

### **Proposed DTS-ST4 in PoF V – First Draft**

#### **Tilo Baumbach, Clemens Heske**



#### KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

#### www.kit.edu

MML with Unique Instrumentation of its SPECTROSCOPY, SCATTERING & IMAGING CLUSTERS

at the KIT Light Source and beyond



#### IMAGING Cluster, incl.

- IMAGE, UFO-station towards Serial CT
- In situ LAMINO and X-ray microscopy stations
- Hierarchical, correlated and in vivo imaging







#### SCATTERING Cluster, incl.

- NANO & Heavy duty diffractometers
- Thin-Film-Labs with *in situ* MBE, MOVPE, PLD, sputtering, laser processing etc.



### SPECTROSCOPY Cluster, incl.

- X-SPEC, SUL-X, and MFE-Lab
- Next-generation hard and soft Xray spectrometers (with UNLV)
- Operando cells



#### MT DTS Executive Board, May 07, 2024

Photon Science and Synchrotron Radiation Research

enabled by combining the strengths of



- the Beamlines and Labs at the KIT Light Source
- complementary experimental stations at low-emittance photon facilities



providing a unique portfolio **•** for pioneering method development and fundamental research

- for systematic, large comparative studies
- as a unique home-court advantage for KIT Programs and Centers

Photon Science and Synchrotron Radiation Research

enabled by combining the strengths of



- the Beamlines and Labs at the KIT Light Source and
- complementary experimental stations at low-emittance photon facilities



providing a unique portfolio • for pioneering method development and fundamental research

- for systematic, large comparative studies
- as a unique home-court advantage for KIT Programs and Centers

Method & Instrument Development

### Two main thrusts in MML

- Development and utilization of novel characterization approaches and instruments for the Spectroscopy, Scattering, and Imaging Clusters
- Develop high-throughput, *in vacuo*, *in situ*, *in vivo*, *operando* concepts at large-scale photon facilities as crosscutting enabling technologies in MML and for other KIT programs and strategic partners
- Cutting edge methods and instrumentation, in particular at X-SPEC, IMAGE, and soon at HiKA
- → Worldwide unique combination of soft and hard X-ray spectroscopy for *in situ / operando* applications
- → Worldwide unique CT/Laminography portfolio towards serial tomography and hierarchical in situ / operando imaging









Unique home-court advantage for KIT Programs and Centers

### **Initial Situation: PoF IV**

Accelerator Research: Operation of the KARA Storage Ring and all accelerator R&D in Matter - MT

### Research with Synchrotron Radiation at the KIT Light Source and beyond:

#### Matter – MML

- Operation of the Imaging, Scattering & Spectroscopy Clusters
- Methodical & instrumental development
- Scientific research applications, collaborating with leading KIT groups and external partners

Operation of further beamlines in 4 Programs of the Helmholtz Research Fields Energy (MTET, NUSAFE) and Information (NACIP, MSE)



Examples of KIT@MML collaborations with other Programs



### MML research topics PoF V

#### Successful restructuring of MML for PoF IV





#### New in PoF IV

- Transfer of magneto-hydrodynamics (HZDR) from *Energy* to MML
- GSI campus Darmstadt returned to PoF and participates in all 3 MML topics
- Transfer of Biophysics (GSI) from Health to MML (from cancer therapy to radiation protection)
- KIT: Operation of the storage ring (KARA) shifted to the MT-Program; Beamline Clusters in MML (LK I)

#### During PoF IV

- Helmholtz Institute for High Energy Density (HIHED) in Rostock not founded
- Upgrade proposals PETRA IV, BESSY II+/III

Continuation and sharpening this successful structure in PoF V

- RT1 (Matter): Creation of a subtopic level
- RT2 (Materials) and RT3 (Life): Current subtopic structure will be retained

### The Vision in PoF V



Stay at the forefront of the latest synchrotron methods and instruments

Develop strategies for AI-based automated, high-throughput data acquisition, data analysis, and data management

#### Reap the rewards

- benefit from the integrated beamline & laboratory infrastructure at KIT
- capitalize on our leading characterization approaches combining cutting-edge synchrotron radiation and multi-environment sample concepts (*in vacuo*, *in situ*, *in vivo*, *operando*)
- utilize the cross-sectional technology portfolio for networking with other programs and our strategic external partners





