Flavour challenges from Belle II and LHCb to Tera- $\!Z$

Future Colliders @ DESY meeting

Most numbers from: <u>Belle II physics book</u>, <u>Physics case for LHCb Upgrade II</u>, <u>FCC-ee CDR V2</u>, <u>PRD102(2020)056023</u>.

Thibaud Humair, 21 June 2024

Outline

- Status and challenges in flavour physics:
 - Today: LHCb and Belle II
 - In the future: Tera-Z at FCC-ee
- Focus on *B* physics
- Focus on some subjects that are important or that I like, not necessarily what FCC-ee can do best

B hadrons + O(100) charged particles Unconstrained kinematics

 $\sim 20'000~B{\rm 's}$ per sec., 1% of total events low reconstruction efficiency, need trigger

Ideal for very rare decays to charged particles

Today: 3 (Run I) +6 fb⁻¹ (Run II) $\sim 10^{12} \ b\bar{b}$ jet pairs in acceptance

 $p(B) \sim 100 \text{ GeV}$ flight distance $\sim 1 \text{ cm}$ \Rightarrow decay-time resolution $\sim 0.05 \text{ ps}$

LHCb vs Belle II vs Tera-Z environments

Attribute	Belle II	pp	Z^0
All hadron species		\checkmark	\checkmark
High boost		\checkmark	\checkmark
Enormous production cross-section		\checkmark	
Negligible trigger losses	\checkmark		\checkmark
Low backgrounds	\checkmark		\checkmark
Initial energy constraint	\checkmark		(\checkmark)

Timeline (outdated)

- Today: LHCb running ~ stable (upstream tracker + vertex detector seem OK) Belle II re-started in February, pixel detector off due to beam losses
- Direct future (~2028): LHCb ~ $30 \, \text{fb}^{-1}$ and Belle II ~ $5 \, \text{ab}^{-1}$
- early 2030s: LHCb $\sim 50 \, \mathrm{fb}^{-1}$ and Belle II $\sim 50 \, \mathrm{ab}^{-1}$
- late 2030s: LHCb upgrade II $\sim 300 \, {\rm fb}^{-1}$ and Belle III $\sim 250 \, {\rm ab}^{-1}$
- 2040s FCC-ee : Tera-Z: $5 \times 10^{12} Z$ decays

How B physics works

- We mostly perform precision measurement of processes that aren't tree level:
 - Box diagrams that appear in $B^0 \bar{B}^0$ and $B^0_s \bar{B}^0_s$ mixing
 - Penguin diagrams mediating some *B* hadron decays
- New physics, even heavy, could interfere with these diagrams, modifying observables
 - Example: Argus observed substantial B^0 - \overline{B}^0 mixing \implies means the top quark is *very* heavy

The CKM matrix

CKM matrix: rotate down-type quarks from mass to flavour basis

Constraints best visualised as unitary triangle in complex plane

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \approx \begin{pmatrix} 0.97 & 0.22 & 0.004e^{1.1i} \\ 0.22 & 0.99 & 0.04 \\ 0.008e^{0.4i} & 0.04 & 1.00 \end{pmatrix}$$

$$V_{td} = |V_{td}| e^{ieta} \,\,\, V_{ub} = |V_{ub}| e^{i\gamma}$$

7

SM standard candles

Left side and γ depend on tree-level decays \rightarrow "standard candles" for apex position

- $|V_{ub}|$ and $|V_{cb}|$ from rates of $B \to \pi \ell \nu$ and $B \to D \ell \nu$ decays
- γ from (direct) CP-asymmetry between $B^+ \rightarrow D^0 K^+$ and $B^- \rightarrow D^0 K^-$ decays (or similar)

SM standard candles

Left side and γ depend on tree-level decays \rightarrow "standard candles" for apex position

- $|V_{\mu b}|$ and $|V_{cb}|$ from rates of $B \to \pi \ell \nu$ and $B \to D \ell \nu$ decays
- γ from (direct) CP-asymmetry between $B^+ \rightarrow D^0 K^+$ and $B^- \rightarrow D^0 K^-$ decays (or similar)

All other constraints involve the box diagram

Gamma: today

Most precise method today:

 \rightarrow use $B^+ \rightarrow D^0 K^+$ with D^0 3- or 4-body decay

 \rightarrow measure A_{CP} in bins of D^0 Dalitz plane

 \rightarrow use BESIII inputs from $e^+e^- \rightarrow D^0 \bar{D}^0$ to get γ

Other methods exist (less precise today): $\Rightarrow B^+ \Rightarrow D^0 K^+$ with D^0 2-body decays $\Rightarrow B_s^0 \Rightarrow D_s^- K^+$ decay-time-dependent

