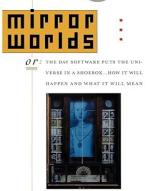
Analysis Facilities

User interface perspective

Pierre Schnizer, Tim Ruhe et al. für DIGUM Topic Group User Interface

User Interface: Motivation

- Large scale data \rightarrow exponential groth rate
- HEP phyics data rates → other ERUM Communities
- Challenges for users (typical response)
 - Get their data
 - Archive their data
 - Reduce their data
 - Get measurement result
- Users: fairly good idea of their job
- Need

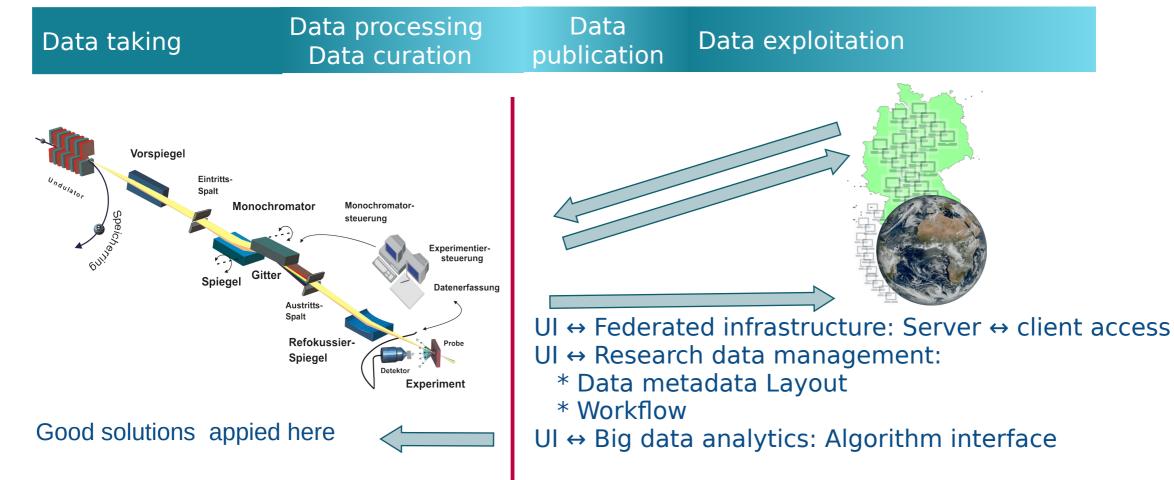

2

- Standard task \rightarrow off load
- Clean stable interface
- "Hang their job on the trellis"

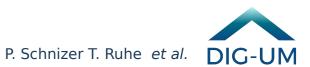
We are drowing in information we are starving for knowledge Rutherford D. Roger

Mankind was always better in acquiring data than interpreting it.

-- Mirror Worlds, David Gelernter


DIG-UN

Users, large scale facilities



Users, large scale facilities

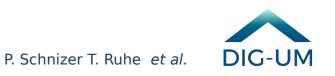
Outreach: spread the info

User Interface: expectation

Target: Ideal User Interface (Requirement specification)

- Data
 - search: as simple as using Scooogle
 - Load: as straight forward as a "pip install"
- Analysis
 - Scientific analysis as simple as an Afternoon Stroll
 - Intuitive, validated Workflows
 - Scientific work bench recurrent tasks made easy
- → Let's scientists refocus on sciences (again)

Dieter Rams: Principles of good design
innovate
Maked product useful & understandable
Unobstructive / honset
Long lasting
Thought trough to the end



User Interface: user centric

Handling user demands:

- Put first: what user **really needs**
- Implicit demand (seldom mentioned) available soon experience to build up
- Does user consider? Work part of a large(r) work flow? Need to be rerun in 10 years?

