
Analysis Facilities Workshop, 18-20 June 2024
https://indico.desy.de/event/44722/

Analysis Grand Challenge

This work was supported by the U.S. National Science Foundation (NSF) cooperative agreements OAC-1836650 and PHY-2323298 (IRIS-HEP).

Alexander Held (University of Wisconsin–Madison)
Oksana Shadura (University Nebraska–Lincoln)

1

https://indico.desy.de/event/44722/

Analysis Grand Challenge (AGC):
execute series of increasingly realistic exercises toward HL-LHC

The AGC is about executing an analysis to test workflows designed for the HL-LHC.
This includes:

• columnar data extraction from large datasets,

• data processing (event filtering, construction of observables, evaluation of systematic
uncertainties) into histograms,

• statistical model construction and statistical inference,

• relevant visualizations for these steps

2

AGC - what was already done

3

within IRIS-HEP

The AGC project started properly in the autumn of 2021

• Physics task definition (multiple versions)
• Capturing physics analysis requirements matching practical needs of physicists

• Using CMS Open Data (reformatted to 2 TB of NanoAODs)

• IRIS-HEP AGC reference pipeline implementation
• Analysis implementation based on IRIS-HEP stack of tools
• Connecting many projects and developers
• Cycle: iterating with experts and improving implementation

https://github.com/iris-hep/analysis-grand-challenge

AGC - what was already done

4

• Developed website as central resource: https://agc.readthedocs.io/en/latest/
• Work based on IRIS-HEP fellow project — AGC hosted and benefited from many great IRIS-HEP fellows

Analysis task details to allow for re-implementations

https://agc.readthedocs.io/en/latest/

IRIS-HEP and the broader community

• Provided support & co-supervised fellows working on other implementations:
• ROOT RDataFrame, Julia programming language

• AGC workshops (virtual) + hybrid
• Reaching ~50-100 people (+ recordings)

• AGC demo event (+ community contributions)

• AGC demo days (last demo day https://indico.cern.ch/event/1394151/)

• Short & focused technical talks and demonstrations

• Interactions with US ATLAS + CMS operations programs, HEP Software Foundation, …

-> Established a range of events and activities to engage & disseminate

5

AGC tools 2022 workshop

AGC - what was already done

https://indico.cern.ch/event/1394151/
https://indico.cern.ch/event/1126109/

Yearly benchmarking exercises

• Provide a stable analysis pipeline at scale with 30 simultaneous users
• Benchmark iterative scaling to HL-LHC needs

6

Timeline Fraction of HL-LHC
dataset processed in 1h

2025 20% (40 TB)

2026 50% (100 TB)

2027 75 % (150 TB)

2028 100% (200 TB)

getting ready for
HL-LHC

How is this challenge connected to
analysis facilities R&D?

7

HEP Analysis Facilities

What physicists expect to see from “Analysis Facility”?

Homelab (https://domalab.com)

“Analysis facility” could be any type of resource from laptop to Tier-2

HEP data access Recipe how to run codeNumber of cores to scale Disk space
Favorite analysis framework

already available

We need to think now how will look like Analysis Facility for HL-LHC and after

8

Building blocks: columnar analysis and support new
pythonic ecosystem

New columnar data analysis concepts Distributed executors

Coffea Analysis Framework

ROOT RDataFrame

Analysis frameworks

9

Analysis Grand Challenge (AGC):
preparing next generation of Analysis Facilities

10

Coffea-casa Analysis Facility is providing AGC execution environment to explore analysis
workflows at scale

Coffea-casa AF components

11

JupyterHub

Parallel processors

Web-based
authentication

Dask-scheduler
interface

Docker image
with environment

Persistent
volume,

EOS access

BinderHub

CVMFS

XCache

K8s
scaleout

HTCondor
scaleout

Data storage

workqueue

ServiceX
S3

External
authentication ML tools

Batch processing

Data access

For coffea 2023 upgrade will will provide separate environments (Docker images) to be able to select on startup 11

Building blocks: easy integration with scalable computing
resources

Investigating feature to be launch scheduler through Jupyter and connect directly from your laptop
(e.g. using `oksana-2eshadura-40cern-2ech.dask.cmsaf-prod.flatiron.hollandhpc.org`)

● Dask task-management computational framework in Python
(based on the manager-worker paradigm) integrates with
HTCondor @ UNL Tier 2 via “dask-jobqueue”

● Looking into “dask-gateway” (as backend we are testing
scaling over Kubernetes = significantly faster startup)

12

Building blocks: modern authentication (IAM/OIDC)
Authentication inside the system is independent of grid credentials

Powered by

Powered by CMS IAM instance (and available for anyone in CMS)

