μ **TRISTAN:** μ^+e^- and $\mu^+\mu^+$ collider

Yu Hamada (DESY, Theory)

Based on:

- arXiv:2201.06664, YH, R. Kitano, R. Matsudo, H. Takaura, and M. Yoshida
- arXiv:2210.11083, YH, R. Kitano, R. Matsudo, and H. Takaura
- arXiv:2406.04500, L. Chen, YH, and S. Iguro
- arXiv:2407.XXXXX, YH, R. Kitano, R. Matsudo, S. Okawa, R. Takai, H. Takaura, and L. Treuer

21st Jun 2024, Future Colliders @ DESY Meeting

About myself

- Name: Yu Hamada
- got my Ph.D @ Kyoto U., Japan (2021)
- 1st postdoc @ KEK Theory Group, Tsukuba
 City, Japan 2021-2023
- 2nd postdoc @ DESY Theory Group (Cosmology) since October 2023

Plan of talk

• Introduction: What is μ TRISTAN?

• Higgs physics at μ TRISTAN

• New physics search at μ TRISTAN

• Summary

Introduction: What is *µ*TRISTAN?

Task of future collider

precision measurements ← lepton collider high energy e.g. O(10) TeV \leftarrow less synchrotron rad. than e^{\pm}

The formula of the number of the collision events:

$$N_{\text{events}} = \sigma \times \mathscr{L} \times t_{\text{run}} \qquad \stackrel{t_{\text{run}}}{\overset{t_{\text{run}}}{\overset{t_{\text{run}}}{\overset{t_{\text{run}}}{\overset{t_{\text{run}}}{\overset{t_{\text{run}}}{\overset{t_{\text{run}}}{\overset{t_{\text{run}}}{\overset{t_{\text{run}}}{\overset{t_{\text{run}}}{\overset{t_{\text{run}}}}}}}}$$
How frequently
$$Iuminosity: \qquad \mathscr{L} = \frac{N_{\text{beam1}}N_{\text{beam2}}}{\frac{N_{\text{beam1}}N_{\text{beam2}}}{4\pi \sigma_x \sigma_y}} f_{\text{rep}}$$

The statistical error of the cross section is given as:

$$\frac{\Delta_{\text{stat.}}\sigma}{\sigma} \propto \frac{1}{\sqrt{N_{\text{events}}}} \propto \sqrt{\frac{\sigma_x \sigma_y}{N_{\text{beam1}} N_{\text{beam2}}}}$$

of particles and narrow beam size are important

un: running time

σ : cross section

ly collisions occur

Current difficulties of $\mu^+\mu^-$ collider

• MAP (Muon Accelerator Program)

μ[±] produced from π[±] decay
→ too hot, randomly distributed
→ cooling with ionized material

principle works, but not yet established

• **LEMMA** (Low Emittance Muon Accelerator)

μ

Technology for μ^+ cooling exists!

• J-PARC is planning μ g-2/EDM experiment.

The key technology is cooling of μ^+ , which is available today!

Ultra cold μ^+

In g-2/EDM exp., used as a highquality μ^+ beam by accelerating

Technology for μ^+ cooling exists!

• J-PARC is planning μ g-2/EDM experiment.

The key technology is cooling of μ^+ , which is available today!

Our proposal: accelerate it to O(1)TeV!

fig from slide by Takaura

5

quality μ^+ beam by accelerating

Ultra cold μ^+

Technology for μ^+ cooling exists!

World's first cooling and acceleration of muon Home > Press Release > Materials and Life Science > - The first muon accelerator finally coming to a reality. -

2024.05.23

World's first cooling and acceleration of muon - The first muon accelerator finally coming to a reality. -

Question

* If muons can be accelerated in an accelerator, it is expected to be useful in a variety of fields such as elementary particle physics, material and life sciences, and earth science. For example, such muons are useful for ultra-precise measurement of anomallous magnetic moment (g-2)

ready to be accelerated

https://www.j-parc.jp/c/en/press-release/2024/05/23001341.html

Beam emittance

• Beam size is determined by emittance $\epsilon_{x,y}$

emittance = area of distribution in phase space → reflects quality of beam

Beam emittance

• Beam size is determined by emittance $\epsilon_{x,y}$

emittance = area of distribution in phase space → reflects quality of beam

[J-PARC EDM/g-2 ,1901.03047]