Th. Stöhlker, MML-Presentation, MATTER LA Hamburg, 29.01.2024

LA Matter 26.04.2024: KIT will continue its previous MML activities from the PoF IV funding phase in PoF V, but integrated into other programs Present Status: Coordination Meetings with Information (P3) and with MT in Matter

### The Vision in PoF V



Stay at the forefront of the latest synchrotron methods and instruments

Develop strategies for AI-based automated, high-throughput data acquisition, data analysis, and data management

### Reap the rewards

- Characterization of real-world materials, devices, and processes related to energy, information & mobility technologies
- Al-driven high-throughput imaging and analysis for large-scale comparative morphological studies (materials & devices, biomaterials & tissues)

#### **Detector Technology and Systems (DTS)**



#### **Detector Technology and Systems (DTS)**



#### **Detector Technology and Systems (DTS)**



### **Contributions to ST1-3**



### High-Z detectors based on CdZnTe/GaAs (collaboration with U-Frei …)

Goal: Development of CdZnTe/GaAs sensor technologies from crystal growth towards detector production:

#### Growth of CdZnTe

- Partner in the OptiBeams proposal in the HORIZON-INFRA-2024-TECH-01-01 call coordinated by DESY Flash
- Cooperation with PSI for the growth of 75 mm diameter CdZnTe crystals
- Technology for pixel detectors
  - Work on flip-chip bonding in cooperation with IPE
- Production of TPX3 (TPX4) and Eiger (PSI) detectors
  - Production of detector modules with different thicknesses from 0.5 up to 3 mm for covering X-ray energies from 30 keV up to 300 keV
  - Development of large area detectors

### Application of CdZnTe pixel detectors

Application at PETRA and XFEL

Starting point BMBF Project: 05K22VFBA - PERODET U-Frei – MML – MT Collaboration



### **Contributions to ST1-3**

### Research on Perovskites

- New class of semiconductors: Perovskite semiconductors (promising photovoltaic materials)
- Perovskite materials are promising as an alternative to conventional high-Z semiconductors regarding availability, toxicity and low production costs compared to conventional high-Z materials like CdZnTe or GaAs
- Crystal growth from solution and from the melt of CsAgBiBr<sub>6</sub> and CsPbBr<sub>3</sub> materials
- Intensive material characterization
  - (topography, XDL, SIMS, I-V, DLTS, ...)
- Detector technology:
  - Development of planar technology (surface preparation, contacts, bonding)
- Development of a growth process:
  - Deposition directly on electronics (solution, 3D printing, ...)
- Production of detectors:
  - using Timepix3 and Timepix4 with High-Z sensor based on perovskites semiconductors

Starting point BMBF Project: 05K22VFBA - PERODET U-Frei – MML – MT Collaboration





### **ST4 Multidimensional Method Development and Applications**



- Imaging, Spectroscopy, Scattering Methods and Systems
- High-throughput, in situ, in vivo, operando Applications
- AI-Supported Multidimensional Data Analysis



- Example: The X-SPEC Beamline at the KIT Light Source
- 70 eV 15 keV!
- XES/RIXS, XAS, (HAX)PES
- Two undulators (soft, hard), two monochromators (soft, hard), two endstations (UHV and ambient)
- Next-generation soft X-ray

spectrometers

Operando cells

L. Weinhardt *et al.* JSR **28**, 609 (2021)



### X-ray spectroscopy of nuclear materials

Stay at the forefront of the latest synchrotron methods and instruments

- High-activity samples
- Electronic structure
- Actinide-Ligand bonding
- Development of Extremely Fast RIXS Maps (EFRM)



Neill et al., in preparation (2024)



Karlsruher Institut für Technologie

#### MT DTS Executive Board, May 07, 2024

# High-throughput, *in situ, in vivo, operando* Applications



Example: The X-SPEC Beamline



- High dose efficiency short exposure times towards operando soft x-ray detection systems
- Combination of powerful optics (e.g., gratings) and pixel array detectors
- On-the-fly component integration from source (undulator), monochromator, and focusing optics, to sample, analyzer optics, and soft x-ray photon detection systems

