FIDIUM Overview

https://fidium.erumdatahub.de/

Status update of developments in the FIDIUM project

Kilian Schwarz Analysis Facilities Workshop, Garching, June 18 2024

Table of contents

01 Introduction

02 Topic Area 1

- COBalD/TARDIS
- Usage of opportunistic resources
- AUDITOR

03 Topic Area 2

- Data lake monitoring
- Data management workflows
- Dynamic data caching
- Data lake prototypes

04 Topic Area 3

Tests, optimisation, adjustments, support

05 FIDIUM prolongation

- TA1
- TA2
- TA3

06 summary and outview

- Summary
- Outview

FIDIUM introduction

FIDIUM Overview

Introduction

application

- Common application of 10 universities, 3 Helmholtz centres & CERN, 3 communities (KET, KHuK, KAT), submitted autumn 2020
- Funding period Q1 2021 Q3, 2024

target

- Experiment overarching R&D in order to be ready to deal with the challenges of HL-LHC era
- 3 Topic Areas
 - TA1: including heterogeneous resources
 - TA2: federated data infrastructures
 - TA3: optimising and testing

Föderierte Digitale Infrastrukturen für die Erforschung von Universum und Materie (FIDIUM)

Gemeinsamer Antrag von Gruppen aus den Bereichen Elementarteilchenphysik, Hadronenund Kernphysik und Astroteilchenphysik

- Rheinisch-Westfälische Technische Hochschule Aachen, Prof. Dr. Alexander Schmid
- · Rheinische Friedrich-Wilhelms-Universität Bonn, PD Dr. Philip Bechtle
- · Goethe Universität Frankfurt am Main, Prof. Dr. Volker Lindenstruth
- Albert-Ludwigs-Universität Freiburg, Prof. Dr. Markus Schumacher
- Georg-August-Universität Göttingen, Prof. Dr. Arnulf Quadt
- Universität Hamburg, Prof. Dr. Johannes Haller
- · Karlsruher Institut für Technologie, Prof. Dr. Günter Quast
- · Johannes Gutenberg-Universität Mainz, Prof. Dr. Frank Maas
- · Ludwig-Maximilians-Universität München, Prof. Dr. Thomas Kuhr
- · Bergische Universität Wuppertal, Prof. Dr. Christian Zeitnitz

Assoziierte Partner sind

- · CERN, Dr. Markus Elsing
- · DESY, Prof. Dr. Volker Gülzow
- · GridKa, Dr. Andreas Petzold
- GSI Helmholtzzentrum für Schwerionenforschung, Dr. Kilian Schwarz

Sprecher des Verbundes

²Stellvertretender Sprecher des Verbundes

FIDIUM Topic Area 1: Tools for including heterogeneous resources

Topic Area 1

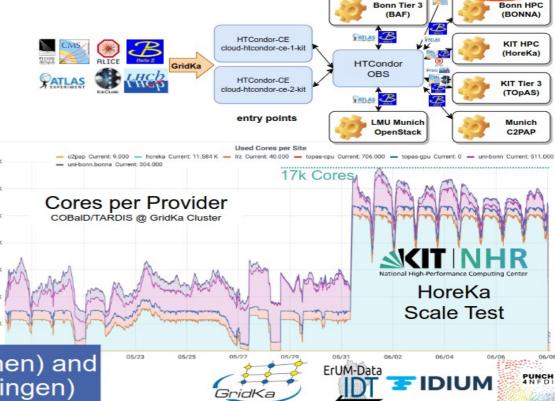
WP 1: including opportunistic resources efficiently

KIT, Bonn, Frankfurt, Freiburg, Göttingen, GSI, DESY, GridKa

- Ongoing development and adjustment of resource manager COBalD/TARDIS
- Dynamic job scheduling
- Automatic scaling
- Usage of Tier-2 and Tier3 resources