For ultra-cold μ^+ : $\epsilon_x, \epsilon_y = \frac{4 \,\mu m}{\beta \gamma}$

Beam emittance

Proposal of new experiment: μ TRISTAN!

high-quality μ^+ beam accelerated to O(1) TeV

- $\mu^+ e^-$ collider $E_{\mu^{+}} = 1 \text{ TeV}, \quad E_{e^{-}} = 30 \text{ GeV} (\text{TRISTAN energy})$ $\rightarrow \sqrt{s} = 346 \text{ GeV} \qquad \mathscr{L}_{\mu^{+}e^{-}} = 4.6 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ **Higgs factory/EW precision** • $\mu^+\mu^+$ collider (instead of $\mu^+\mu^-$) $E_{\mu^+} = 1 \text{ TeV}, \quad E_{\mu^+} = 1 \text{ TeV}$
 - $\rightarrow \sqrt{s} = 2 \,\text{TeV}$ $\mathscr{L}_{\mu^+\mu^+} = 5.7 \times 10^{32} \,\text{cm}^{-2} \text{s}^{-1}$

New physics search/Higgs factory(!?)

[YH, Kitano, Matsudo, Takaura, Yoshida, 2201.06664]

Plan of talk

Introduction: What is TRISTAN?

• Higgs physics at μ TRISTAN

• New physics search at μ TRISTAN

• Summary

Higgs physics at μ TRISTAN

Due to the large luminosity, the μ^+e^- collider is more suitable.

$$(E_{\mu^+}, E_{e^-}) = (1 \text{ TeV}, 30 \text{ GeV})$$
 $\sqrt{s} = 346 \text{ GeV}$ $\nu_e \sqrt{s}$
 $(P_{\mu^+}, P_{e^-}) = (0.8, -0.7)$

Main process: W-boson fusion $\sigma_{WBF} \simeq 91 \, \text{fb}$

• luminosity $\mathscr{L}_{\mu^+e^-} = 4.6 \times 10^{33} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$

•
$$\int dt \mathscr{L}_{\mu^+ e^-} = 1.0 \, \mathrm{ab}^{-1}$$
 w/ten-year running

•
$$N(\text{Higgs}) = 9.5 \times 10^4 \times \frac{(\text{integrated luminon})}{1.0 \, \text{ab}^{-1}}$$

Higgs precision measurement is possible!

Coupling measurement

Higgs mainly decays into $b\bar{b}$ (Br. = 58.2 % in SM)

_ _ _ _ _ _ _

$$\sigma_{\rm SM} = \sigma_{\rm WBF}^{\rm SM} \underbrace{\frac{\Gamma_{H \to b\bar{b}}^{\rm SM}}{\Gamma_{H, tot}^{\rm SM}}}_{\rm Br(H \to b\bar{b})} \qquad \nu_{e}$$

All couplings are parameterized by κ 's (κ -scheme)

$$g_{hWW} = \kappa_W g_{hWW}^{SM}$$

$$g_{hb\bar{b}} = \kappa_b g_{hb\bar{b}}^{SM} \longrightarrow \sigma = \frac{\kappa_W^2 \kappa_b^2}{\kappa_H^2} \sigma_{SM}$$

$$\Gamma_{H, tot} = \kappa_H^2 \Gamma_{H, tot}^{SM}$$

Coupling measurement

[YH, Kitano, Matsudo, Takaura, Yoshida, 2201.06664]

$$\sigma = \frac{\kappa_W^2 \kappa_b^2}{\kappa_H^2} \sigma_{\rm SM} \qquad \nu_e$$

 $\kappa_{\bullet} = 1 + \Delta \kappa_{\bullet}$ (SM corresponds to $\Delta \kappa_{\bullet} = 0$)

κ 's can be measured with the statistical uncertainty:

$$\left|\Delta\kappa_W + \Delta\kappa_b - \Delta\kappa_H\right| \lesssim \frac{1}{2} \frac{\Delta_{\text{stat.}} \sigma}{\sigma} \simeq \frac{1}{2} \frac{1}{\sqrt{N(\text{Higgs}) \times \text{Br} \times \text{efficiency}}}$$

$$\simeq 3.1 \times 10^{-3} \times \left(\frac{\text{integrated luminosity}}{1.0 \, \text{ab}^{-1}}\right)^{-1/2} \left(\frac{\text{e}}{1.0 \, \text{ab}^{-1}}\right)^{-1/2}$$

O(0.1)% measurement!