# Rapid resonant inelastic soft x-ray scattering (rRIXS) maps at X-SPEC

- Novel high transmission soft x-ray<sub>U28</sub> spectrometer detection system
- Reduces time for a RIXS map from tens of minutes to tens of seconds







### **QUASY** - **Quantum Sensor Platform** for Synchrotron X-ray Spectroscopy

- Magnetic Microcalorimeters -MMCs
- For various beamlines in the Spectroscopy Cluster
- Energy resolution orders of magnitude better than for conventional EDX detectors

University mission



Collaboration with S. Kempf (IMS), T. Vitova (INE)



Example: The HIKA Beamline at PETRA III / IV

Hierarchical Imaging and Serial Tomography Methods



PETRA IV

Zukunftsprojekt PETRA IV. Die nationale Röntgenlichtquelle zur Transformation von Forschung und Innovation







#### **PETRA IV Beamline Portfolio**

| Beamline                                                                  | Techniques                     | Energy range  |
|---------------------------------------------------------------------------|--------------------------------|---------------|
| 01 Powder Diffraction and Total Scattering                                | PXRD, TS                       | 15 - 80 keV   |
| 02 Swedish High-Energy Mater. Sci. Beamline (SE                           | ) WAXS/3DXRD, SAXS, Imaging    | 38 - 150 keV  |
| 03 High-Energy Scatt. and Diff. Tomography                                |                                | 40 - 120 keV  |
| 04 High-Energy Mater. Sci. Beamline (HEREON)                              | High-Energy Beamlines          | 30 - 200 keV  |
| 05 ExTReM                                                                 | ARD, PDF, PCI, CDI             | 25 - 58 keV   |
| 06 In-situ Large Volume Press Beamline                                    | AD-/ED-XRD, PXRD, A/PCI        | 40 - 130 keV  |
| 07 AdMiNaXS Beamline                                                      | GI/T/SAXS/WAXS, CoGISAXS       | 7 - 30 keV    |
| 08 SAXSMAT II Beamline                                                    | Contraring and Diffusation     | 5 - 60 keV    |
| 09 Surface and Interface Dynamics Beamline                                | Scattering and Diffraction     | 8 - 40 keV    |
| 10 Chemical Crystallography Beamline                                      | PXRD, Crystallography          | 15 - 50 keV   |
| 11 Coherent Applications Beamline                                         | XPCS, XCCA, Holotomo.          | 7 - 25 keV    |
| 12 Materials Scanning Nanoscope                                           | XRF, XRD, XBIC, XEOL, Ptycho.  | 2.4 - 50 keV  |
| 13 In-Situ/High-Resolution 3D Nanoprobe                                   | XRE, XRD, XBIC, XANES, Ptycho, | 4 - 100 keV   |
| 14 CryoBio Nanoprobe Beamline                                             | Imaging and Coherence          | 17 - 60 keV   |
| 15 In-situ Bragg Microscopy Beamline                                      | initiging and concrence        | 7 - 40 keV    |
| <b>16</b> Full-Field Imaging for Mater. Sci. (HEREON)                     | Tomography, Radiography        | 10 - 200 keV  |
| 17 Multiscale Mater. Microscope (DESY/HEREON                              | I) Holotomo., Radiography      | 60 - 200 keV  |
| 18 HIKA Beamline (KIT)                                                    | Tomography, Laminography       | 10 - 60 keV   |
| <b>19</b> X-ray Absorption & Emission Spec. Beamline                      | HR-XES/XAS, TR-XES/XAS         | 4 - 25 keV    |
| 20 Materials Science Lab Bear B MPG 22                                    | - HIKA Tomography              | 2 - 100 keV   |
| 21 Applied Analytical XAFS and Q-EXAFS Beamlin                            | 16 Caracteria and December 1   | 4 - 45 keV    |
| 22 Nuclear Resonance and X-ray Raman Scattering                           | Spectroscopy Beamlines         | 6.5 - 73 keV  |
|                                                                           | maging and                     | 2.4 - 14 keV  |
| 24 Hard X-ray Photoelectron Spectromicroscopy                             | HAXPES, RPES, MEM, XPD), CDI   | 2.4 - 15 keV  |
| 25 High-Thru. MX                                                          |                                | 6 - 30 keV    |
|                                                                           |                                | 6 - 20 keV    |
| 27 High Performance and Microfocus MX (EMBL) SSX, Print Perify Technolics |                                | 5 - 30 keV    |
| <sup>28 Bio Diffraction at Karlerubo Roamlino</sup>                       |                                | 6 - 30 keV    |
|                                                                           |                                | 0.25 - 4 keV  |
| <b>30</b> Time-Resolved VUV Spectroscopy Beamline                         |                                | 14 - 0.04 keV |