Opendata Coffea-Casa Analysis Facility:
https://coffea-opendata.casa (register for access before)

CMS Coffea-Casa Analysis Facility: https://coffea.casa

An ATLAS instance at UChicago also exists:
https://coffea.af.uchicago.edu/ (these slides
focus on the UNL deployment) 13

https://coffea-opendata.casa
https://coffea.casa
https://coffea.af.uchicago.edu/

Building blocks: tokens for data access

• Enabled Token authentication (WLCG Bearer JWT profile)

• Looking into improving XCache setup

XCache

14

Building blocks: machine learning services and tools

● Triton is natively integrated in Coffea analysis
framework (the wrapper in coffea 2024)

● Support for various deep-learning (DL)
frameworks

● Simultaneous execution - Triton can run multiple
instances of a model, or multiple models,
concurrently, either on multiple GPUs or on a single
GPU

● Dynamic scheduling and batching
● Nicely scales for multiple users of Analysis

Facility

We have it available for you on CMS coffea-casa AF: https://coffea.casa

https://developer.nvidia.com/nvidia-triton-inference-server

15

https://coffea.casa

Casa Hardware – Flatiron

● 12 Dell R750 Servers, 512 GB Ram, 10 3.2 TiB NVMe Drives
 Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz (56
threads/CPU, 2 CPU per node)

● 1x V100S GPU, 2x P100 GPUs, and soon 2x L40S GPUs
● 2 x 100Gbps Networking, Calico + BGP (per node)
● Running Alma Linux 8.8 (Sapphire Caracal)
● Ceph-Rook Filesystem @ 103 TiB
● Ceph via Tier2 @ 8.7 TiB Usable
● Kubernetes (v1.27.6)
● Cert-manager, Dex, External-dns, Sealed-secrets,

Traefik,CVMFS

16

Why we prefer to use Kubernetes at UNL?

● Easy to manage (e.g. automatic management of configurations)
● Simple to integrate of new services (e.g. already available helm charts)
● Easy to scale deployment in case of the need (e.g. XCache deployment for 200

Gbps exercise)

17

Easy to manage: Infrastructure &
Management

● Configs for casa facility are kept in git
● Changes follow GitOps techniques
● Changes are applied in-situ via a Flux agent

18

Easy to deploy: example of Triton Inference Service

● To leverage the presence of our GPUs, an inference service is deployed in the
Kubernetes

● Training sets are able to be stored in an S3 bucket (object store) deployed for it
s3://rook-ceph-rgw-my-store.rook-ceph.svc:80/triton-c9adf042-ffb8-4221-bd42-e385efb1d0e2

19

Scaling to HL-LHC: 200 Gbps setup
‣ Uproot + Coffea notebooks https://github.com/iris-hep/idap-200gbps and using CMS Run2 NanoAOD (~100TB)

‣ Read data from XCache on the Coffea-Casa facility at the Nebraska Tier-2 (running in
Kubernetes).

‣ Expand scale out into the site HTCondor and Kubernetes cluster.
‣ Dask tasks processed in TaskVine & Dask backends.

‣ Compute values from the events read in; accumulate into histograms: “Direct from NanoAOD” style
analysis.

‣ Notes on realism:
‣ Real XCache setup. Token-based auth using the IAM service at CERN.
‣ LZMA decompression dominates analysis time (~70%). To hit our target 25KHz-per-core processing

rate, we recompressed the NANOAOD using ZSTD. About 20% larger than the original dataset, ~2.5x
faster.

‣ N.b.: our strong opinion is CMS needs to make this change.
‣ We scale-out to HTCondor but, for these tests, pre-create the workers.

20

20

https://github.com/iris-hep/idap-200gbps

Uproot results

21

 From the statistics in the notebook:
• Data read (compressed): 58.33TB
• Average data rate: 221Gbps
• Peak data rate: 240Gbps
• Total event rate : 32,256 kHz
• Processed 40,276,003,047 events

total
• Per-core event rate : 27.66 kHz
• Files processed: 63,762 (17 failed)

Network rates from
XCache storage:

Rates from different, but representative run)

1200 cores across 150 8-core workers

workers connecting +
setting conda env

IO + accumulation accumulation
+ stragglers

22

Runtime vs # Events as
seen by xcache

10KHz

20KHz

Dask task stream and xcache stats over the same run

More results coming soon for upcoming CHEP 2024 conference
23

Subtitle

morgridge.org

‣ Several variants were explored; Dask vs TaskVine,

dask-jobqueue vs dask-gateway.

‣ At UChicago, also processed ATLAS PHYSLITE files directly in Python.

‣ Goal was using coffea 2024, dask-awkward, uproot; ended up using

direct processing in uproot.

