
Come try it out at our computer! Henry Day-Hall and Konrad Helms
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Sometimes the network starts performing worse on the 
test data than the training data. This shows that it's 
learning to identify individual items in the training data, 
and not general things about quarks and gluons.

Example of minimising 
the loss on training data.

At first the network 
can easily learn a lot! 
The loss is going down 
really fast.

Then all the easy 
things to learn are 
finished, learning 
slows down.

Number of training examples seen.

Test  data
Training data
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TRAINING the NETWORK
How does a network get good at solving a problem? Same way 
we do; training.

When the network is first created, its output, the answers it 
gives, are just random. Because our problem has two possible 
answers ("it's a quark" or "it's a gluon"), the network will be 
right by chance half the time, but that's no more useful than 
flipping a coin.

In order to improve this, we will simulate some data, so that we 
know what the correct answer is. Remember that our network 
outputs a number? And we wanted the network to output a 
large number when the detector saw a quark, and a small 
number when it saw a gluon.

So we simulate lots of quarks and lots of gluons. We show the 
network a quark, and whatever value it gives back, we want to
make it larger. We can change the behaviour of each neuron in 
the network by changing weights that it multiplies incoming 
particles with, and the bias that it adds on.

First let's train it on one of our simulated quarks. We give it the 
quark as input, and  go over every neuron in the network and 
modify it a bit, changing it's weights and bias, so that the 
number it gives as the output for this quark is a bit larger.
 

Now time for a gluon. For the gluon we need the answer to be 
smaller. Using the data for one of our simulated gluons as 
input we will go over ever neuron of the network, and change 
the weights and the bias so the output is smaller.

We describe this mathematically as minimising the loss. The 
loss is a quantity that measures how often the network will 
make a mistake by giving a large value for a gluon or a small 
value for a quark. Because the loss describes what we want the 
network to do mathematically, we can use it to write a 
program that will change the weights and biases to reduce the 
loss (the number of mistakes) automatically.

But just one quark and just one gluon isn't enough information. 
Quarks and gluons all look a bit different, and we need the 
network to recognise any quark and any gluon. So we will show it 
thousands of quarks and thousands of gluons! Which is part of 
why it takes modern computers to train a neural network.

We will simulate lots of data, both quarks and gluons, to train our 
network with. This is the training data. Then we simulate a bit 
more data, and use that to check that the network has really 
learnt to identify any quark or gluon, not just the ones we already 
showed it. This is called the test data. 

Here is a gluon and a 
quark. They don't look 
that different, do 
they? 

Each cuboid 
represents one 
pixel that 
measured some 
energy from a 
particle fragment. 
The colour and 
height of the 
cuboid represents 
how much 
"pT" (transverse 
momentum) was 
in that pixel. This 
is roughly the 
same as energy.

η (pronounced "eta") 
and φ (pronounced 
"phi") measure the 
location of the pixel in 
the detector.

OUR GOAL

We need a neural network that can 
tell us if the detector saw a quark or 
a gluon. Because the output of 
neural networks is always a number 
(or lots of numbers) we will consider 
any value above 0.5 to mean 
"quark" and any value below 0.5 to 
mean "gluon".

 A classifier is a tool to identify what you 
are looking at; it divides observations 
into classes. We could have a classifier 
that divided photos into photos of dogs 
or cats. That's a task that a human could 
do too though. 

One example of a neural network used in 
particle physics is a particle classifier. 
Identifying particles is often quite 
difficult.

We catch mystery particles in a detector 
that is a bit like a specialised camera. 
These particles break up into fragments 
when they hit our detector, and the 
detector can estimate how many 
fragments were made, and the energy of 
the fragments.

Different particles fragment in different 
ways, so by looking at the number of 
fragments, and the way the energy is 
shared between the fragments, we can 
estimate which particle hit the detector. 

(Very) Basic depiction 
of a biological neuron.

Dendrites take in 
information from 
other neurons.

Synapses 
send out 
information.

Axon moves information 
through the body.

Has existed for 
~800 million years.

Axon hillock controls neuron's 
responses to information.

Depiction of a 
computational neuron.

Has existed for 
~80 years.

Each of the input numbers 
is multiplied by a weight, 
which can even be
negative. These weights 
will be modified to change 
the neuron's behaviour.

After multiplying by the weights, 
incoming values are added together 
then a bias is added on too (no relation 
to statistical bias). The bias will also be 
modified to change the neuron's 
behaviour.

The value that comes out of 
the activation function can be 
sent to other neurons in the 
network. Eventually the last 
neuron gives it's value back to 
the user as the result; the 
output.

Inputs to the first 
neurons are data 
from the user. 
Deeper into the 
network, inputs are 
numbers sent out 
by neurons.

This sum is linear in each of the 
incoming values (i.e. you could 
write it like y = wx + c if you had 
just one input value). To help it 
make more complex shapes, it is 
transformed by an activation 
function.

NEURAL NETWORKS and NEURONS
Neural networks are the tool that drives some of our best Machine 
Learning. Have you used ChatGPT, MidJourney, DeepL or Grammerly? These 
are all recent examples of highly successful neural networks.

So how do they do it? They are each complicated and slightly different 
designs, but at the smallest level, they are all made of the same thing. As a 
particle physicist, the smallest level is the level that interests me the most; 
so let's have a close up look at these neural networks.

Neural networks are build of components called neurons. These neurons 
are inspired by neurons in animal (e.g. human) brains, and the neural 
network is sometimes described as resembling the brain. 

If the input values go through enough neurons, they can turn 
into almost any set of output values. This is known as the 
universal approximation theorem.

More complicated questions might need a lot of data or a very 
large computer, but normally the hardest part is getting the 
question right. Asking a question with a neural network is like 
asking a genie for wishes; you will get exactly what you asked 
for and may then realise it wasn't what you wanted.

If you have some data, and you have a question that can be 
answered with numbers (which can be used to represent other 
things, like letters or colours), then it's probably possible to 
design a neural network that could answer it.
 