WP2: accounting & controlling

KIT, Freiburg, Wuppertal, GridKa

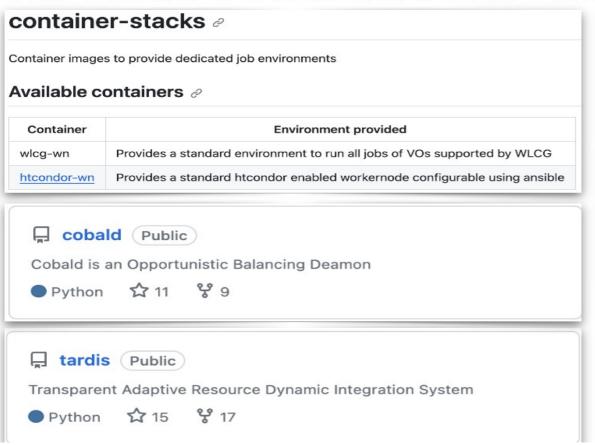

- Tools for accounting of opportunistic resources
- Tools for efficiency monitoring

TA1/WP1/COBalD-TARDIS

Opportunistic Compute @ FIDIUM in a Nutshell

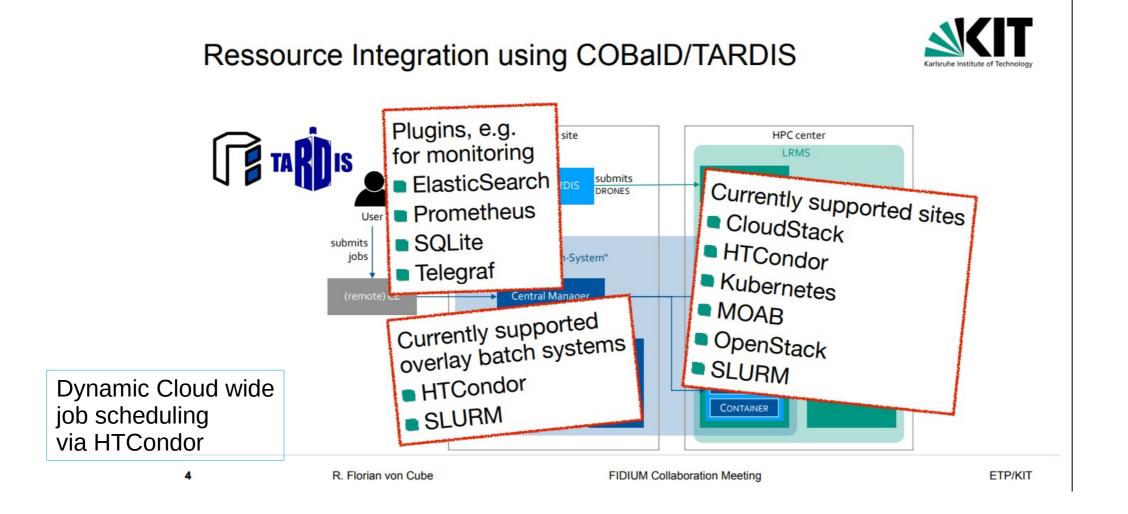
Simplify provisioning and utilization of third-party compute resources for the various communities:

- Dynamic, transparent and on-demand integration via COBalD/TARDIS (in-house development)
- Provide community-overarching unified entry points to a variety of resources (HPCs, Clouds, ...)
- Demonstrated production scale operation during scale test together with HoreKa (KIT HPC cluster)
- Production deployment across HEP institutes & HPC resources coordinated by KIT/GridKa
- Central building block of the Compute4PUNCH infrastructure within PUNCH4NFDI


Similar setup deployed at CLAIX HPC (RWTH Aachen) and on-going deployment at Emmy (University of Göttingen)

Texas, USA (Lancium)

