

TB22 ANALYSIS

Michal Elad 26 / 09 / 24

OVERVIEW

- Telescope resolution
- Hough Transform (HT) uncertainty
- Calorimetry prelim

TELESCOPE RESOLUTION

A second attempt

GAAS HITS OUTSIDE PAD RECAP

Events of single track & single pad hit. Pad-based color assignment.

TELESCOPE RESOLUTION

Idea – use hits on the traces to get the telescope resolution.

- Choose events with (x, y) position far above the assigned pad.
- Plot a histogram of their x value given by the telescope.
- The standard deviation is the telescope resolution (neglecting the trace width).

The result is \sim 50 microns.

х_т [mm]

HT UNCERTAINTY

Update & Summary

HT – FIND LINE EQUATION

STATISTICAL UNCERTAINTY

Get line parameters distribution Fit Gaussian \rightarrow get mpv

Subdivide data to get distribution of mpv \rightarrow std of the mpv distribution is the algorithm's uncertainty

- Generated random points from a uniform distribution on a horizontal line.
- Smeared points with σ values of 10, 20, ..., 100 microns.
- Ran the alignment algorithm on the smeared dataset and got the uncertainty.

• In addition, checked the effect of changing the parameters of the algorithm, and statistics.

Values are nicely distributed around 0

The uncertainty for a given smearing σ slightly varies, but it is always at the level of a few microns and hence negligible.

Data smearing σ [μ m]

Higher statistics give smaller uncertainties, but are still at the order of a few microns

HT UNCERTAINTY - CONCLUSION

- Statistics is the main variable affecting the algorithm's uncertainty
- The algorithm's uncertainty is at the level of a few microns
- The alignment's uncertainty is dominated by the telescope resolution

CALORIMETRY

Preliminary

DEBUG DATA ON

Calorimetry files:

- $\sim 1/_2$ million events
- \sim 300,000 empty events
- \sim 150,000 events with data

NUMBER OF PADS HIT

number of W plates

NUMBER OF PADS HIT

Based on a Molière radius of about 9mm, if the particle hit in the center of a pad, we expect to see about 25 pads hit.

Other hit positions will give a lower number.

Plot to the right shows the number of events with more than 25 pads hit, per layer.

CALICE

number of pads hit - limited

- Events with up to 25 pads
- Full sized plots, layer-by-layer, are available at the end of the presentation

GaAs

number of pads hit - limited

- Events with up to 25 pads
- Full sized plots, layer-by-layer, are available at the end of the presentation

CALICE - number of hits - log scale

GaAs - number of hits - log scale

Pads below the beam center are hit more often than those above

 \rightarrow Traces ?

- 10³

AVERAGE ADC COUNT

number of W plates

CALICE - average ADC count

GaAs - average ADC count

SUMMARY

- Traces-based telescope resolution calculation 50 μm
- Alignment precision is dominated by the telescope resolution
- Calorimetry:
 - Traces seem to cause additional pads hit with lower ADC count.
 - Total ADC count in GaAs is on average higher than CALICE to be further investigated

THANK YOU!

A pixelated flower in reference to the previous slides

BACKUP

TRACES BASED EFFECTS

ALIGNMENT GOAL

Translate global position given by the telescope to a local position on the sensor.

Local coordinate system agreed – units of pad length

• e.g. (7.25, 2.5) is located as such pad (7, 2):

ALIGNMENT METHODS

<u>Max hits in pad</u>

Set a grid and find the position that gives the highest number of hits in the correct pad. Input data – events of a single electron & a single hit.

<u>Hough Transform</u>

Used as a line recognition algorithm to find the edges of the pads.

Input data – single electron events that hit in between pads (to get a good "image" of the edges).

MAX HITS

HOUGH TRANSFORM

- Shape detecting framework
- Used a slight variation of the original

FIND RELEVANT AREA

The data is noisy, and we are only interested in a single line.

We don't want to consider all points, so we first find an estimation for the edge position.

Revisited – seems to miss some fine-tuning.

Image and parameter space

GaAs

GaAs

GaAs

CALICE

