server built-in
- LabView has a wide range of image processing capabilities

- get the image from the camera's FTP-Server
- process the image to find the gap
- o move the microscope into the region of the next gap
- $4 \Rightarrow 1$

Pre-considerations

- Microscope has API for VisualC++, Delphi and LabView
- Camera has FTP-Server/Client and Telnet-Server built-in
- LabView has a wide range of image processing capabilities

- get the image from the camera's FTP-Server
- process the image to find the gap
- o move the microscope into the region of the next gap
- $4 \Rightarrow 1$

Pre-considerations

- Microscope has API for VisualC++, Delphi and LabView
- Camera has FTP-Server/Client and Telnet-Server built-in
- LabView has a wide range of image processing capabilities

- get the image from the camera's FTP-Server
- process the image to find the gap
- 3 move the microscope into the region of the next gap
- 4 ⇒ 1

Pre-considerations

- Microscope has API for VisualC++, Delphi and LabView
- Camera has FTP-Server/Client and Telnet-Server built-in
- LabView has a wide range of image processing capabilities

- oget the image from the camera's FTP-Server
- process the image to find the gap
- o move the microscope into the region of the next gap
- $4 \Rightarrow 1$

Pre-considerations

- Microscope has API for VisualC++, Delphi and LabView
- Camera has FTP-Server/Client and Telnet-Server built-in
- LabView has a wide range of image processing capabilities

- get the image from the camera's FTP-Server
- process the image to find the gap
- 3 move the microscope into the region of the next gap
- $4 \Rightarrow 1$

Pre-considerations

- Microscope has API for VisualC++, Delphi and LabView
- Camera has FTP-Server/Client and Telnet-Server built-in
- LabView has a wide range of image processing capabilities

- oget the image from the camera's FTP-Server
- process the image to find the gap
- Move the microscope into the region of the next gap

Pre-considerations

- Microscope has API for VisualC++, Delphi and LabView
- Camera has FTP-Server/Client and Telnet-Server built-in
- LabView has a wide range of image processing capabilities

- get the image from the camera's FTP-Server
- process the image to find the gap
- Move the microscope into the region of the next gap
- 4 ⇒ 1

First impressions from LabView's image processing

Outline

- Motivation
- Precision Measurement
- Measurement results
- Automation
- 5 Summary

Summary

- Q: Why ALFA?
 - A: Measure absolute Luminosity for ATLAS.
- Q: What kind of detector?
 - A: Scintillating Fiber Detector.
- Q: What needs to be done?
 - A: Measure the "exact" fibre position.
- Q: Whats the outcome of the manual measurements?
 - A: The CERN measurements could be reproduced.
- Q: Whats up next?
 - A: Program LabView to automate the process.