BL-22 - Hierarchical Imaging and Serial Tomography Karlsruhe (HIKA) Beamline at PETRA IV



PETRA IV – Schedule

#### Unique portfolio for morphological full-field imaging

- micro tomography & laminography → 3D morphology
- high-throughput  $\rightarrow$  large **comparative** studies
- operando, in situ and in vivo imaging  $\rightarrow$  4D morphodynamics ...
- combined BMI, parallel beam imaging and X-ray microcopy → multiscale and hierarchical X-ray imaging
- $\blacksquare$  multiple X-ray contrasts, light microscopy  $\rightarrow$  correlated imaging



High-throughput and hierarchical tomography of model organisms



Hierarchical laminography under biaxial load





Dose-sensitivity soft materials and for tissue engineering

# High-throughput, *in situ, in vivo, operando* Applications



**Example: The Imaging Cluster** 

**Detector System integration, e.g.,** 

- SPCDs combined with Bragg-Magnifiers for µm-resolved imaging
  - $\rightarrow$  Dose-efficiency, noise suppression, higher contrast at 1µm resolution
- Ultrafast up to MHz Imaging
- Spectroscopic Imaging

### In Vivo Tomography on the Cellular Level





#### Moosmann et al. NATURE 2013, NATURE Protocols, 2014

### Combination of Single Photon Counting Pixel Array Detectors and Magnifying Coherent X-ray Optics





### µm-resolution imaging with SPCDs

Bragg Magnifier optics as image magnifier combined to **GaAs Lambda Detector** 

□ Magnification up to 200, highly dose-efficient (>93%), up to in vivo imaging for µm resolution



Trichogramma wasp biting through a parasitized moth egg shell



Tilo Baumbach and Clemens Heske: Proposed DTS-ST4 in PoF V – First DRAFT

phase contrast imaging at

constant dose, soft tissue

1.0

# SPCDs combined with coherent X-ray optics realizing kilometers long beamlines



#### Dose efficient contrast enhancement



#### Combination of SPCDs and Coherent Bragg Optics provides massive phase contrast amplification

 $\Box$  Dose-efficient phase-contrast applicable to larger objects  $\rightarrow$  radiation sensitive objects, (bio-)medical diagnostics

**☐ Combination with novel compact brilliant X-ray sources** → new options for bio-medical imaging

## SPCDs combined with coherent X-ray optics even better than kilometers long beamlines





#### Comparison for ESRF EBS conditions at BM18



Example: Morphological Imaging

#### Goals

- Material response during fabrication & processing
- Microfluidics, e.g., in injection nozzles, capillaries

#### Approaches

- Serial tomography / laminography for large comparative studies
- Hierarchical imaging
- Ultrafast cine-radiography & tomography
- All this in situ, operando & in vivo

### **Application fields**

Energy, information, automotive, aerospace, health-tech applications

MT DTS Executive Board, May 07, 2024



#### Hierarchical laminography of crack formation





#### Ultrafast CT of pyrolysis in heat shields for space crafts



#### MHz imaging for high speed microfluidics

# High-throughput, *in situ, in vivo, operando* Applications



Example: X-ray Imaging

Intelligent DAQ systems with smart pixel array detectors and in-line algorithms for data analysis



