

Linear or circular -/ O

Circular: circle particles around, reuse them for maximum reaction rate, but lose energy in bends, limited maximum energy

Precision frontier: electron-positron collider Higgs factories $e^{-}e^{+}$

Collide particles that are

- anti-particles of each other \rightarrow annihilate into energy for reaction
- elementary particles \rightarrow all kinetic energy goes into the reaction, few uninteresting reactions

Linear: use particles once, lower reaction rate, but higher maximum energy

- light \rightarrow easier to manipulate, but lower maximum energy

Energy frontier: proton collider or muon collider $p^+ p^+ / \mu^+ \mu^-$ Collide particles that are heavy \rightarrow higher maximum energy, stronger magnets necessary

- but compound \rightarrow only part of energy goes into reaction, many uninteresting reactions with need to filter
- or unstable \rightarrow tricky to achieve high reaction rates / large statistics

A to Base has been and to Base to Base

	Shape	Particles Used	Proposed Location
International Linear Collider ILC		e ⁻ e ⁺	Japan, possibly CERN or USA
Compact Linear Collider CLIC		e ⁻ e ⁺	CERN (Switzerland)
Future Circular Collider FCC-ee	Ο	e ⁻ e ⁺	CERN (Switzerland)
Circular Electron-Positron Collider CEPC	0	e ⁻ e ⁺	China
Cool Copper Collider C ³		e ⁻ e ⁺	Fermilab (USA)
Hybrid Asymmetric Linear Higgs Factory HALHF		e ⁻ e ⁺	open
Future Circular Collider FCC-hh	0	p+ p+	CERN (Switzerland)
Future Circular Collider FCC-eh	0	e ⁻ p ⁺ / e ⁻ A ⁿ⁺	CERN (Switzerland)
Super Proton-Proton Collider SPPC	0	p+ p+	China
Muon Collider	0	$\mu^+ \mu^+$	Fermilab or CERN?