Higgs production @ $\mu^+\mu^+$?

Naively, only ZBF is possible at $\mu^+\mu^+$ collider \rightarrow suppressed?

\sqrt{s} [TeV]	ZBF [fb]	Photon emission [fb]
2	54	35
10	121	224
20	150	376

about a factor of two smaller than $\mu^+\mu^-$ (not too bad?)

 \sqrt{s} [TeV]

[2407.XXXXX, YH, Kitano, Matsudo, Okawa, Takai, Takaura, and Treuer]

Higgs production @ $\mu^+\mu^+$?

\sqrt{s} [TeV]	ZBF [fb]	Photon emission [fb]
2	0.075	0.010
10	0.62	0.30
20	1.1	0.75

[2407.XXXXX, YH, Kitano, Matsudo, Okawa, Takai, Takaura, and Treuer]

Plan of talk

Introduction: What is TRISTAN?

• Higgs physics at μ TRISTAN

• New physics search at μ TRISTAN

• Summary

New physics search at μ TRISTAN

Slepton production at μ TRISTAN

- For simplicity, only Wino \tilde{W} exchange (no other neutralinos)
- Mass parameter region where # of events exceeds 100 (We do not consider decay of sleptons)

[YH, Kitano, Matsudo, Takaura, Yoshida, 2201.06664]

Indirect new physics search at µTRISTAN [YH, Kitano, Matsudo, Takaura, 2210.11083]

Constrain SMEFT dim-6 operators via Møller scattering

$$Q_{ll} = \frac{1}{\Lambda^2} (\bar{L}\gamma_{\mu}L)(\bar{L}\gamma^{\mu}L) \qquad Q_{HD} = \frac{1}{\Lambda^2} (H^{\dagger}D_{\mu}H)^* (H^{\dagger}D^{\mu}H)^* (H^{\dagger}D^{\mu}$$

with 95% C.L. We can detect ${}^{P}_{A^+} \leq {}^{P}_{1} = 0 = 0 = 100$

Weak mixing angle at μ TRISTAN

Weak mixing angle: $\sin^2 \theta_W = \frac{g_Y^2}{g_W^2 + g_Y^2}$ (@ tree)

important quantity of EW sector and sensitive to NP through RGE

[Chen, YH, Iguro, 2406.04500]

Summary

• We proposed a new collider μ TRISTAN using ultra-cold μ^+ , which is already available!

$$\mu^+ e^- \text{ collider} \qquad \mathscr{L}_{\mu^+ e^-} = 4.6 \times 10^{33} \,\text{cm}^{-2} \text{s}^{-1} \qquad \sqrt{s} = 346 \,\text{G}$$

- Higgs factory \rightarrow coupling measurement w/ O(0.1) % precision
- Weak mixing angle measurement

 $\mu^{+}\mu^{+}$ collider $\mathscr{L}_{\mu^{+}\mu^{+}} = 5.7 \times 10^{32} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$ $\sqrt{s} = 2 \,\mathrm{TeV}$

- direct NP search like slepton
- indirect NP search based on SMEFT $\rightarrow \Lambda \simeq 100 \,\text{TeV}$ at most
- Higgs factory at higher energy (γ -emit WBF)

JeV

Backup

Indirect new physics search at μ TRISTAN

 $P_{\mu^+} = P_{e-} = \pm 1$

Indirect new physics search at μ TRISTAN

21

current bound $\sqrt{s} = 2 \text{ TeV } \mu^+ \mu^+ (\text{RR})$ $\sqrt{s} = 2 \text{ TeV } \mu^+ \mu^+ \text{ (LL)}$ $\sqrt{s} = 2 \text{ TeV } \mu^+ \mu^+ (\text{RL})$ $\sqrt{s} = 346 \text{ GeV } e^- \mu^+ (\text{RR})$ \sqrt{s} = 346 GeV $e^-\mu^+$ (RL) \sqrt{s} = 346 GeV $e^-\mu^+$ (LR) $\sqrt{s} = 346 \text{ GeV } e^{-} \mu^{+} (\text{LL})$

The efficiency to detect the events is important and under studied.