Don't forget service recovery paradoxon

2023 Workshop @ BERLIN

Foto: Angela Warkentin, ERUM Data Hub

Experten Workshop "Next Generation Environment for Interoperable Data Analysis"

3-4 Mai 2023, HZB Berlin

Sprecher:

- Nicolas Eich, VISPA, RWTH
- Verena Kain, CERN
- Mohammad Al-Turany, GSI / FAIR
- Kai Polsterer, HITS, Heidelberg

Workshop Participants: Data products

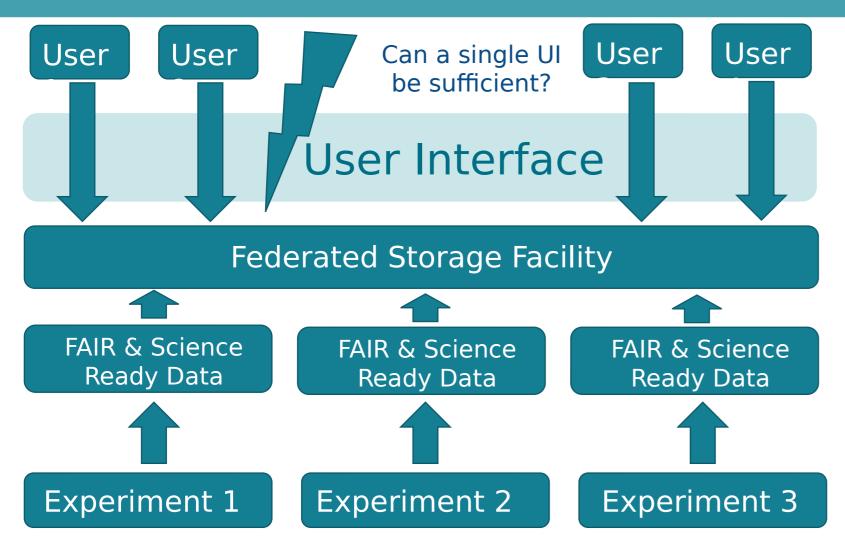
"Higher Order Data Products"

- Similar to data catalogs
- Data and work flows
- Versioning:
 - Original data
 - Analysis pipeline
- Motivation:
 - Flat basis curve
 - Based on established design patterns

• Avoid: "not invented here antipattern"

Workflow: Support

- Validated
- Dokumented
- Archived

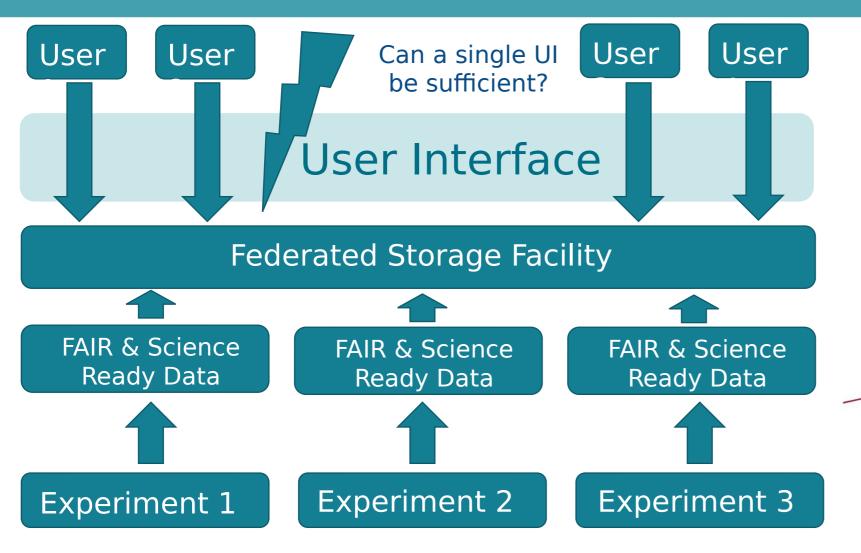

Many communities:

Will require support for data product design

- \rightarrow example / best practice repositories
- \rightarrow not one fits all
- \rightarrow design decision guidelines

Enabling Interdisciplinary Discoveries

The best user interface is probably the one you don't notice.

