
Come try it out at our computer! Henry Day-Hall and Konrad Helms

FEATURES 2 HIDDEN LAYERS OUTPUT

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

number

sharing

4 neurons 3 neurons

20

40

60

80

100

p
T

0

20

40

60

80

100

p
T

0.3

0.4
0.5

0.6 0.7 0.8
5.1

5.2
5.3

5.4
5.5

Gluon

0

10

20

30

40

50

p
T

-1.4

-1.2
-1.0

-0.9 -0.7 -0.5
0.1

0.2
0.2

0.4
0.5

10

20

30

40

50

60

p
T

Quark

Sometimes the network starts performing worse on the
test data than the training data. This shows that it's
learning to identify individual items in the training data,
and not general things about quarks and gluons.

Example of minimising
the loss on training data.

At first the network
can easily learn a lot!
The loss is going down
really fast.

Then all the easy
things to learn are
finished, learning
slows down.

Number of training examples seen.

Test data
Training data

lo
ss

TRAINING the NETWORK
How does a network get good at solving a problem? Same way
we do; training.

When the network is first created, its output, the answers it
gives, are just random. Because our problem has two possible
answers ("it's a quark" or "it's a gluon"), the network will be
right by chance half the time, but that's no more useful than
flipping a coin.

In order to improve this, we will simulate some data, so that we
know what the correct answer is. Remember that our network
outputs a number? And we wanted the network to output a
large number when the detector saw a quark, and a small
number when it saw a gluon.

So we simulate lots of quarks and lots of gluons. We show the
network a quark, and whatever value it gives back, we want to
make it larger. We can change the behaviour of each neuron in
the network by changing weights that it multiplies incoming
particles with, and the bias that it adds on.

First let's train it on one of our simulated quarks. We give it the
quark as input, and go over every neuron in the network and
modify it a bit, changing it's weights and bias, so that the
number it gives as the output for this quark is a bit larger.

Now time for a gluon. For the gluon we need the answer to be
smaller. Using the data for one of our simulated gluons as
input we will go over ever neuron of the network, and change
the weights and the bias so the output is smaller.

We describe this mathematically as minimising the loss. The
loss is a quantity that measures how often the network will
make a mistake by giving a large value for a gluon or a small
value for a quark. Because the loss describes what we want the
network to do mathematically, we can use it to write a
program that will change the weights and biases to reduce the
loss (the number of mistakes) automatically.

But just one quark and just one gluon isn't enough information.
Quarks and gluons all look a bit different, and we need the
network to recognise any quark and any gluon. So we will show it
thousands of quarks and thousands of gluons! Which is part of
why it takes modern computers to train a neural network.

We will simulate lots of data, both quarks and gluons, to train our
network with. This is the training data. Then we simulate a bit
more data, and use that to check that the network has really
learnt to identify any quark or gluon, not just the ones we already
showed it. This is called the test data.

Here is a gluon and a
quark. They don't look
that different, do
they?

Each cuboid
represents one
pixel that
measured some
energy from a
particle fragment.
The colour and
height of the
cuboid represents
how much
"pT" (transverse
momentum) was
in that pixel. This
is roughly the
same as energy.

η (pronounced "eta")
and φ (pronounced
"phi") measure the
location of the pixel in
the detector.

OUR GOAL

We need a neural network that can
tell us if the detector saw a quark or
a gluon. Because the output of
neural networks is always a number
(or lots of numbers) we will consider
any value above 0.5 to mean
"quark" and any value below 0.5 to
mean "gluon".

 A classifier is a tool to identify what you
are looking at; it divides observations
into classes. We could have a classifier
that divided photos into photos of dogs
or cats. That's a task that a human could
do too though.

One example of a neural network used in
particle physics is a particle classifier.
Identifying particles is often quite
difficult.

We catch mystery particles in a detector
that is a bit like a specialised camera.
These particles break up into fragments
when they hit our detector, and the
detector can estimate how many
fragments were made, and the energy of
the fragments.

Different particles fragment in different
ways, so by looking at the number of
fragments, and the way the energy is
shared between the fragments, we can
estimate which particle hit the detector.

(Very) Basic depiction
of a biological neuron.

Dendrites take in
information from
other neurons.

Synapses
send out
information.

Axon moves information
through the body.

Has existed for
~800 million years.

Axon hillock controls neuron's
responses to information.

Depiction of a
computational neuron.

Has existed for
~80 years.

Each of the input numbers
is multiplied by a weight,
which can even be
negative. These weights
will be modified to change
the neuron's behaviour.

After multiplying by the weights,
incoming values are added together
then a bias is added on too (no relation
to statistical bias). The bias will also be
modified to change the neuron's
behaviour.

The value that comes out of
the activation function can be
sent to other neurons in the
network. Eventually the last
neuron gives it's value back to
the user as the result; the
output.

Inputs to the first
neurons are data
from the user.
Deeper into the
network, inputs are
numbers sent out
by neurons.

This sum is linear in each of the
incoming values (i.e. you could
write it like y = wx + c if you had
just one input value). To help it
make more complex shapes, it is
transformed by an activation
function.

NEURAL NETWORKS and NEURONS
Neural networks are the tool that drives some of our best Machine
Learning. Have you used ChatGPT, MidJourney, DeepL or Grammerly? These
are all recent examples of highly successful neural networks.

So how do they do it? They are each complicated and slightly different
designs, but at the smallest level, they are all made of the same thing. As a
particle physicist, the smallest level is the level that interests me the most;
so let's have a close up look at these neural networks.

Neural networks are build of components called neurons. These neurons
are inspired by neurons in animal (e.g. human) brains, and the neural
network is sometimes described as resembling the brain.

If the input values go through enough neurons, they can turn
into almost any set of output values. This is known as the
universal approximation theorem.

More complicated questions might need a lot of data or a very
large computer, but normally the hardest part is getting the
question right. Asking a question with a neural network is like
asking a genie for wishes; you will get exactly what you asked
for and may then realise it wasn't what you wanted.

If you have some data, and you have a question that can be
answered with numbers (which can be used to represent other
things, like letters or colours), then it's probably possible to
design a neural network that could answer it.