Background events

By reconstructing the invariant mass from b-jets, we would suppress the BG events.

Coverage of detector in a small angle region

The produced particle is strongly boosted.

in progress with experimentalists

Benchmark Detector : HL-LHC

<u>Coverage of HL-LHC @ Delphes</u>

- |ŋ| < 4.0 Muon \bullet
- Electron $|\eta| < 4.0$ •
- |n| < 4.0, pT > 25 GeV B-jet lacksquare

Delphes card for HL-LHC is used for this study.

https://github.com/delphe s/delphes/blob/3.5.0/cards /delphes card HLLHC.tcl

<u>Tentative rough schematic for muon collider detector</u>

in progress with experimentalists

from slide by Toshiaki Kaji

Forward muons should be detected by combination of forward magnet and muon detector.

> Align far enough to detect very forward muons

Efficiency

20

WBF Higgs Measurements Events 450 400 0.14₁ **Requirements** 350 a.u $\eta_{b\bar{b}} > -4.0$ 0.12 **WBF H** No muon 300 0.1 $\nu\nu$ Z 250 No electron 0.08 *e*μ **Z** 200 0.06 Exact 2 b-jets 150 0.04 $\eta_{b\bar{b}} > -4.0$ 100 0.02 50 0_5 -2 -1 0 3 -3 2 -4 1 $\eta_{b\overline{b}}$ [GeV] 0¹0 60 40

Radiative Z background can be removed by lepton veto and $\eta_{b\bar{b}}$ cut.

Efficiency : ~ 23%

→ 12k events @ 1 ab⁻¹
→
$$\Delta(\kappa_W + \kappa_b - \kappa_H)_{stat} = 0.5\%$$
 @ 1 ab⁻¹

in progress with experimentalists

from slide by Toshiaki Kaji

Trilinear coupling in higher energy case

$$E_{\mu^+} = 3 \text{ TeV}, \quad E_{e^-} = 50 \text{ GeV}$$

 $\sqrt{s} = 775 \text{ GeV} \qquad (P_{\mu^+}, P_{e^-}) = (0.8, -0.7)$

• WBF process $\sigma_{\rm WBF} \simeq 472 \, {\rm fb}$

can probe Higgs trilinear coupling via 1-loop [Di Vita+, 1711.03978]

$$\begin{vmatrix} \Delta \kappa_W + \Delta \kappa_b - \Delta \kappa_H + 0.006 \Delta \kappa_\lambda \end{vmatrix}$$

$$\lesssim 1.3 \times 10^{-3} \times \left(\frac{\text{integrated luminosity}}{1.0 \text{ ab}^{-1}} \right)^{-1/2} \left(\frac{\text{efficiency}}{0.5} \right)^{-1/2}$$

$$\longrightarrow \qquad \left| \Delta \kappa_\lambda \right| \lesssim 20 \% \qquad \text{(if other } \Delta \kappa \text{'s are zero)}$$

also probed by Higgs pair production

 $N(\text{di Higgs}) \simeq 89 \times \left(\frac{\text{integrated luminosity}}{1.0 \, \text{ab}^{-1}}\right)^{-1/2} \left(\frac{\text{efficiency}}{0.5}\right)^{-1/2} \longrightarrow$

 $\left| \Delta \kappa_{\lambda} \right| \lesssim 100 \%$

Proposal of new experiment: μ TRISTAN!

