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Motivation

This study was performed to understand possible errors in the reconstruction of amplitude and time of
arrival using fit to raw data and deconvolution method.
Steps:

» Creating generator of virtual pulses which mimic raw data with given amplitude, TOA and level of
noise

» Running deconvolution reconstruction on this data
» Comparison of methods which are responsible for choosing best set of samples for deconvolution

» Running fitting function for generated data
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Two approaches to reconstruct amplitude of signal and time of arrival

Fitting of a theoretical CR-RC pulse
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Virtual pulse generator

Virtual pulse generator produce ideal CR-RC shaping pulses with additional Gaussian noise n(u, o), pulse
start tp, amplitude « and pedestal b

b+ n(u, o), for t < to.
V(t — o _t—ty
@ (Th) e 7sh +b+n(u,0), fort>t.
Set amplitude: 20.7
. t0:5.0
0 noise sigma: 1.0
—— ideal CR-RC pulse
® samples of CR-RC pulse + noise
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Fig. 1: An example of generated pulse and theoretical noiseless pulse
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Animations
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Fit performance - signal amplitude

Fitting function was checked on generated data without digitisation and additional noise c=0 LSB.
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Fig. 2: Map of amplitude differences between set and reconstructed reconstuction; noise c=0 LSB
amplitude (reconstructed - set); fit reconstruction; noise =0 LSB
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Fit performance - time of arrival

Fitting function was checked on generated data without digitisation and additional noise c=0 LSB.
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Digitisation error - signal amplitude

Influence of digitisation on amplitude reconstruction, noise c=0 LSB.
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Fig. 6: Map of amplitude differences between set and reconstructed reconstuction; noise c=0 LSB
amplitude (reconstructed - set); fit reconstruction; noise =0 LSB
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Digitisation error - signal amplitude
Influence of digitisation on amplitude reconstruction, noise c=0 LSB.
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Digitisation error - time of arrival

Influence of digitisation on time of arrival reconstruction, noise 0=0 LSB.
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Fig. 10: Map of TOA differences between set and reconstructed reconstruction; noise 0=0 LSB
TOA (reconstructed - set); fit reconstruction; noise =0 LSB
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Noise influence - signal amplitude
To observe influence of noise on reconstruction of signal amplitude additional Gaussian noise were added
to the samples; 0=1.0 LSB.
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Noise influence - time of arrival

To observe influence of noise on reconstruction of TOA additional Gaussian noise were added to the
samples; 0=1.0 LSB.
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Fig. 15: Histogram of TOA differences between set and
reconstructed TOA (reconstructed - set); fit

Fig. 14: Map of TOA differences between set and reconstructed reconstruction; noise 0=1.0 LSB
TOA (reconstructed - set); fit reconstruction; noise c=1.0 LSB
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Noise and digitisation influence - signal amplitude
To observe influence of noise on reconstruction of signal amplitude additional Gaussian noise were added
to the samples and digitisation was performed; 0=1.0 LSB.
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Fig. 17: Histogram of amplitude differences between set
. ) . i and reconstructed signal amplitude (reconstructed -
Fig. 16: Map of am_plltude differences between set and _ set); fit reconstruction; noise c=1.0 LSB
reconstructed amplitude (reconstructed - set); fit reconstruction;
noise c=1 LSB
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Noise and digitisation influence - signal amplitude
To observe influence of noise on reconstruction of signal amplitude additional Gaussian noise were added
to the samples and digitisation was performed; 0=1.0 LSB.
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Fig. 18: Map of amplitude differences between set and fit reconstruction: noise 0=1.0 LSB
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Noise and digitisation influence - time of arrival
To observe influence of noise on reconstruction of TOA additional Gaussian noise were added to the
samplesand digitisation was performed; c0=1.0 LSB.
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Fig. 21: Histogram of TOA differences between set and
reconstructed TOA (reconstructed - set); fit

Fig. 20: Map of TOA differences between set and reconstructed reconstruction; noise 0=1.0 LSB
TOA (reconstructed - set); fit reconstruction; noise c=1.0 LSB
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Which FIR samples should be used for deconvolution?