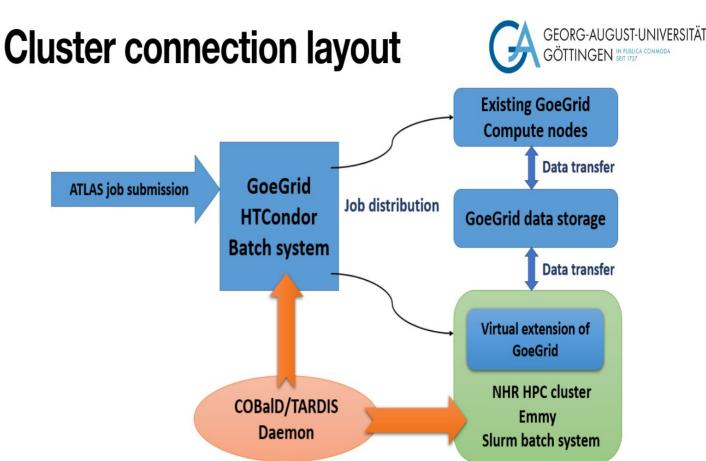
TA1/WP1/COBalD-TARDIS


The Entire COBaID/TARDIS Ecosystem

TA1/WP1/COBaID-TARDIS

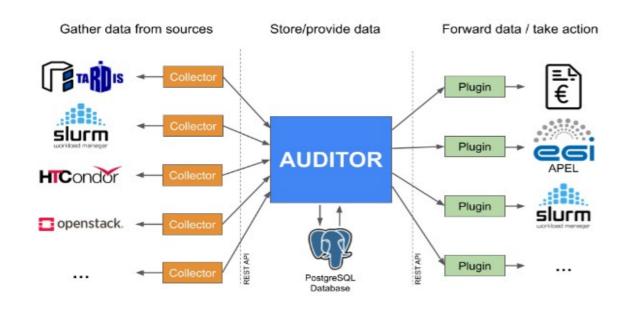
TA1/WP1/integration of opportunistic resources

Integration of HPC resources


 e.g. integration of HLRN Emmy resources (HPC) into GoeGrid (HTC) via COBalD/TARDIS

Integration of desktop machines

 Integrating desktop machines using backfilling jobs via HTCondor extensions at Uni Bonn


Integration of GPU resources

 Generalised vector and scalar version of CBM tracking, GPU based parallelisation, containerisation at U Frankfurt

• The solution is to virtually extend the GoeGrid batch system into Emmy using containers turning HPC nodes into virtual nodes with own job scheduling.

TA1/WP2/accounting & monitoring

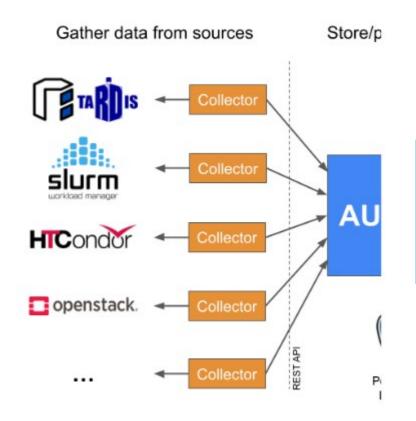
Modular accounting ecosystem

- Collectors
 - Accumulate data
- Core component
 - Accept data
 - Store data
 - Provide data
- Plugins
 - Take action based on stored data

Documentation and code

https://github.com/ALU-Schumacher/AUDITOR

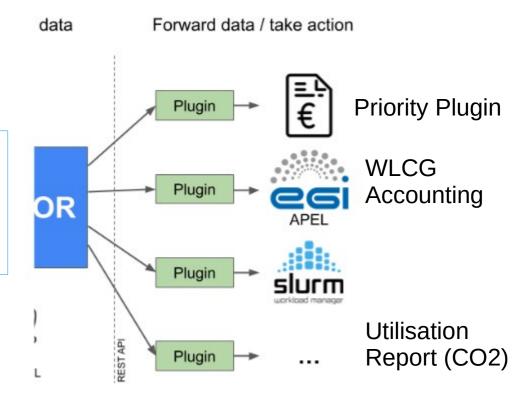
AUDITOR: AccoUnting Data handlIng Toolbox for Opportunistic Resources


Presented at 26th International Conference on Computing in High Energy & Nuclear Physics (CHEP) May 8-12, 2023, Norfolk, VA, USA: AUDITOR: Accounting for opportunistic resources

Michael Böhler | October 26th 2023 5 /11

DESY. | FIDIUM Overview | Kilian Schwarz | Analysis Facilities Workshop | June 18, 2024

TA1/WP2/AUDITOR


Data Collectors:

Core Component:

