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Motivation

This study was performed to understand possible errors in the reconstruction of amplitude and time of
arrival using fit to raw data and deconvolution method.
Steps:

▶ Creating generator of virtual pulses which mimic raw data with given amplitude, TOA and level of
noise

▶ Running deconvolution reconstruction on this data

▶ Comparison of methods which are responsible for choosing best set of samples for deconvolution

▶ Running fitting function for generated data
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Two approaches to reconstruct amplitude of signal and time of arrival

Fitting of a theoretical CR-RC pulse

V (t) =

b, for t < t0.

α
(

t−t0
τsh

)
e
− t−t0

τsh + b, for t ≥ t0.

▶ pedestal subtraction
▶ pulse detection
▶ common mode subtraction
▶ signal amplitude and TOA reconstruction by applying

fitting procedure

Deconvolution method

di = vi − 2e
− Tsmp

τsh vi−1 + e
− 2Tsmp

τsh vi−2

t0 =

d2
d1
Tsmp

d2
d1

+ e
− Tsmp

τsh

A = (d1 + d2)

[
τsh
Tsmp

e
Tsmp−τsh

τsh

]
e

−t0
τsh

1− t0
Tsmp

(
1− e

− Tsmp
τsh

)
▶ pedestal subtraction
▶ pulse detection
▶ common mode subtraction
▶ calculating FIR samples (1 or 2 nonzero samples in

ideal case)
▶ pair of FIR samples selection
▶ time of arrival calculation
▶ amplitude of signal calculation (based on selected FIR

samples and calculated TOA)
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Virtual pulse generator
Virtual pulse generator produce ideal CR-RC shaping pulses with additional Gaussian noise n(µ, σ), pulse
start t0, amplitude α and pedestal b

V (t) =

b + n(µ, σ), for t < t0.

α
(

t−t0
τsh

)
e
− t−t0

τsh + b + n(µ, σ), for t ≥ t0.
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Fig. 1: An example of generated pulse and theoretical noiseless pulse
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Animations
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Fit performance - signal amplitude

Fitting function was checked on generated data without digitisation and additional noise σ=0 LSB.

Fig. 2: Map of amplitude differences between set and reconstructed
amplitude (reconstructed - set); fit reconstruction; noise σ=0 LSB

Fig. 3: Histogram of amplitude differences between set
and reconstructed amplitude (reconstructed - set); fit
reconstuction; noise σ=0 LSB
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Fit performance - time of arrival

Fitting function was checked on generated data without digitisation and additional noise σ=0 LSB.

Fig. 4: Map of TOA differences between set and reconstructed
TOA (reconstructed - set); fit reconstruction; noise σ=0 LSB

Fig. 5: Histogram of TOA differences between set and
reconstructed TOA (reconstructed - set); fit
reconstruction; noise σ=0 LSB
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Digitisation error - signal amplitude

Influence of digitisation on amplitude reconstruction, noise σ=0 LSB.

Fig. 6: Map of amplitude differences between set and reconstructed
amplitude (reconstructed - set); fit reconstruction; noise σ=0 LSB

Fig. 7: Histogram of amplitude differences between set
and reconstructed amplitude (reconstructed - set); fit
reconstuction; noise σ=0 LSB
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Digitisation error - signal amplitude
Influence of digitisation on amplitude reconstruction, noise σ=0 LSB.

Fig. 8: Map of amplitude differences between set and reconstructed
amplitude (reconstructed/set)-100%; fit reconstruction; noise σ=0
LSB

Fig. 9: Histogram of amplitude differences between set
and reconstructed amplitude (reconstructed/set)-100%;
fit reconstuction; noise σ=0 LSB
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Digitisation error - time of arrival

Influence of digitisation on time of arrival reconstruction, noise σ=0 LSB.

Fig. 10: Map of TOA differences between set and reconstructed
TOA (reconstructed - set); fit reconstruction; noise σ=0 LSB

Fig. 11: Histogram of TOA differences between set and
reconstructed TOA (reconstructed - set); fit
reconstruction; noise σ=0 LSB
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Noise influence - signal amplitude
To observe influence of noise on reconstruction of signal amplitude additional Gaussian noise were added
to the samples; σ=1.0 LSB.

Fig. 12: Map of amplitude differences between set and
reconstructed amplitude (reconstructed - set); fit reconstruction;
noise σ=1.0 LSB

Fig. 13: Histogram of amplitude differences between set
and reconstructed amplitude (reconstructed - set); fit
reconstruction; noise σ=1.0 LSB
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Noise influence - time of arrival
To observe influence of noise on reconstruction of TOA additional Gaussian noise were added to the
samples; σ=1.0 LSB.

Fig. 14: Map of TOA differences between set and reconstructed
TOA (reconstructed - set); fit reconstruction; noise σ=1.0 LSB

Fig. 15: Histogram of TOA differences between set and
reconstructed TOA (reconstructed - set); fit
reconstruction; noise σ=1.0 LSB
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Noise and digitisation influence - signal amplitude
To observe influence of noise on reconstruction of signal amplitude additional Gaussian noise were added
to the samples and digitisation was performed; σ=1.0 LSB.