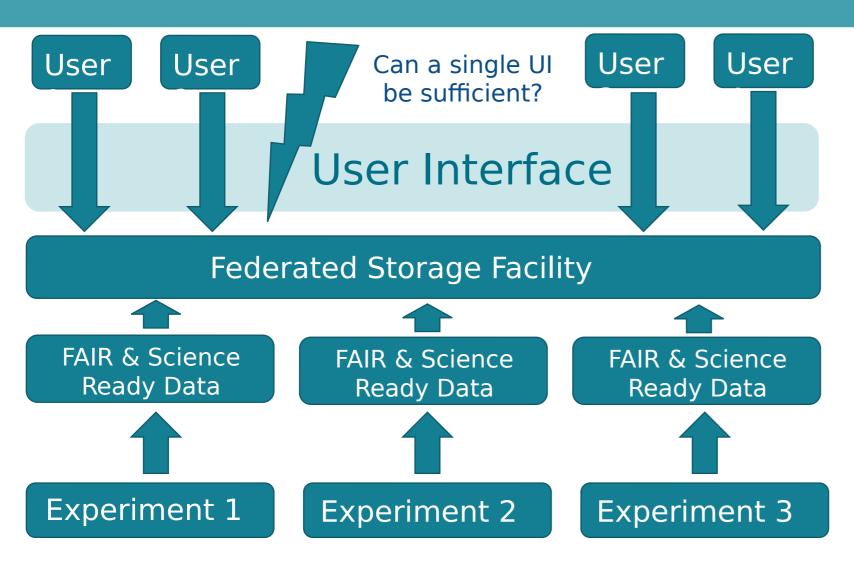

Comfortable look and feel.

Data processing and data curation remains with the experiments.

Experiments should be encouraged to publish their data in a timely manner.

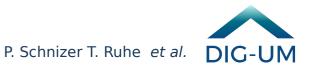
Interdisciplinary analyses require cross-community standards.

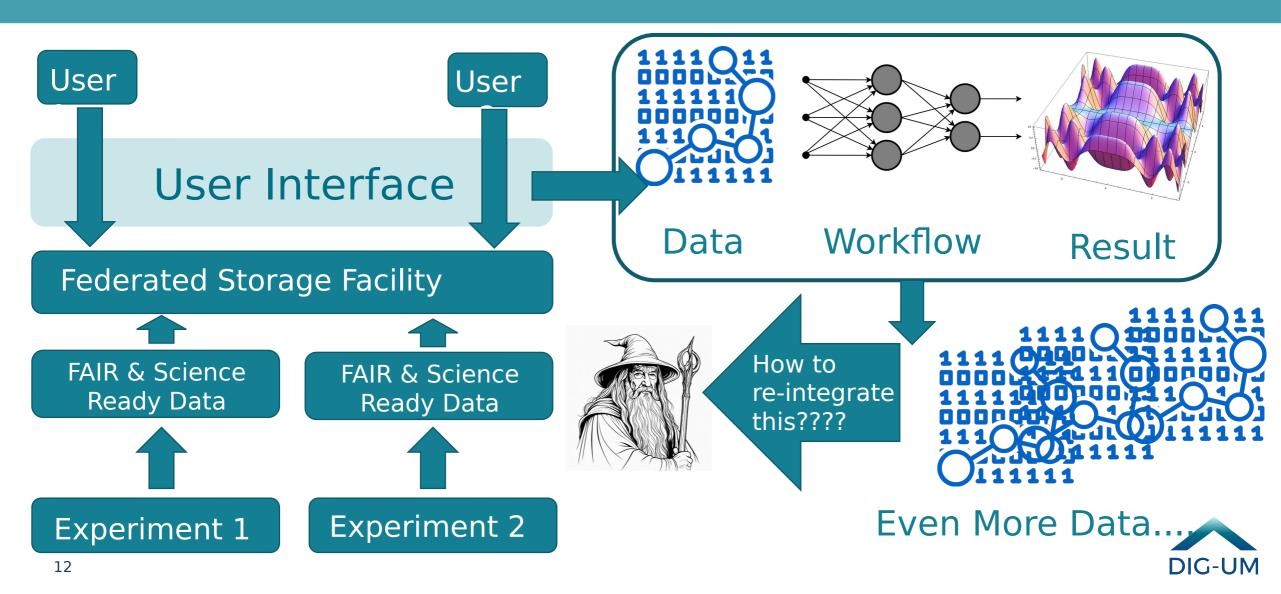
Enabling Interdisciplinary Discoveries



The UI is the duct-tape connecting the user to the data...