#### **AI-Supported Multidimensional Data Analysis Develop Strategies for AI-based Big** Karlsruher Institut für Technologie **Data Analysis, and Management** Large on-line storage & large-scale AI for image analysis and automation **MorphoSphere for** Information Model technology organisms LSDF III KIT & UHei digitized morphology Supported by BMBF ErUM Data Advanced Evolution materials Linked to NFDIs, the Helmholtz LSDF-III Pilot Project DFG Deutsche Forschungsgemeinschaft Incubator Platforms Helmholtz Al Materials **Developmental** testina Aktionsplan ErUM-Data biology Bundesministerium & Helmholtz Imaging, link to Von Big Data zu Smart Data: Digitalisierung in der für Bildung naturwissenschaftlichen Grundlagenforschung und Forschung Information Program Transformative Aktionsplan ErUM-Pro **Biodiversity** and Projektförderung zur Vernetzung von Hochschuler sprays Information Processing for Forschungsinfrastrukturen und Gesellscha Environment SMART-Morph 2022-2025 Smart modules for AI-supported Serial X-Ray Tomography Sustainable Future, for Comparative Morphological Studies KI-Morph 2023-2026 Novel Artificial Intelligence for Automated Segmentation of 3D **Biomimetics** serve for other HGF programs (LLS, batteries Image Data for Morphological Structure Analysis KI4D4E 2023-2026 MTET ...) An AI-based framework for visualizing and evaluating massive amounts of 4D tomography data for beamline end users UNIVERSITÄT HEIDELBERG Artificial Intelligence & Scientific Computing

stitute for Photon Science

UNIVERSITÄTS

**IBCS-BIP** 

URZ

EMC

### **ST4 Contributions to ST1-3**



- Sensor Materials Characterization
  - Crystal defect characterization of High-Z sensor materials by X-ray topography, rocking curve imaging, 3D diffraction laminography ...
- Non-destructive testing
  - Testing Flip Chip Interconnections by X-ray absorption Laminography ...
- Characterization of Detector System Performance
  - key-parameters of full detector assemblies, e.g. energy resolution; spatial resolution, flux-dependent linearity, stability, charge-sharing, ...
- Systems Integration of novel Detectors: Integration in versatile X-ray imaging pipelines (Hard- and Software) at synchrotron beamlines and X-ray tube-based laboratory setups
- **Dedicated method developments** based on novel detectors and combinations with optics, smart analysis
  - Dose-efficient phase contrast imaging, hierarchical imaging, serial CT, Cine-tomography, MHz-imaging
  - Spectroscopic X-ray imaging with machine learning based material decomposition ...
- Application Tests: Quality measure for imaging properties evaluating exemplary applicability in life-science, material research, ...
- MT-DTS-ST4 connects to other Programs and Research Fields

# Non-destructive testing for flip-chip interconnection technology





## Non-destructive testing for flip-chip interconnection technology



In situ imaging: AuSn solder flow on Si-GaAs assemblies

Reconstructed slices: AuSn solder joint array (55 µm pitch) under heat treatment (T=300°C)



ID15: 30 keV<E<70 keV at 60 mA ring current 600 projections (1.6 µm pixel size)

### **Characterization of Sensor Materials**



Rocking curve imaging of CdZnTe sensors

Correlation of Defect structure and detector pixel performance in a CdZnTe-Medipix Detector



(PhD-thesis Elias Hamann)

### **ST4 contribution to DetecTABL**



- Detector Test X-ray Lab
- Imaging Methods for Defect Analysis
- Beamlines for Application tests

### MT-DTS-ST4 connects to other Programs and Research Fields

### ST4 Multidimensional Method Development and Applications



- Imaging, Spectroscopy, Scattering Methods and Systems
- High-throughput, in situ, in vivo, operando Applications
- AI-Supported Multidimensional Data Analysis

#### MT-DTS-ST4 connects to other Programs and Research Fields Example: Characterization of Structure and Dynamics of Materials, Devices and Processes

### Goals

- Characterize structure and its evolution on micro, nano, and atomic scales
- Correlate structure, dynamics, and properties
- Determine *in situ/operando* changes of electronic and chemical structure during processing/operation

### Energy technologies: → characterize processes for storage, conversion ... (photovoltaics, solar hydrogen, catalysts, batteries, electrolytes, ...), understand degradation

**Information technologies**:  $\rightarrow$  characterization of **growth and processing** of wafers, thin films, multilayers, nanomaterials, nanostructures  $\rightarrow$  correlate structure and properties to understand multiferroics, photonics, quantum devices, high power electronics, ...