Fig. 16: Map of amplitude differences between set and
reconstructed amplitude (reconstructed - set); fit reconstruction;
noise σ=1 LSB

Fig. 17: Histogram of amplitude differences between set
and reconstructed signal amplitude (reconstructed -
set); fit reconstruction; noise σ=1.0 LSB
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Noise and digitisation influence - signal amplitude
To observe influence of noise on reconstruction of signal amplitude additional Gaussian noise were added
to the samples and digitisation was performed; σ=1.0 LSB.

Fig. 18: Map of amplitude differences between set and
reconstructed amplitude (reconstructed/set)-100%; fit
reconstruction; noise σ=1.0 LSB

Fig. 19: Histogram of amplitude differences between set
and reconstructed amplitude (reconstructed/set)-100%;
fit reconstruction; noise σ=1.0 LSB
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Noise and digitisation influence - time of arrival
To observe influence of noise on reconstruction of TOA additional Gaussian noise were added to the
samplesand digitisation was performed; σ=1.0 LSB.

Fig. 20: Map of TOA differences between set and reconstructed
TOA (reconstructed - set); fit reconstruction; noise σ=1.0 LSB

Fig. 21: Histogram of TOA differences between set and
reconstructed TOA (reconstructed - set); fit
reconstruction; noise σ=1.0 LSB
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Which FIR samples should be used for deconvolution?

Different methods of determining the best pair of samples for deconvolution were checked.
First ADC sample above
treshold
σ = 1.089 LSB

Fig. 22: Map of amplitude
differences between set and
reconstructed signal amplitude
(reconstructed - set); fit
reconstruction; noise σ=1.0 LSB

Max sample after FIR appling
σ = 1.021 LSB

Fig. 23: Map of amplitude
differences between set and
reconstructed signal amplitude
(reconstructed - set); fit
reconstruction; noise σ=1.0 LSB

Max ADC sample
σ = 1.019 LSB

Fig. 24: Map of amplitude
differences between set and
reconstructed signal amplitude
(reconstructed - set); fit
reconstruction; noise σ=1.0 LSB
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Which FIR samples should be used for deconvolution?

Different methods of determining the best pair of samples for deconvolution were checked.
First ADC sample above
treshold
σ = 1.089 LSB

Fig. 25: Histogram of amplitude
differences between set and
reconstructed signal amplitude
(reconstructed - set);
deconvolution reconstruction;
noise σ=1.0 LSB

Max sample after FIR appling
σ = 1.021 LSB

Fig. 26: Histogram of amplitude
differences between set and
reconstructed signal amplitude
(reconstructed - set);
deconvolution reconstruction;
noise σ=1.0 LSB

Max ADC sample
σ = 1.019 LSB

Fig. 27: Histogram of amplitude
differences between set and
reconstructed signal amplitude
(reconstructed - set);
deconvolution reconstruction;
noise σ=1.0 LSB
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Deconvolution digitisation influence - time of arrival
digitisation influence on deconvolution time o arrival reconstruction; ; σ=0.0 LSB.

Fig. 28: Map of TOA differences between set and reconstructed
TOA (reconstructed - set); deconvolution reconstruction; noise
σ=0.0 LSB

Fig. 29: Histogram of TOA differences between set and
reconstructed TOA (reconstructed - set); deconvolution
reconstruction; noise σ=0.0 LSB
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Deconvolution digitisation influence - signal amplitude
digitisation influence on deconvolution amplitude reconstruction; σ=0.0 LSB.

Fig. 30: Map of amplitude differences between set and
reconstructed amplitude (reconstructed/set); deconvolution
reconstruction; noise σ=0.0 LSB

Fig. 31: Histogram of amplitude differences between set
and reconstructed amplitude (reconstructed/set);
deconvolution reconstruction; noise σ=0.0 LSB
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Deconvolution digitisation influence - signal amplitude
digitisation influence on deconvolution amplitude reconstruction; ; σ=0.0 LSB.

Fig. 32: Map of amplitude differences between set and
reconstructed amplitude (reconstructed/set)-100%; deconvolution
reconstruction; noise σ=0.0 LSB

Fig. 33: Histogram of amplitude differences between set
and reconstructed amplitude (reconstructed/set)-100%;
deconvolution reconstruction; noise σ=0.0 LSB
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Deconvolution noise and digitisation influence - time of arrival
To observe influence of noise on reconstruction of TOA additional Gaussian noise were added to the
samples and digitisation was performed; σ=1.0 LSB.

Fig. 34: Map of TOA differences between set and reconstructed
TOA (reconstructed - set); deconvolution reconstruction; noise
σ=1.0 LSB

Fig. 35: Histogram of TOA differences between set and
reconstructed TOA (reconstructed - set); deconvolution
reconstruction; noise σ=1.0 LSB

21 / 31



Motivation Simulations Deconvolution recap

Deconvolution noise and digitisation influence - signal amplitude
To observe influence of noise on reconstruction ofsignal amplitude additional Gaussian noise were added
to the samples and digitisation was performed; σ=1.0 LSB.