- access via REST
- data in PostgreSQL
- completely stateless

Data Forwarders:

FIDIUM Topic Area 2: Data Lakes, Distributed Data Caching

Topic Area 2

WP1: monitoring

Wuppertal, GSI

- Load on data lake components
- Data access patterns

WP2: caching

KIT, Frankfurt, Mainz, Munich, Hamburg, GSI, DESY, GridKa

- Development of data caches
- Including data caches
- Parallel ad-hoc HPC file systems

WP3: workflows

KIT, Mainz, Hamburg, Göttingen, GSI, CERN, DESY, GridKa

- Replication and placement mechanisms
- Data management
- Efficient data access

WP4: prototypes

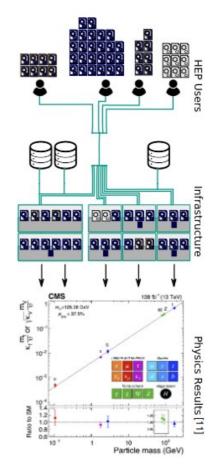
Frankfurt, Mainz, Munich, GSI, CERN, DESY, GridKa

- Data lake prototypes
- Including users, centres, data sources
- QoS

TA2/WP1/monitoring

XrootD based monitoring system

- A test system has been setup by Wuppertal and GSI
- Close collaboration with Frankfurt, Mainz, and Munich foreseen