‣ 218k files, 190TB data, 23B events, ~8kHz/core

‣ Highlights:

‣ Scaled Dask up to around 2.5k cores

‣ 200Gbps throughput sustained in network

monitoring; slightly less in ‘effective bytes’
into Dask.

‣ Biggest challenge has been understanding

memory usage; significant difference between
“uproot only” and the full Coffea 2024.

Uproot Toolset, PHYSLITE

memory profile across
workers

Network
monitoring

200 Gbps

From Brian Bockelman talk “IRIS-HEP 200Gbps challenge”
HSF/WLCG workshop

https://indico.cern.ch/event/1369601/contributions/5924000/

Subtitle

morgridge.org

Using ServiceX data extraction and delivery
delivery service as part of pipeline:
‣ To reduce the overhead of small datasets, we

ran on a subset that consisted of the bulk of the
data.

‣ Highlight run:
‣ 4 Datasets
‣ 146TB total
‣ 19,074,862,754 Events
‣ 170Gbps
‣ Limited to 1,000 pods.
‣ Time: 32:28
‣ Event Rate: 9,787 kHz

ServiceX Results From Brian Bockelman talk “IRIS-HEP 200Gbps challenge”
HSF/WLCG workshop

https://github.com/ssl-hep/ServiceX
https://indico.cern.ch/event/1369601/contributions/5924000/

26

200 Gbps related slides summarizes a large body of work across IRIS-HEP and USCMS/USATLAS:

‣ Fermilab: Lindsey Gray, Nick Smith

‣ Morgridge: Brian Bockelman

‣ Notre Dame: Ben Tovar

‣ Princeton: Jim Pivarski, David Lange

‣ UChicago: Lincoln Bryant , Rob Gardner, Fengping Hu, David Jordan, Judith Stephen , Ilija
Vukotic

‣ National Center for Supercomputing Applications: Ben Galewsky

‣ U. Nebraska: Sam Albin, Garhan Attebury, Carl Lundstedt, Ken Bloom, Oksana Shadura,
John Thiltges, Derek Weitzel, Andrew Wightman

‣ UT-Austin: KyungEon Choi, Peter Onyisi

‣ U. Washington: Gordon Watts,

‣ U. Wisconsin: Alex Held, Matthew Feickert

Thank you for your attention!

If you have any questions, please feel free to get in contact directly or via
analysis-grand-challenge@iris-hep.org (sign up: google group link)

27

mailto:analysis-grand-challenge@iris-hep.org
https://groups.google.com/a/iris-hep.org/g/analysis-grand-challenge

Backup
AGC configuration

28

AGC versions
Description of versioning scheme: documentation

● The AGC analysis task evolves via major versions
○ v0: custom ntuple inputs -> superseded (do not use this anymore)
○ v1: NanoAOD inputs -> baseline to use
○ v2: machine learning, more systematic uncertainties -> heavier CPU & I/O

requirements (almost HEAD)

○ We are developing new version with new coffea 2024 (check notebook
from demo day)

29

https://agc.readthedocs.io/en/latest/versionsdescription.html
https://github.com/alexander-held/calver-coffea-agc-demo
https://github.com/alexander-held/calver-coffea-agc-demo

AGC pipeline configuration

● Baseline: full AGC pipeline with distribution via Dask (USE_DASK = True)
○ Can also be ROOT version with distributed RDF

● Advanced: pipeline with ServiceX (optional)
○ USE_SERVICEX = True
○ Employ your XCache if available and compare performance

● Advanced: include additional ML functionality (optional, AGC v2)
○ Training: run jetassignment_training & reproduce models, more

advanced: USE_MLFLOW = TRUE
○ Inference: USE_TRITON = TRUE

Options on this slide refer to the ttbar_analysis_pipeline.ipynb implementation. 30

https://iris-hep.org/projects/servicex.html
https://github.com/iris-hep/analysis-grand-challenge/blob/main/analyses/cms-open-data-ttbar/ttbar_analysis_pipeline.ipynb

● Standard metrics (in the many configurations outlined previously)
○ Data volume processed (per time and core)
○ Event processing rate per core
○ Scheduling efficiency

● Data pipeline comparisons: ratio of ServiceX+coffea and coffea (directly reading original input)
runtimes

○ Assumption: input data sitting in XCache
○ Goals: no substantial slowdown of initial execution of ServiceX+coffea setup, demonstrate

significant speedup in repeated runs (hitting ServiceX cache)

● Additional points of interest
○ Capture multi-user setups: run multiple AGC pipelines in parallel
○ Evaluate UX: how much manual intervention is needed (e.g. copying & settings proxy or

tokens)

AGC metrics that might be of interest
Metrics that might be of interest

31