Fig. 36: Map of amplitude differences between set and
reconstructed amplitude (reconstructed/set); deconvolution
reconstruction; noise σ=1.0 LSB

Fig. 37: Histogram of amplitude differences between set
and reconstructed amplitude (reconstructed/set);
deconvolution reconstruction; noise σ=1.0 LSB
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Deconvolution noise and digitisation influence - signal amplitude
To observe influence of noise on reconstruction ofsignal amplitude additional Gaussian noise were added
to the samples and digitisation was performed; σ=1.0 LSB.

Fig. 38: Map of amplitude differences between set and
reconstructed amplitude (reconstructed/set)-100%; deconvolution
reconstruction; noise σ=1.0 LSB

Fig. 39: Histogram of amplitude differences between set
and reconstructed amplitude (reconstructed/set)-100%;
deconvolution reconstruction; noise σ=1.0 LSB
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Thank you for attention
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Deconvolution method
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Deconvolution method

In our front-end we uses CR-RC shaping, for which
amplitude response over time can be written as
formula below:

V (t) =
qin
Cfeed

t

τsh
e
− t

τsh (1)

If we include time before pulse, non-zero pulse start
time t0, amplitude α and pedestal b, equation 1 is
transformed into:

V (t) =

b, for t < t0.

α
(

t−t0
τsh

)
e
− t−t0

τsh + b, for t ≥ t0.
(2)

Fig. 40: Example of asynchronous sampling with two nonzero filter
output samples at t0 = 30 ns
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Deconvolution method

Our output pulses are a convolution of its impulse
response with the sensor’s current signal (deposited
charge), in order to find the input signal, we can
use a procedure inverse to the convolution called
deconvolution. In our system, this procedure is
performed digitally by a digital filter. Output
sample sk of simplest FIR(Finite Impulse
Response):

sk =
N−1∑
i=0

wivk−i (3)

wi - weight associated with input sample vk−i

Fig. 41: Example of asynchronous sampling with two nonzero filter
output samples at t0 = 30 ns
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Deconvolution method

To calculate amplitude of pulse we have to use
some mathematical tools. Let start from front-end
response Vsh(s) in a Laplace domian can be
expresed as:

Vsh(s) =
1

s
H(s) =

1

τsh

1(
s + 1

τsh

)2 (4)

H(s) - transform function of the CR-RC shaper.

Fig. 42: Example of asynchronous sampling with two nonzero filter
output samples at t0 = 30 ns
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Deconvolution method

Next step is to transform from continuous domain
s to the discrete domain z using the Z transform.
After that and we achieved discrete transform
function D(z):

D(z) = z2 − 2e
− Tsmp

τsh z + e
− 2Tsmp

τsh (5)

Since z2 represents the sample which will be
received after 2 sampling periods, we can just
multiplied by z−2 delaying all samples by two
periods.

D(z) = 1− 2e
− Tsmp

τsh z−1 + e
− 2Tsmp

τsh z−2 (6)

Fig. 43: Example of asynchronous sampling with two nonzero filter
output samples at t0 = 30 ns
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Deconvolution method

Output sample value di , obtained at time i · Tsmp

can be expressed as:

di = vi − 2e
− Tsmp

τsh vi−1 + e
− 2Tsmp

τsh vi−2 (7)

where vi is the shaper output:

vi = V (i · Tsmp) (8)

If we calculate subsequent FIR output samples for
CR-RC asynchronous shaper we can notice that
filter produces only tow non zero samples or one in
synchronous case.

Fig. 44: Example of asynchronous sampling with two nonzero filter
output samples at t0 = 30 ns
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Deconvolution method

Ratio between tow non-zero filter samples after
reduction is given by:

d2
d1

=
t0

Tsmp − t0
e
− Tsmp

τsh (9)

This ratio enable to calculate pulse starting time
(TOA) which is necessary for amplitude
reconstruction.

t0 =

d2
d1
Tsmp

d2
d1

+ e
− Tsmp

τsh

(10)

Fig. 45: Example of asynchronous sampling with two nonzero filter
output samples at t0 = 30 ns
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Deconvolution method

Sum of two non-zero filter samples after reduction
can be expressed as:

d1+d2 =
A

τsh
e
− Tsmp−t0−τsh

τsh

[
Tsmp − t0

(
1− e

− Tsmp
τsh

)]
(11)

This sum enable to calculate pulse amplitude A

A = (d1 + d2)

[
τsh
Tsmp

e
Tsmp−τsh

τsh

]
e

−t0
τsh

1− t0
Tsmp

(
1− e

− Tsmp
τsh

)
(12)

Fig. 46: Example of asynchronous sampling with two nonzero filter
output samples at t0 = 30 ns
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