If a larger 6 (or 9) km ring is available (Tevatron size), we can explore higher energy:

- $\mu^+ e^-$ collider $E_{\mu^+} = 3 \,\text{TeV}, \quad E_{e^-} = 50 \,\text{GeV}$ $\rightarrow \sqrt{s} = 775 \,\text{GeV}$ Higgs factory
- $\mu^+\mu^+$ collider (instead of $\mu^+\mu^-$)

 $E_{\mu^+} = 3 \text{ TeV}, \quad E_{\mu^+} = 3 \text{ TeV}$ $\rightarrow \sqrt{s} = 6 \,\text{TeV}$ New physics search

Comment on polarization

Polarization is important to enhance cross sections

- **Electron beam polarization:** $P_{e^-} = \pm 0.7$ same polarization as superKEKB
- Muon beam polarization: $P_{\mu^+} = \pm 0.8$ muon production sequence:

eg., P = 0.4 means 40 % is RH while 60% is unpolarized.

SMEFT operator

$$\begin{aligned} Q_{HWB} &= H^{\dagger} \tau^{I} H W_{\mu\nu}^{I} B^{\mu\nu} & \longleftarrow \text{S parameter} \\ Q_{HD} &= (H^{\dagger} D_{\mu} H)^{*} (H^{\dagger} D_{\mu} H) & \longleftarrow \text{T parameter} \\ Q_{H\ell}^{(1)} &= (H^{\dagger} i \overleftrightarrow{D}_{\mu} H) (\bar{L} \gamma^{\mu} L) \\ Q_{H\ell}^{(3)} &= (H^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} H) (\bar{L} \tau^{I} \gamma^{\mu} L) \\ Q_{H\mu} &= (H^{\dagger} i \overleftrightarrow{D}_{\mu} H) (\bar{\mu} \gamma^{\mu} P_{+} \mu) \\ Q_{\mu\mu} &= (H^{\dagger} i \overleftrightarrow{D}_{\mu} H) (\bar{l}_{s} \gamma^{\mu} l_{t}) \\ Q_{\mu rst}^{Il} &= (\bar{l}_{p} \gamma_{\mu} l_{r}) (\bar{l}_{s} \gamma^{\mu} e_{t}) \\ Q_{prst}^{Ie} &= (\bar{l}_{p} \gamma_{\mu} l_{r}) (\bar{e}_{s} \gamma^{\mu} e_{t}) \\ \end{aligned}$$

$$C_{\substack{\ell\ell\\e\mu\mu e}} = C_{\substack{\ell\ell\\\mu e e \mu}} \equiv C_{\ell\ell}.$$

 $^{e}_{\mu\mu}$

Current difficulties of $\mu^+\mu^-$ collider

The μ^- beam is difficult!

• Production of large amount of μ^-

 μ^- is produced by $\pi^- \rightarrow \mu^- + \bar{\nu}_{\mu}$ But π^- production is less than π^+

• Cooling of μ^-

To make narrow beam, cooling is necessary. But cooling technology of μ^- hasn't been established yet!

low luminosity!

• Collision frequency (per detector)

$$f_{\text{rep}}^{(\mu^+e^-)} = 3.0 \times 10^8 \text{ m s}^{-1}/(3 \text{ km}) \times 40 = 4 \text{ MHz}$$

$$f_{\text{rep}}^{(\mu^+\mu^+)} = 3.0 \times 10^8 \text{ m s}^{-1}/(3 \text{ km}) \times 20 = 2 \text{ MHz}$$

• Beam size is determined by emittance

beta function

emittance:
$$\epsilon_x, \epsilon_y = \frac{4 \text{ mm mrad}}{\beta \gamma}$$
 $\sigma_i = \sqrt{\epsilon_i \beta_i}$ $\beta_x = 30 \text{ m}$
 $\beta_y = 7 \text{ m}$

 $\beta\gamma \sim 10^4$

 $\sigma_x = 3.6 \,\mu \mathrm{m}$ nm $\sigma_v = 1.7 \,\mu \mathrm{m}$ m

Collision frequency (per detector)

• Beam size is determined by emittance

beta function

 $\beta\gamma \sim 10^4$

 $\beta_v = 7 \text{ mm}$ $\sigma_v = 1.7 \,\mu\text{m}$

Collision frequency (per detector)

$$f_{\text{rep}}^{(\mu^+e^-)} = 3.0 \times 10^8 \text{ m s}^{-1}/(3 \text{ km}) \times 40 = 4 \text{ MHz}$$

$$f_{\text{rep}}^{(\mu^+\mu^+)} = 3.0 \times 10^8 \text{ m s}^{-1}/(3 \text{ km}) \times 20 = 2 \text{ MHz}$$

