Physics beyond the standard model

Thorsten Kuhl DESY Zeuthen, 26.08.2024

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

DESY.

 Last particles discovered in 1995 (top) & 2012 (Higgs)

http://cds.cern.ch/record/2804061

Standard model very precise over multiple orders of magnitude!

What are the free parameters of the SM?

https://cameo.mfa.org/images/b/ba/2000.979-CR9834-d1.jpg

(summary on the next slide)

What are the free parameters of the SM?

9 fermion masses (m_u , m_d , m_c , m_s , m_b , m_t ; m_e , m_μ , m_τ)

- + 2 Higgs boson parameters: the mass & VEV (m_{H} , v)
- + 3 coupling parameters (g_w , g', g_s)
- + 4 CKM parameters (3 mixing angles + 1 CP violating phase)
- + (1 CP violating phase in QCD (see later))

19 free parameters

Is the SM really so fundamental if there are 19 free parameters?

The Standard Model appears incomplete!

- It cannot explain:
 - Why there is no CP-violation in QCD, not enough CP violation in CKM to explain Matter-Antimatter asymmetry
 - Why the "bare" masses are fine-tuned at sub-permille level
 - Why there are 19 free parameters in the SM
- It will not explain:
 - Neutrino masses
 - Gravity
 - Dark Matter

ttps://images-na.ssl-images-amazon.com/images/S/pv-target-images/a8275e14cf7e23 0ad1c6536d214e372c73c53908b26b7e95a70f68e3470d070._R_TTW_.jpg

Fine-tuning the "bare" Higgs boson mass

- Higgs boson mass-term after symmetry-breaking in the SM: $V(\phi) = \underbrace{\lambda v^2 h(x)^2}_{\text{Higgs mass}} + \underbrace{\lambda v h(x)^3}_{\text{trinlinear}} + \underbrace{\frac{\lambda}{4} h(x)^4}_{\text{trinlinear}}$
- We call ${
 m m_h}$ the "bare" Higgs boson mass ${}_{m_h}=\sqrt{2\lambda}v$
- Don't measure m_h , due to loop corrections! For scalar particles these are quadratic; Measure: $(m_h^{meas})^2 = m_h^2 + \delta m_h^2$ $G_F \Lambda^2$ (c) f_r^2 (c)

• Largest correction from top-quark:

$$\delta M_H^2 \big|_{t-\text{loop}} \approx -\frac{3G_{\text{F}}}{\pi^2 \sqrt{2}} m_t^2 \Lambda^2 \approx -0.075 \,\Lambda^2$$

- SM is a renormalisable, locally (for the scale we test the higgs mass) this is not a problem, but it will diverge from the local scale (O(TeV)) by δM_H
- When the SM should be valid at the Plank Scale (Λ=10¹⁹ GeV) and give a reasonable Higgs mass, then the bare masses of all other SM particles has to be "fine tuned", sound arbitrary ("naturalness problem")
- How could this be fixed? Particles with countering loops! (→ SUSY)

arxiv:1006.2483

The Dark Matter issue – What is Dark Matter?

- It all started off with Orth, Zwicky (1933), Vera Rubin (1970) et al.
- In a gravitational system, an object of mass m bound to an object of mass M rotates at the radius r and velocity v given by:

$$F_{grav} = mMGr^{-2} = F_{centri} = mv^2r^{-1}$$

 $v(r) = \sqrt{\frac{GM(r)}{r}}$

 \rightarrow But this is not the case in galaxy clusters and even galaxies!

doi:10.1086/381970

More hints for Dark Matter – The bullet cluster

- Two clusters of galaxies close together
- Electromagn. visible matter / mass made of gas (red; by x-rays) is colliding/interacting between the two clusters, gets slowed down
- Mass visible by gravitation (blue; by grav. lensing) mostly unaffected by collision
- Observe: red ≠ blue → there must be additional, grav. interacting matter very weakly (or not) interacting!