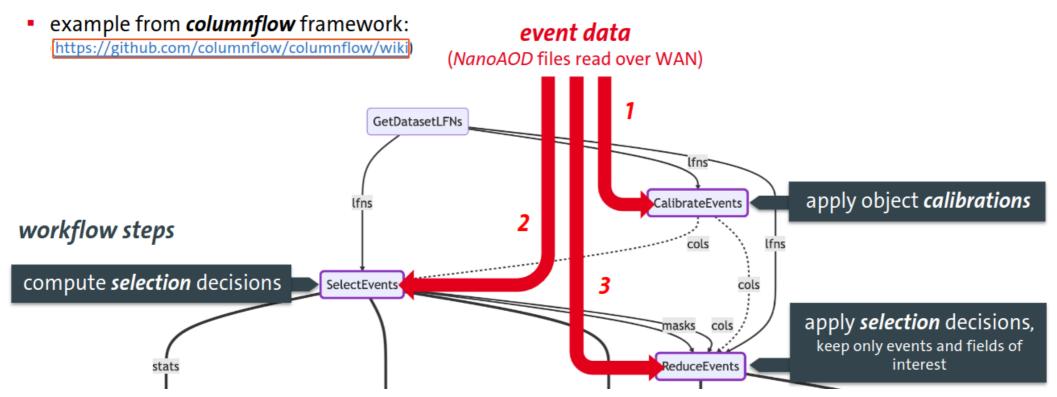


TA2/WP2/cache simulation

Karlsruhe Institute of Technology

DCSim: Implementation of (HEP) Extensions and Simulator

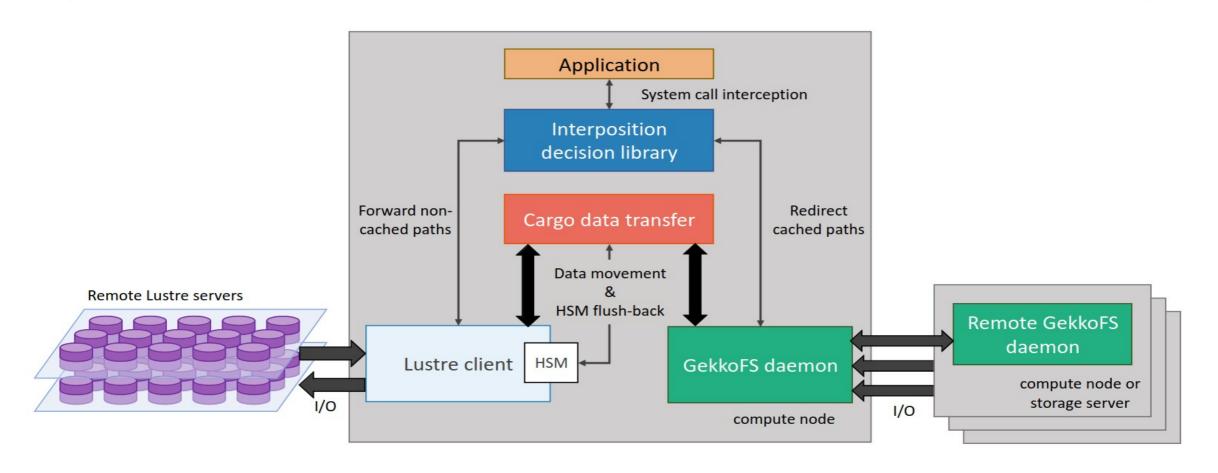
- Code publicly available [8], presented at CHEP [9, 10]
- Define workloads of jobs with:
 - Number of operations to execute
 - Memory
 - Input-datasets and sizes of outputs
 - Submission time
- Define platform (network & hosts) with
 - properties: N_{core}, CPU-speed, RAM, disk, bandwidth
 - roles: worker, storage, data cache, scheduler, ...
- Instantiate initial deployment of files on storage systems
- Start the simulation!
 - Jobs are scheduled and run
 - Input-files are streamed and cached
 - Caches evict files if necessary
 - → Job dynamics are monitored


- Planning the future computing infrastructure for HEP
- Interplay between T1 und T2 with cache
- Validate tuned simulator with measured data

TA2/WP2/caches for orchestrated workflows

Caching advantage for orchestrated workflows

- modern workflows typically orchestrated
 - workflow steps defined with high granularity, optimized for fast analysis turnaround
 - same files read at multiple stages in workflow → greatly boost performance through local caching on first read

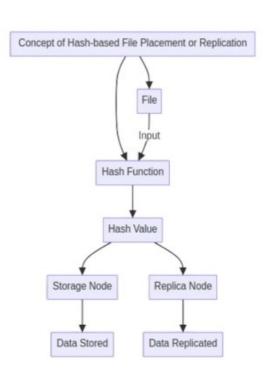


JOHANNES GUTENBERG UNIVERSITÄT MAINZ

TA2/WP2/caching using ad-hoc file systems

Lustre client-side caching with ad-hoc file systems

TA2/WP3/workflows


Work for hash-based file placement/replication

First focus on efficient integration of **dynamic caching via XRootD/XCache** into relevant workflows - utilizing high-bandwidth WAN between Goethe HLR and GSI

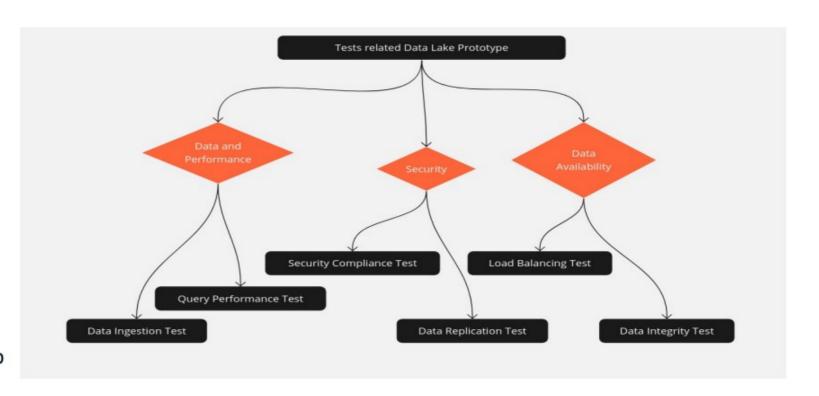
Now work for integration of hash-based file placement/replication mechanisms:

- Data files are hashed, generating a unique value determining their storage node in a HPC cluster
- Actual storage can be geographically spread
- Hash value can also identify replica nodes, ensuring data availability even in case of local failures

Geographically distributed, hash-based system → quick, reliable data access potentially accelerating workflows of data analysis in FIDIUM