• Beam size is determined by emittance

beta function

 $N_{\rho^-} = 10 \,\mathrm{nC}$ per bunch

 $N_{\mu^+} = 3.6 \,\mathrm{nC} \rightarrow 1.3 \,\mathrm{nC}$ per bunch due to decay

 $\beta\gamma \sim 10^4$

 $\sigma_x = 3.6 \,\mu \mathrm{m}$ $\sigma_v = 1.7 \,\mu \mathrm{m}$

Current status of SUSY search

Typically, slepton w/ mass $m_{\tilde{i}} \lesssim 700 \,\text{GeV}$ is excluded.

SUSY search and muon g-2

[ATL-PHYS-PUB-2022-013]

Ultra-cold muons

1. Pions are stopped at tungsten foils and decay into muons.

- 2. Muons are transported into the aerogel target and form muoniums. muonium formation: 52 %
- Neutral muoniums become thermalized w/ $E_K \sim 25 \text{ meV}$ and thermally 3. muonium emission: 60 % & decay loss: 60 % diffused from the target. \rightarrow ionized by laser

repeat step 2 and 3 twice: 1st target size ~ 10m, 2nd target ~ O(1) cm

 $\therefore N_{\mu^+}/N_{\pi^+} \simeq 0.5 \times 0.52 \times 0.73 \times 0.6 \times 0.6 \times 0.5 \simeq 3.4 \%$

50% at second time because of a thin target

laser ionization: 73%

pion transportation to the target: 50%

Estimation of N_{μ^+}

These operations are repeated at every 20 ms.

Initial # of ultra-cold muons = $7.2 \text{ nC} \times 40 \text{ bunch}/(20 \text{ ms}) = 9.0 \times 10^{13}/\text{s}$

acceleration # of ultra-cold muons = $3.6 \,\mathrm{nC} \times 40 \,\mathrm{bunch}/(20 \,\mathrm{ms}) = 4.5 \times 10^{13}/\mathrm{s}$

1 TeV x (7.2nC=>3.6nC)/µ x 40 bunch x 50Hz

Beam in main ring

Fig taken from Takaura-san's slide

$$\mathscr{L} = \frac{N_{\text{beam1}} N_{\text{beam2}}}{4\pi \,\sigma_x \,\sigma_y} f_{\text{rep}}$$

Collision frequency (per detector)

• Beam size beta function emittance: $\epsilon_x, \epsilon_y = \frac{4 \text{ mm mrad}}{\beta \gamma}$ $\sigma_i = \sqrt{\epsilon_i \beta_i}$ $\beta_x = 30 \text{ mm}$ $\sigma_x = 3.6 \,\mu\text{m}$ $\beta_y = 7 \text{ mm}$ $\sigma_y = 1.7 \,\mu\text{m}$

Thanks to ultra-cold muon, low emittance is realized!

Without cooling, the normalized emittance is $\sim 10^3 \pi \,\mathrm{mm\,mrad}$

 $\beta \gamma \sim 10^4$

Slepton production at μ TRISTAN

The mass reach is not very high, but we can cover different region from LHC.

Cross section

$$d\sigma = \frac{d\cos\theta}{32\pi} \frac{\beta}{s} |M_{\rm RR}|^2 \frac{(1+P_{\mu 1})(1+P_{\mu 2})}{4}, \quad 0 \le \cos\theta \le 1,$$

$$\tilde{\mu}^{+},$$

$$M_{\rm RR} = -\frac{g_2^2}{2} \cdot \frac{4\sqrt{x_A}(1+2x_A-2x_3)}{(1+2x_A-2x_3)^2 - \beta^2 \cos^2\theta},$$

$$x_A = \frac{m_{\chi}^2}{s}, \quad x_3 = \frac{m_{\tilde{\mu}}^2}{s}, \quad \beta = \sqrt{1-4x_3}.$$

$$\mu^{+} /$$

$$\begin{split} \sigma = & \frac{g_2^4}{64\pi} \frac{1}{s} \left[\frac{\beta x_A}{x_A + (x_A - x_3)^2} + \frac{2x_A}{1 + 2x_A - 2x_3} \log \frac{1 + 2x_A - 2x_3 + 2x_3 + 2x_3}{1 + 2x_A - 2x_3} \right] \\ & \times \frac{(1 + P_{\mu 1})(1 + P_{\mu 2})}{4}. \end{split}$$