Different methods of determining the best pair of samples for deconvolution were checked.
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(reconstructed - set); fit
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Fig. 23: Map of amplitude
differences between set and
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(reconstructed - set); fit
reconstruction; noise 0=1.0 LSB
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reconstruction; noise c=1.0 LSB
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Which FIR samples should be used for deconvolution?

Different methods of determining the best pair of samples for deconvolution were checked.
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Fig. 26: Histogram of amplitude
differences between set and
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deconvolution reconstruction;
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Fig. 27: Histogram of amplitude
differences between set and
reconstructed signal amplitude
(reconstructed - set);
deconvolution reconstruction;
noise 0=1.0 LSB
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Deconvolution digitisation influence - time of arrival
digitisation influence on deconvolution time o arrival reconstruction; ; 0=0.0 LSB.
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Deconvolution digitisation influence - signal amplitude
digitisation influence on deconvolution amplitude reconstruction; 0=0.0 LSB.
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Deconvolution digitisation influence - signal amplitude
digitisation influence on deconvolution amplitude reconstruction; ; c=0.0 LSB.
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Deconvolution noise and digitisation influence - time of arrival
To observe influence of noise on reconstruction of TOA additional Gaussian noise were added to the
samples and digitisation was performed; 0=1.0 LSB.
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Deconvolution noise and digitisation influence - signal amplitude
To observe influence of noise on reconstruction ofsignal amplitude additional Gaussian noise were added
to the samples and digitisation was performed; 0=1.0 LSB.
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Deconvolution noise and digitisation influence - signal amplitude
To observe influence of noise on reconstruction ofsignal amplitude additional Gaussian noise were added
to the samples and digitisation was performed; 0=1.0 LSB.
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Fig. 38: Map of amplitude differences between set and
reconstructed amplitude (reconstructed/set)-100%; deconvolution
reconstruction; noise 0=1.0 LSB
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Fig. 39: Histogram of amplitude differences between set
and reconstructed amplitude (reconstructed /set)-100%;
deconvolution reconstruction; noise c=1.0 LSB
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Thank you for attention
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Deconvolution method
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Deconvolution method

FE pulse
o Samples
. Deconvolution

In our front-end we uses CR-RC shaping, for which

amplitude response over time can be written as 1.2 T T
formula below: = 1
3 / Q\
in t ot [ 3\
V(t) _ C‘?m Z e T (1) % 0.8 E} \
feed Tsh % 0.6 }‘ w
If we include time before pulse, non-zero pulse start 3 0.4 | \
time to, amplitude o and pedestal b, equation 1 is -(%‘ 02 |
transformed into: £ : J N
o 0 | e
Z
b, for t < to. 0.2 :
V(t) = t—t 2 -U. L— L .
(t) o (rT;to) e T +b, fort>t. 2) -100 0 100 200 300 400 500
sh -

Time [ns]

Fig. 40: Example of asynchronous sampling with two nonzero filter
output samples at to = 30 ns
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Deconvolution method

FE pulse
o Samples
. Deconvolution

Our output pulses are a convolution of its impulse 12
response with the sensor’s current signal (deposited ' ' '
charge), in order to find the input signal, we can - 1 8"
use a procedure inverse to the convolution called 3 0.8 L4\
deconvolution. In our system, this procedure is ol - o
performed digitally by a digital filter. Output & ‘ | N\
sample s, of simplest FIR(Finite Impulse g 04 ‘w
Response): T 02 |

N—1 E ‘ N

— S 0 ¢ W R
Sk = Z Wi Vi—j (3) pd ‘
i=0 -0.2 - 1

-100 0 100 200 300 400 500

w; - weight associated with input sample vi_;
Time [ns]

Fig. 41: Example of asynchronous sampling with two nonzero filter
output samples at to = 30 ns
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Deconvolution method