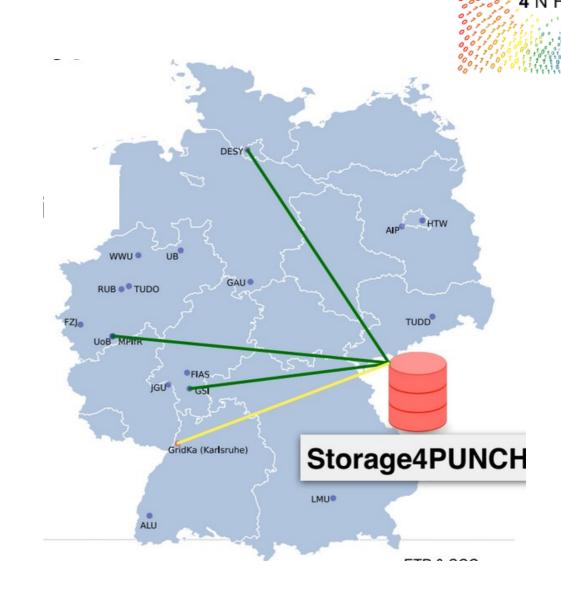
TA2/WP4/prototypes

Tests for data lake prototypes


Testing all basic operations on prototypes:

oidc-token-based authentification

File placement/replication


Some tests also with davix file management

Final setup XRootD-based, coordination also with GSI group

TA2/WP4/prototypes

- Common testbed together with PUNCH4NFDI planned
- Based on storage middleware XrootD (Bonn, GSI) and dCache (DESY, KIT)
- Token based access

FIDIUM Topic Area 3: adjustment, tests and optimisation

Topic Area 3

WP1: tests, optimisation, deployment

Aachen, KIT, Mainz, Wuppertal, Frankfurt, Munich, Freiburg, Hamburg, Göttingen, GSI, DESY, GridKa

- Integration of components
- Functional tests
- Integration in production environments
- deployment

WP2: adjustments

Aachen, KIT, Frankfurt, Munich, Hamburg, DESY, GridKa

- Optimisation for specific workflows
- Optimisation for parallel analysis

WP3: support

KIT, Freiburg, GSI, DESY, GridKa

 Site overarching support infrastructure

Topic Area 3

WP1 & WP2 & WP3

- Freiburg: AUDITOR has been integrated into operations
- Freiburg: Test suite for AUDITOR use cases including support
- Hamburg and Wuppertal: integration of local clusters
- Göttingen: integration of NHR+HLRN cluster Emmy
- KIT: scaling test intergration of remote and wind powered CPU cores in federated infrastructure
- FIDIUM solutions are being applied by DARWIN for federated infrastructure for Darkmatter use case
- Aachen: cache aware scheduling
- KIT: large scale usage of GPU systems for ML training at local TopAS cluster
- Munich: Analysis Grand Challenge analysis
- Mainz: Ad-hoc file system (GekkoFS) management scripts finalized for cluster integration
- Mainz: Testing of transparent staging between the parallel file system and GekkoFS during a compute job

FIDIUM Prolongation up to Q3/2025

FIDIUM prolongation

TA1

WP1: including opportunistic resources

- Göttingen: regular production on NHR HPC cluster, dynamic load balancer for HPC resources
- KIT: dynamic integration of GPU resources
- Munich: open data based ML applications on standard batch systems, integration of GPUs in parallel Dask analysis environment
- Bonn: energy charts based data, optimisation algorithm, evaluation of hardware cost/ energy consumption / energy cost
- Freiburg: finalisation and validation of AUDITOR Utilisation Report Plugin
- Frankfurt: high performance optimisation for parallel tracking code, user friendly configuration

WP2: accounting

 Freiburg: AUDITOR Stresstest Collector Plugin, optimisation of collector data base schema

FIDIUM prolongation

TA2

WP1: monitoring

 Mainz and Wuppertal: adjusting of monitoring system to requirements of experiments

WP3: workflows

- Mainz: HSM optimisation, hash based methods for distributing data and metadata in data lakes, adjustment of Slurm for using ad-hoc resources
- Göttingen: preparing Rucio for data lake scenario
- Wuppertal and DESY: comparing Xcache and dCache, preparing easy installation methods, development of cache awareness in dCache and Xcache in connection with RUCIO