... and the WD-40 that helps to run everything smoothly.


Enabling Interdisciplinary Discoveries


Data processing and data curation remains with the experiments.

Easy for large international collaboration, but a challenging task for smaller groups of researchers!

Requires awareness and training!

Additional Aspects: reintegartion of results

User Interface: European history lesson

(Western) European history:

- Roman empire heritage
 - Common language → Lingua franca
 - On common values → understood by many
 - Legal systems \rightarrow required abstractions

Lesson

- Language understood by many Python? (3rd millenium's BASIC) Equivalent workflow language ?
- Abstraction
 - Workflow organisation
 - Common language (need for dialects?)
 - Split into managable task

Trellis Johann Jaritz Wikipedia

Work flow: Analysis split up

- Separate computing steps: User defined (small) programs
- Combining them to full analysis Workflow

DIG-UM

User Interface: analysis facilities requirements

- Work flow orchestration
 - Common language: variations if required
 - Can be validated without being executed?
 - Support user in writing beyond e.g. gitlab's pipeline editor IDE like → suggest proper usage Notebook like → evaluate while you write
- User programs
 - \rightarrow Single-responsibility task
 - → Only report errors

Analysis split up

learn from Erlang

- Separate computing steps: User defined (small) programs
- Combining them to full analysis Workflow
- Analysis facility
 - Orchestration
 - Nodes: report errors and fail
 → simplifies node implementation
- Need to satisfy requests
 - Interactive
 - Data scientist work flow

User: why does it take so long

- Work flow run inspection
 - Data access / cache
 - Working nodes
 - Wait for scheduling
 - Processor / nodes / GPU available
 - Tasks running
 - Recovery
 - Forecast to end: finished after
 - Coffee ?
 - Lunch ?
 - Meeting
 - In this case: consistency is more important than correctness

Inspiration from

- Parallel programming profiler toolsOS & applications profiler
 - Visualise:
- Jobs running
- Waiting for
 - Data transfer?
 - Calculation completed

Analysis facilities: interoperability

- Current technology driver: HEP
- These days: centred on CERN
 - Smallest common denominator → large
- Other ErUM Communities
 - Small, university size
 - Embedded in community
 - loosely connected
 - Changing partners → different fields
- \rightarrow to be successful
 - Combining different data sources
 - Different fields

User questions

- Entry leve / learning curve ?
- Access \rightarrow administrative barrier ?
- Availabe facilities: given
 - Dataset A
 - Code B
 - Access C

Which facilities can the analysis be executed on ?

• Can data from different providers being combined?

Beyond Workflows and Data

Who knows what?

Knowledge needs to be decoupled from individual persons! Peer Programming/Co-Pilot Utilize existing code and existing workflows Organize existing code Suggestions for re-usable code Pattern recognition Semi-automatic generation of code

ChatGPT physics

How Can I Support the Effort?

Next Generation Environment for Interoperable Data Analsyis – Second Annual Expert Workshop

Dortmund: September 17th to 18th https://indico.desy.de/event/45148

Bi-weekly Zoom-Meetings! Join the Email List:

https://lists.rwth-aachen.de/postorius/lists/erum-data-user-interface.lis ts.rwth-aachen.de/

Conclusion

- User interface: fit to what user needs
 - Today
 - Tomorrow
 - Student joining lab / collab in 10 years
- Intuitive design \rightarrow long lasting
- Use same (similar) interface across facilities → inter disciplinary work
- Support
 - Non expert user
 - Working within small lab
- Split in program ↔ workflow
 - Can parts be validated without being executed ?

- Analysis facilites ← source of data
- (Re)integration of analysis results Linked to
 - analysis workflow
 - Used data
- Be prepared for users beyond your home community

The 10 year from now challenge

Source code available ? Language version still supported ? Can run original binary ?

Helpful ?

- High level abstraction: eg. Work flow in work flow language
- Reuse common packages

•

T. Ruhe