**Transport technologies**  $\rightarrow$  *In situ* and *operando* 3D defect recognition and 4D damage analysis





#### 42

### **MT-DTS-ST4** connects to other Programs and Research Fields Example: Morphology of biomaterials, biological systems and bio(technological) processes

#### Goals

- Digitize morphology of large sample series
- Determine quantitative morphological / morphometric / morpho-dynamic information

**Biomaterials & -technologies:** → morphology and bio-compatibility of biomaterials;  $\rightarrow$  tissue engineering, scaffolds, organoids;  $\rightarrow$  bionics, bio-catalysis, food engineering ...

**Model organisms:**  $\rightarrow$  correlate morphology and molecular data; determine gene functions  $^{\circ}$ flow focusing junction multigenic contributions to development and disease → Generate digital twins of biological systems (medaka, zebrafish, xenopus, ... brain);

**Biodiversity:**  $\rightarrow$  Digitize morphological diversity, correlated with molecular & ecological data, including human impact;  $\rightarrow$  Focus on **indicator organisms for climate impact on biodiversity**, and models for environmental change on development;  $\rightarrow$  Identify morphological key features to determine evolutionary key events for diversification.



**Bionics** 







Electrochemistry





- Based on the results of MML, KIT proposes to strengthen MT-DTS by a fourth Subtopic
- ST4 will support the system conception, design, characterization and application
  - Detectors for the use in Multidimensional Characterization of Materials, Devices, and Systems
  - Serial Digitalization of Morphology of materials and organisms ...
- MT-DTS-ST4 connects to other Programs and Research Fields

### **Characterization of Sensor Materials**

Stronger absorption → high X-ray energies required
→ narrow Darwin curves → sufficiently precise instrumentation crucial!



- 68.5 keV @ ID15A
  - **004 reflection** ( $\theta_B = 3.669^\circ$ )
  - 300 projections
- → Dislocation cell walls visible
- → Work on 3D reconstruction ongoing (challenging)
- Changed contrast conditions (weak-beam):



- Pixel positions indicated by strain localizations
- → XDL data can be precisely linked to Medipix flat image contrast!







Application of X-ray Diffraction Laminiography to High-Z Sensor Materials

> Example: GaAs Medipix Sensor

### **Contribution of ST4 to the Characterization and Application of Detector-Systems**



**Example: Spectroscopic Imaging** 



**DQE(0)** measurement of a Medipix3RX detector with a 2mm **CdTe sensor** for different photon energies

80

90



Material specific spectroscopic CT-slices of a test phantom. Top: ground-truth, bottom: measurement, Medipix3RX with 2mm CdTe in charge-summing-mode

PhD-thesis Marcus Zuber

Presampling-MTF measurement of a Medipix3RX detector with a 2mm CdTe sensor in Single-Pixel-Mode

# Contribution of ST4 to the Characterization and Application of Detector-Systems



Origami-inspired perovskite X-ray quantum detector by printing and folding



Fig. 3 X-ray sensitivity and spatial resolution. a, b X-ray sensitivities S of the planar (a) and the folded (b) detector as a function of the utilized X-ray tube voltage  $V_{tube}$ . The experimentally determined sensitivities are represented by box plots. The individual pixel sensitivities are also shown as symbols (crossed markers). The theoretical sensitivity prediction is depicted by the coloured areas. c Presampled modulation transfer function MTF of the folded detector as a function of the spatial frequency u. The MTF is determined by a numerical (markers) and an analytical (solid lines) approach.

Nature/npj Flexible Electronics (2023) 7:9 ; https://doi.org/10.1038/s41528-023-00240-9

#### Flexible Inkjet-Printed Triple Cation Perovskite X-ray Detectors

Henning Mescher\*, Fabian Schackmar, Helge Eggers, Tobias Abzieher, Marcus Zuber, Elias Hamann, Tilo Baumbach, Ulrich W. Paetzold, and Uli Lemmer\*

46