WP2: caching

- Mainz: client side caching for Lustre, performance measurements
- KIT: development of prototype of hash based Xcache for HPC
- Aachen: example implementation of HPC Xcache prototype
- Wuppertal: preparing dCache for use in federations
- DESY: preparing dCache for use as dynamic data cache at opportunistic resources

FIDIUM prolongation

TA3

WP1: tests, optimisation, deployment

- DESY, Hamburg: prototype dCache instance connecting DESY NAF and PhysNet Uni Hamburg
- DESY, Wuppertal: federated dCache instance between DESY and Wuppertal, performance measurement, tests for cache awareness of dCache and XCache
- Freiburg: optimisation of AUDITOR data base, adjusting AUDITOR to new requirements
- KIT: HTCondor Collector for AUDITOR
- Aachen: production use of Aachen NHR centre for CMS
- Mainz: connecting Mainz NHR centre to data lake

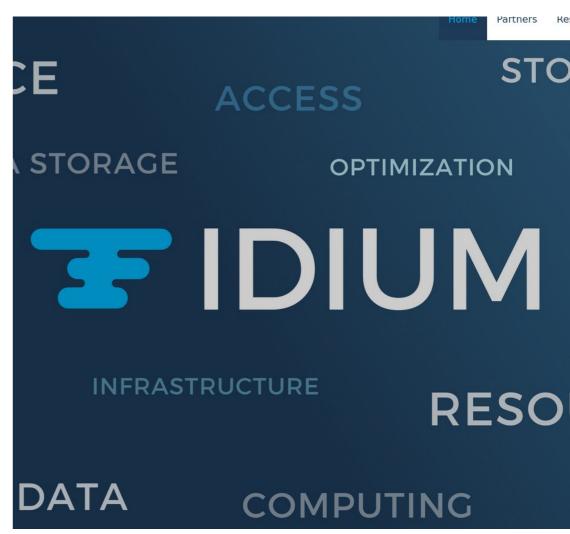
WP2: adjustments

- DESY, Hamburg: COBalD/TARDIS between DESY NAF and PhysNet Uni Hamburg, performance measurements
- Munich: comparing data formats on SSD and HDD, scaling of parallel application when accessing data on remote servers
- Frankfurt: energy consumption of parallel tracking code on multi core CPUs and GPUs
- Aachen: real time simulation of dynamic energy supply for steering local cloud resources, resource usage in real time simulation

WP3: support

 Working support, tutorial for including NHR resources, Slurm interface of AUDITOR plugin

FIDIUM Summary and outview

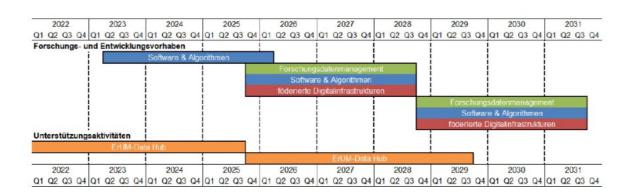

Summary

Consortium

- Common application of 10 universities, 3 Helmholtz centres & CERN, 3 communities (KET, KHuK, KAT), submitted autumn 2020
- Funding period Q1 2021 Q3, 2024, prolongated up to Q3 2025
- See https://fidium.erumdatahub.de/

Mission

- Successfully adressing the mission to develop experiment overarching software so that the experiments are ready to face the challenges of HL-LHC era
- Important software tools for distributed computing, federated storage, monitoring, and accounting are being provided by FIDIUM



Outview

ErUM-Data

- We will most probably have 3 follow up projects in the upcoming ErUM-Data call
 - Sustainable Federated IT Infrastructures for ErUM
 - Federated Storage Infrastructures for ErUM
 - Analysis Facilities (this workshop)

ErUM-Data: Timeframe and implementation

Prisma strategy meeting on January 23rd/24th, 2024 in Hamburg

Thank you

Contact

Deutsches Elektronen- Kilian Schwarz

Synchrotron DESY IT/Scientific Computing

Kilian.schwarz@desy.de

www.desy.de 040 8998 2596