FE pulse
o Samples
. Deconvolution

1.2 T T
To calculate amplitude of pulse we have to use - 1
some mathematical tools. Let start from front-end 9 /R
response V,(s) in a Laplace domian can be 2 08 s A\
expresed as: g 0.6 ‘ )
© | \
1 1 1 3 0.4 f
Va(s) = TH(s) = —————  (4) g |
s Tsh (S 4L ) g 0.2 ;
Toh c g
o 0 | e e
2 -
H(s) - transform function of the CR-RC shaper. 0.2 P ;

-100 0 100 200 300 400 500
Time [ns]

Fig. 42: Example of asynchronous sampling with two nonzero filter
output samples at to = 30 ns
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Deconvolution method

FE pulse
o Samples
. Deconvolution

Next step is to transform from continuous domain

s to the discrete domain z using the Z transform. 1.2 r T
After that and we achieved discrete transform - 1
function D(z): © /R
(2) S os i
5 _ Tsmp _ 2Tsmp S 1 \
D(z)=2z"—2e 7sh z+e s (5) % 0.6 | w\
. 2 L 3 04 5
Since z° represents the sample which will be N |
received after 2 sampling periods, we can just g 0.2 I .
_ |
multiplied by z=2 delaying all samples by two S 04 o ol e
periods. ‘
-0.2 - . :
CTmp 2T -100 0 100 200 300 400 500
D(z)=1—-2e ™shz "+e 7 z (6) Time [ns]

Fig. 43: Example of asynchronous sampling with two nonzero filter
output samples at to = 30 ns
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Deconvolution method

FE pulse
o Samples
. Deconvolution

Output sample value d;, obtained at time i - Tsmp

can be expressed as: 1.2 - -
_ Tsmp _ 2Tsmp j 1 /W
d=vi—2e Thvi_i+e Thovip o (7) S s [\
5 A
where v; is the shaper output: E 0.6 ?‘ X
. 3 04 |
vi= V(i Tomp) (8) 8 |
g 0.2 f
If we calculate subsequent FIR output samples for 5 0 “ S L
CR-RC asynchronous shaper we can notice that = ‘
-0.2 L :

filter produces only tow non zero samples or one in ’
-100 0 100 200 300 400 500
synchronous case.
Time [ns]

Fig. 44: Example of asynchronous sampling with two nonzero filter
output samples at to = 30 ns
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Deconvolution method

FE pulse
o Samples
. Deconvolution

Ratio between tow non-zero filter samples after 12
reduction is given by: _ ’ ' '
- 1
d. t _ Tsmp [ ",r’ 0
&_ b - (9) S o8 A
dl Tsmp —to 5 E’ \\
£ 0.6 | i
This ratio enable to calculate pulse starting time g 04 | \
(TOA) which is necessary for amplitude N ' |
reconstruction. g 0.2 \ -
f— |
s} e
Z% Tsmp z 0 P ‘
to = — (10) -0.2 - : :
% +e Tsh -100 0 100 200 300 400 500

Time [ns]

Fig. 45: Example of asynchronous sampling with two nonzero filter
output samples at to = 30 ns
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Deconvolution method

FE pulse
o Samples
. Deconvolution

Sum of two non-zero filter samples after reduction 12
can be expressed as: ' ' '
= 1
A _ Tsmp—to—7e _ Tsmp [0 ,‘"’ \
di+dr = —e Tsh [Tsmp —to (1 —e Tsh 5 0.8 \
Tsh ol T\
(11) % 0.6 ?‘ w\
This sum enable to calculate pulse amplitude A 3 04 |
N J
1 T 02
Tsmp—Tsh e Toh £ i
A= (d1 -+ dz) Tsh e Tsh 7 o 0 & ‘ ]\N\* —
Temo 1- 2 (1—e 7o = |
Tsmp -0.2 L 1 .
(12) -100 0 100 200 300 400 500

Time [ns]

Fig. 46: Example of asynchronous sampling with two nonzero filter
output samples at to = 30 ns
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