 $\left[\frac{-\beta}{\beta}\right]$

Cross section

$$d\sigma = \frac{d\cos\theta}{32\pi} \frac{(1+x_3-x_4)\beta}{s} |M_{\rm LR}|^2 \frac{(1-P_{e^-})(1+P_{\mu^+})}{4}, \quad -1 \le \cos\theta \le 1,$$

$$\tilde{\mu}^{+\gamma}$$
$$M_{\rm LR} = -\frac{g_2^2}{2} \cdot \frac{(1+x_3-x_4)\beta\sin\theta}{1+2x_A-x_3-x_4-(1+x_3-x_4)\beta\cos\theta},$$

$$x_A = \frac{m_\chi^2}{s}, \quad x_3 = \frac{m_{\tilde{e}}^2}{s}, \quad x_4 = \frac{m_{\tilde{\mu}}^2}{s}, \quad \beta = \frac{\sqrt{1-2x_3-2x_4+(x_3-x_4)^2}}{1+x_3-x_4}.$$

Comparison with ILC

• μ TRISTAN: μ^+e^- collider

 $\sqrt{s} = 346 \,\text{GeV}$ $\mathscr{L}_{u^+e^-} = 4.6 \times 10^{33} \,\text{cm}^{-2} \text{s}^{-1}$

main ring: 3km circumference

booster ring: 2km LINAC x2 + R=1km arc

construction cost: 5000 billion yen? (with large uncertainty)

• ILC: e^+e^- collider

 $\sqrt{s} = 250 \,\text{GeV}$ $\mathscr{L} = 1.35 \times 10^{34} \,\text{cm}^{-2} \text{s}^{-1}$

length: 20km

construction cost: 7300-8000 billion yen

(1 dollar ~120 yen)

Four fermi measurement at ILC

\sqrt{s}	Λ_{LL}	Λ_{RR}	Λ_{VV}	Λ_{AA}
universal Λ 's				
ILC250	108	106	161	139
ILC500	189	185	280	240
ILC1000	323	314	478	403
$e^+e^- \to e^+e^-$				
ILC250	71	70	118	71
ILC500	114	132	214	135
ILC1000	236	232	376	231
$e^+e^- \to \mu^+\mu^-$				
ILC250	80	79	117	104
ILC500	134	133	198	177
ILC1000	224	222	332	296
$e^+e^- \to \tau^+\tau^-$				
ILC250	72	72	109	97
ILC500	127	126	190	168
ILC1000	215	214	321	286
$e^+e^- ightarrow b\overline{b}$				
ILC250	78	73	103	106
ILC500	134	124	175	178
ILC1000	226	205	292	296
$e^+e^- ightarrow c \overline{c}$				
ILC250	51	52	75	68
ILC500	90	90	130	117
ILC1000	153	151	220	199

Note: They use a different convention: $\frac{4\pi}{\Lambda^2}(\bar{L}\gamma_{\mu}L)(\bar{L}\gamma^{\mu}L)$

[TeV]

[1908.11299]

