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Motivation

ALFA Overview

What is ALFA?

@ Absolute Luminosity For ATLAS
@ Forward Detectors at ~240m distance

@ Measure elastic scattering at very small angles
@ = Absolute Luminosity at IP of ATLAS

<

Detector Layout

@ "Roman Pots” very close to the LHC Beam (mm-range)
@ Scintillating fibres on 10 metal plates

@ 64 fibres on each side
e 0.5x 0.5 mm?
o glued to the plate
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Motivation

Requirements on ALFA

@ Spatial Resolution much smaller than spot size of beam
@ = aresolution of 30um is adequate
e But: precision of gluing ~ 100um !
@ = Measure the "exact” position of the fibres
to achieve a precision of < 30um
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The measurement

Pre-considerations

@ Get a linear equation for every fibre:
e Measure the offset of the fibres in x-direction
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Precision Measurement

The measurement

Pre-considerations
@ Get a linear equation for every fibre:
@ Measure the offset of the fibres in x-direction
@ Assume constant width of the fibres:
e Measure the middle of the gaps between the fibres
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Precision Measurement

Equipment

The measuring equipment

@ Air damped table to compensate vibration

@ Monocular microscope, movable in x-, y- and z-direction
(precision ~ 2um)

@ CCD-Camera on microscope (5 megapixels)

@ Both connected to the PC

The microscope ...

@ ...has 12x zoom (upper side), a 10x zoom (lower side)
and a variable zoom (0.58x-7x) in the middle

@ ...can be driven by Hand (Joystick) or by the PC
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The measurement
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Precision Measurement

The measurement

So far: manually
@ Define a coordinate system:
e Choose upper precision hole as origin
@ Manually measure fibre offsets:
e Use joystick to move to next gap and write down position
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Manual measurement

Disadvantages
@ It takes ~2 hours for one row on each side of one plate




Precision Measurement

Manual measurement

Disadvantages

@ It takes ~2 hours for one row on each side of one plate

e = ~12 hours for each plate =- ~120 hours for one detector
(10 plates)




Precision Measurement

Manual measurement

Disadvantages

@ It takes ~2 hours for one row on each side of one plate

e = ~12 hours for each plate =- ~120 hours for one detector
(10 plates)
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Precision Measurement

Manual measurement

Disadvantages

@ It takes ~2 hours for one row on each side of one plate
@ = ~12 hours for each plate = ~120 hours for one detector
(10 plates)
@ Looking at same position, human eye gets tired after a
while — source of error

Advantages
@ Human eye itself is "perfect” measuring machine
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© Measurement results




Measurement results

Explanatory sketch

Fibre 1
Fibre 2
Fibre 3
Fibre 4
Fibre 5
Step > Step > SteL.

Offset from average:
AXD =x — [x + (Gap# — 1) - stepayg] Y50

i) — Xi+1—X;
Ax () = AR




Measurement results

Comparison of pitch measurement
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Measurement results
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Delta Difference DESYu-CERNu

Measurement results
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The DESY measurements . ..

@ ... could reproduce the CERN measurements within a
precision of 5 um
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Measurement results

The DESY measurements . ..

@ ... could reproduce the CERN measurements within a
precision of 5 um

@ ... had a positive offset of ~ 5um on the v-side
@ ... had a negative offset of ~ 5um on the u-side

v

Possible error sources

@ Systematic error
e would accumulate from fibre to fibre
@ "Wrong” center of coordinate system
e would lead to constant offset for each fibre
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Measurement results

Find center of circle from points on circumference

Two methods

© 3 points on circumference — 2 secants

e middle-perpendicular of the 2 secants intersect in center of
circle




Measurement results

Find center of circle from points on circumference

Two methods

© > 10 points on circumference — fit circle
e center of circle

. i
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] Circle centre 2



Measurement results

Find center of circle from points on circumference

Two methods

Implementation of above methods

@ Method 1 (self-written C++ program)
e Pro: less then 10 points is enough
e Con: not reliable enough, slow for > 10 points
@ Method 2 (RFit program used in RICH-detectors)

e Pro: fast, reliable, well tested .
e Con: more then 10 points needed !.‘
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Up next: Automatic measurement

Pre-considerations

@ Microscope has API for VisualC++, Delphi and LabView

= use LabView + camera’s FTP-Server
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Automation

Up next: Automatic measurement

Pre-considerations

@ Microscope has API for VisualC++, Delphi and LabView

@ Camera has FTP-Server/Client and Telnet-Server built-in
@ LabView has a wide range of image processing capabilities

= use LabView + camera’s FTP-Server

@ get the image from the camera’s FTP-Server
@ process the image to find the gap
© move the microscope into the region of the next gap

Q=1

A,




Automation

First impressions from LabView’s image processing
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Summary

Summary

© Why ALFA?

A: Measure absolute Luminosity for
ATLAS.

. What kind of detector?

A: Scintillating Fiber Detector.

. What needs to be done?

A: Measure the "exact” fibre position.

. Whats the outcome of the manual measurements?

A: The CERN measurements could be
reproduced.

: Whats up next?

UH R

A: Program LabView to automate the ’
process. s
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