• LHCb comb.: $\gamma = 65.4^{+3.8}_{-4.2}$ JHEP12(2021)141

• Belle I+II comb.: $\gamma = 78.6^{+7.2}_{-7.3} \frac{\text{arXiv:}2404.12817}{2404.12817}$

Gamma: future

- sub-degree precision will be reached from combination of different methods
- no systematic bottleneck expected
- LHCb expected to drive the precision, both in medium-term future and with HL-LHC

Belle $50 \mathrm{ab}^{-1}$	LHCb 50fb^{-1}
$\sim 1.5 \deg$	$\sim 1.0 \deg$

LHCb $300 \mathrm{fb}^{-1}$	FCC-ee
$\sim 0.35 \deg$	$\sim 0.25 \deg$

$|V_{ch}| \& |V_{uh}|: today$

Exclusive measurements:

 $|V_{ub}| \& |V_{cb}| @Belle (II): B \rightarrow \pi \ell \nu, B \rightarrow D^{(*)} \ell \nu$ $|V_{\mu b}| / |V_{cb}|$ @LHCb: e.g. $\Lambda_b^0 \to p^+ \ell \nu / \Lambda_b \to \Lambda_c \ell \nu$

Inclusive measurements: $B \to X_c \ell \nu$, $B \to X_u \ell \nu$ → Impossible in hadronic environment: need known kinematics and full event reconstruction

Different frameworks for excl. and incl. predictions (lattice vs HQET)

Tension between inclusive and exclusive:

→ Precise studies of QCD parameterisations using unfolded kinematic distributions

→ Improving understanding of various peaking backgrounds that may bias the result

$|V_{ch}| \& |V_{uh}|$: future

FCC-ee could measure $|V_{\mu b}|$ with $B^+ \rightarrow \tau^+ \nu$ → only decay constant as theory input

FCC-ee can also measure $B_c^+ \rightarrow \tau^+ \nu$

 \rightarrow precision on V_{cb} limited by knowledge $b \rightarrow B_{c}$ fragmentation fraction

 \rightarrow (also important to investigate $R_{D^{(*)}}$ anomaly)

Real benefit @ FCC-ee: $|V_{cb}|$ from $W^+ \rightarrow cb$ $\rightarrow \sim 0.5 \%$ precision, 3X better than SL decays at HL-LHC or Belle II

	Belle $50 \mathrm{ab}^{-1}$	FCC-ee	th
V_{ub} SL	1-3%	$\sim 1\%$	$\sim 1\%$
$V_{ub} B^+ \to \tau^+ \nu$	$\sim 3\%$	$\sim 2\%$	$\sim 2\%$

Mixing diagram and mixing frequency

Other measurements in the CKM triangle are related to the B^0 - \overline{B}^0 mixing box diag. \rightarrow suppressed, sensitive to new physics

$$|box| \sim |V_{td}|^2 \sim B^0 - \overline{B}^0$$
 osc. freq. Δm_d :

$$N\left(B^0 \to \bar{B}^0(t) \text{ or } \bar{B}^0 \to B^0(t)\right) \sim 1 - \cos(\Delta t)$$

Accuracy dominated by LHCb using $B^0 \rightarrow D^{*-} \mu^+ \nu$

But: theory prediction (lattice) $10 \times less$ accurate than measurement, even worse for $B_s^0 - \bar{B}_s^0$

Mixing phase and $\sin 2\beta$

Historical flagship at LHCb & Belle II:

$$\frac{N(B^0 \to J/\psi K_S)(t) - N(\bar{B}^0 \to J/\psi K_S)(t)}{N(B^0 \to J/\psi K_S)(t) + N(\bar{B}^0 \to J/\psi K_S)(t)} = \sin 2$$

Best known angle, future accuracy will depend on how much we control:

- \rightarrow time resolution
- → flavour tagger calibration
- → interference with penguin decays, can be constrained

from the data (using e.g. $B^0 \rightarrow J/\psi \pi^0$)

Marginal improvements from FCC-ee (maybe in the study of penguin-free modes?)