[1908.11299]

coupling	$2 \text{ ab}^{-1} \text{ at } 250$	$+ 4 \text{ ab}^{-1} \text{ at } 500$	$+8 \text{ ab}^{-1} \text{ at } 1$
hZZ	$0.35 \ / \ 0.38$	0.20 / 0.20	0.16 / 0.10
hWW	$0.35 \ / \ 0.38$	0.20 / 0.20	0.16 / 0.10
hbb	0.79 / 0.80	0.43 / 0.43	0.31 / 0.31
h au au	$0.94 \ / \ 0.95$	$0.63 \ / \ 0.64$	0.52 / 0.52
hgg	1.6 / 1.6	$0.92 \ / \ 0.92$	0.59 / 0.59
hcc	1.7 / 1.8	1.1 / 1.1	0.72 / 0.72
$h\gamma\gamma$	1.0 / 1.1	$0.95 \ / \ 0.97$	0.88 / 0.89
$h\gamma Z$	8.5 / 8.9	$6.4 \ / \ 6.5$	6.3 / 6.4
$h\mu\mu$	4.0 / 4.0	3.8 / 3.8	3.4 / 3.4
htt		6.3	1.6
hhh		27	10
Γ_{tot}	1.3 / 1.3	0.70 / 0.70	0.50 / 0.50

[%]

Magnet

Dipole magnet with the magnetic field of 10T

Main ring 3km for $(E_{\mu^+}, E_{e^-}) = (1 \text{ TeV}, 30 \text{ GeV})$

9km for $(E_{\mu^+}, E_{e^-}) = (3 \text{ TeV}, 50 \text{ GeV})$

cf. High-luminosity LHC: 11T

If dipole magnet with the magnetic field of 16T is possible,

Main ring 6km for $(E_{\mu^+}, E_{e^-}) = (3 \text{ TeV}, 50 \text{ GeV})$

W boson mass

• ILC (and LEP):

W⁻

W boson mass

& hadronic decay $W \rightarrow q\bar{q}$

In ILC 250 study, $\Delta M_W \simeq 3.7 \,\mathrm{MeV}$, which is dominated by systematic uncertainty (particularly hodronization).

We expect a similar precision at μ TRISTAN.

Cf.) CDF II result: $M_W = 80,433.5 \pm 9.4 \,\text{MeV}$

[1310.6708]

Collider design

Proton acceleration (proton LINAC & RCS)

 $p(3 \,\mathrm{GeV})$

Ultra-cold muon

Muon acceleration (booster ring) to 1TeV & electron acceleration (LINAC part)

Ultra-cold muon

$$\rightarrow \pi^+ + X$$

Ultra-cold muon

Ultra-cold muons

- 1. Pions are stopped at tungsten foils and decay into muons.
- 2. Muons are transported into the aerogel target and form muoniums.
- Neutral muoniums become thermalized w/ $E_K \sim 25 \text{ meV}$ and thermally 3. diffused from the target. \rightarrow ionized by laser (Lyman- α)

Ultra-cold muons

- 1. Pions are stopped at tungsten foils and decay into muons.
- 2. Muons are transported into the aerogel target and form muoniums.
- Neutral muoniums become thermalized w/ $E_{K} \sim 25 \text{ meV}$ and thermally 3. diffused from the target. \rightarrow ionized by laser (Lyman- α)

repeat step 2 and 3 twice: 1st target size ~ 10m, 2nd target ~ O(1) cm

 \rightarrow obtain ultra-cold muons, whose # is 9.0×10^{13} /sec (or $14 \,\mu$ C/sec)

$$\mathscr{L} = \frac{N_{\text{beam1}} N_{\text{beam2}}}{4\pi \sigma_x \sigma_y} f_{\text{rep}}$$

 $f_{\rm rep}^{(\mu^+ e^-)} = 3.0 \times 10^8 \,\mathrm{m \, s^{-1}}/(3 \,\mathrm{km}) \times 40 = 4 \,\mathrm{MHz}$

 $f_{\rm rep}^{(\mu^+\mu^+)} = 3.0 \times 10^8 \,\mathrm{m \, s^{-1}}/(3 \,\mathrm{km}) \times 20 = 2 \,\mathrm{MHz}$

$$\sigma_x = 3.6 \,\mu \mathrm{m}$$
 $\sigma_y = 1.7 \,\mu \mathrm{m}$

 $N_{e^-} = 10 \,\mathrm{nC}$ per bunch $N_{\mu^+} = 3.6 \,\mathrm{nC} \rightarrow 1.3 \,\mathrm{nC}$ per bunch due to decay

Our estimate:

ab^{-1} $) \, {\rm fb}^{-1}$

(10 years running w/ 70 % duty factor)