Belle II: better tagging

Semileptonic asymmetries

$$a_{sl} = \frac{N(\bar{B}^0 \to B^0) - N(B^0 \to \bar{B}^0)}{N(\bar{B}^0 \to B^0) + N(B^0 \to \bar{B}^0)}$$

unlike mixing freq., clean theory prediction

LHCb: decay time shape in $B \to D^{(*)-}\mu^+\nu$ vs $B \to D^{(*)+}\mu^-\nu$ decays

Challenges: to control:

- → Production asymmetry
- → Detection asymmetries (calibrated with *D* decays)
- → Backgrounds

FCC-ee with similar analysis \Rightarrow best precision

	LHCb now	LHCb 300fb^{-1}	FCC-
$\delta a_{sl}^{d} \ [10^{-4}]$	36	2	0.25
$\delta a_{sl}^{s} \ [10^{-4}]$	33	3	0.25

Summary PRD102(2020)056023

Fit the CKM triangle measurements with parameterisation:

 $A_{box} = A_{box}^{SM} \cdot \left(1 + h_{s,d} e^{i\sigma_{s,d}}\right)$

• Today,
$$h_{s,d} < \sim 15~\%$$

- Would reduce to $\sim 3\%$ with FCC-ee, HL-LHC, Belle II
- Control of theory uncertainties critical to reach \bullet this precision

$b \rightarrow s\ell\ell$ penguins

- Penguin-mediated $b \rightarrow s\ell\ell$ transitions suppressed in SM and very sensitive to NP
- Angular observables and BF for $b \rightarrow s\mu\mu$ decays $(B \to K^{(*)}\mu\mu, B_s \to \phi\mu\mu)$ are off

Charm loops in $b \rightarrow s\ell\ell$

- NP or charm loops?
- LHCb attempts to control charm loop contributions from the data
- Tension with SM at the level of $\sim 2.1 \sigma$, but mostly free of QCD inputs

arXiv:2405.17347

19

$B \rightarrow K \nu \nu$: present

- If NP is in $b \rightarrow s\mu\mu$, also expect it in $b \rightarrow s\nu\nu$
- Theoretically clean: no charm loops!
- Belle II $B^+ \rightarrow K^+ \nu \nu$ analysis with 2 techniques:
 - Exclusive: reconstruct other *B* in $ee \rightarrow BB$ to infer missing energy
 - Inclusive: detect large momentum K^+ , train classifier based on event topology/occupancy
- Observe an excess: 3.6σ wrt background only, 2.8σ above SM.

$B \rightarrow K \nu \nu$: future

- FCC-ee sensitivity study for $B^0 \to K^+ \pi^- \nu \nu$
- Discriminate from backgrounds using mainly:
 - detached $K^+\pi^-$ vertex
 - missing energy in hemisphere
- Expected precisions on BF:
 - Belle II $50 \, \mathrm{ab}^{-1} \sim 10\%$ FCC-ee: $\sim 0.5\%$
 - Would allow more refined analysis to extract additional observables (f_I)
- Similar situation for $B_s \to \phi \nu \nu$, $\Lambda_b \to p K \nu \nu$

$b \rightarrow s \tau \tau$

- Similarly, $b \rightarrow s \tau \tau$ also sensitive to NP
- Very difficult to see, as tau leptons always decay to at least 1 neutrino
- At Belle II, no real hope of observing it
- <u>Recent study</u> for a $B^0 \to K^{*-}\tau^+\tau^-$ search at FCC-ee:
 - using $\tau \rightarrow 3\pi\nu$ decays
 - sensitivity depends strongly on vertex resolution, 3 σ evidence not guaranteed

Conclusions

- energy), and what Tera-Z can bring
- FCC-ee can do more than what I discussed:
 - $B \rightarrow \pi \pi$, etc.
 - D physics: not much explored, quite some activities now at Belle II
 - τ physics, and Z couplings to leptons
- theory predictions

• I have shown prospects in studies of the CKM triangle and penguin decays (esp. with missing

• B physics: polarised Λ_b , lepton flavour violating decays, $2\beta_{(s)} + \gamma$ (with $B_s \rightarrow D_s K$), α with

How much Tera-Z brings also depends on how HL LHCb, Belle II perform and on progress in

only LHCb $\Lambda_b, B_{c,s}$ decays Fully inclusive decays only Belle II $LHCb \gg Belle II$ Rare decays with leptons Decays with neutrinos Belle II \gg LHCb Hadronic decays depends...

 $B_s \to \phi \mu \mu$ angular analysis V_{cb} with $B \to X_c \ell \nu$ LHCb $B^0 \to K^* \mu \mu$ B^0 osc. freq. with $B^0 \to D^{*-} \mu^+ \nu$ $BF(B \to D^{(*)}\tau\mu\nu) \& R(D^{(*)})$ $B^0 \to K^+ \nu \nu$ γ with $B \to D(Kh(h))K$ LHCb dominated α with $B^0 \to \pi^+ \pi^0 \pi^- \pi^0$ Belle dominated

JHEP11(2021)043 PRD.107.072002 arXiv:2405.17347 EPJC76(2016)7,412 HFLAV PRD109,112006(2024) JHEP12(2021)141

PRD93,032010(2016)

kuba