wikipedia

Evidence for Dark Matter – The CMB

- The very early universe was a plasma

 → photons were "stuck" in interactions of charged particles
- The universe expanded, cooled and charge neutral atoms formed
 → photons were released and could traverse the universe
- This **cosmic microwave background** was redshifted & is visible as constant, low temperature (T = 2.7 K) photon radiation nowadays
- Temperature is not constant, anisotropies at 10⁻⁵ scale

https://www.britannica.com/topic/Planck

From the CMB to Dark Matter

- Power spectrum of CMB anisotropies is related to the composition of the universe (ACDM model aka the Standard Model of cosmology)!
- Can determine fraction of baryonic matter, Dark Matter, Dark Energy high of first peak, 2nd/3rd peak shifts
- The result:
 - Baryonic matter: 4.9 %
 - Dark Matter: 26.5 %
 - Dark Energy: 68.6 %
- More backup / evidence for Dark Matter:
 - Big bang nucleosynthesis
 - Gravitational lensing
 - Structure simulations of the universe

So what's it all about with Dark Matter?

- Evidence from multiple sources
 - Rotation curves
 - Colliding galaxy cluster
 - CMB

arxiv:1001.4635 arxiv:1006.2483

- So far not explained by astro-physical objects nor Standard Model particles
 - The laws of gravity could be incorrect
 → present approaches not convincing
- It seems most logical to conclude that Dark Matter is made of so-far undiscovered particles!
 - Many convincing candidates are around
 - Fix many other SM problems, too
 → see later

Why is there no CP-violating phase in QCD?

• QCD Lagrangian in its most general form

$$\mathcal{L}_{\text{QCD}} = \bar{\psi}_i (\underbrace{i\gamma^{\mu}(D_{\mu})_{ij}}_{\text{quark dynamics}} - \underbrace{m\delta_{ij}}_{\text{quark mass}})\psi_j - \underbrace{\frac{1}{4}G^a_{\mu\nu}G^a_a}_{\text{gluon dynamics}} - \underbrace{\bar{\Theta}\frac{\alpha_s}{8\pi}G^{\mu\nu a}\tilde{G}^a_{\mu\nu}}_{\text{CP-violating term}}$$

- A none zero CP violating phase would explain the matter anti-matter asymetry in the universe
- CP-violating term gives rise to neutron electric dipole moment $d_n = (2.4 \times 10^{-16} \text{ e cm}) \Theta$
- Can measure neutron electric dipole moment (Larmor precession)! $|d_n^{meas}| < 1.8 \ 10^{-26} \ e \ cm \ \rightarrow |\Theta| \le 10^{-10}$
- CP-violation is basically zero in QCD! "Strong CP problem"
- How do we get CP violation into the early universe?
- Allow $\Theta > 0$ but add a term which cancel the CP violation today \rightarrow this is done in the Peccei-Quinn theory \rightarrow leads to particles called "Axions"
- Adding terms to the Lagrangian is how you extend the SM

Peccei-Quinn theory full details

Three ingredients: ٠

arxiv:1407.0546 arxiv:1712.03018 rpp2022-rev-axions wikipedia:Peccei-Quinn theory

- New scalar field φ , coupling to down-type quarks, modify Higgs to couple Ο to up-type quarks only
- Introduce new U(1) symmetry \rightarrow leads to a new charge ξ , ϕ carries this ξ Ο charge (and hence some quarks, too)
- ϕ has the potential Ο
- $V(\varphi) = \lambda (|\varphi|^2 f_a^2/2)^2 \Rightarrow \langle \varphi \rangle = (f_a/\sqrt{2})e^{i\phi/f_a}$ After spontaneous symmetry breaking, get new term

$$\mathcal{L}_{ ext{tot}} = \mathcal{L}_{ ext{SM,axions}} + heta rac{g_s^2}{32\pi^2} ilde{G}_b^{\mu
u} G_{b\mu
u} + \xi rac{a}{f_a} rac{g_s^2}{32\pi^2} ilde{G}_b^{\mu
u} G_{b\mu
u}$$
new term

Non zero & complex phase! Infinitely many vacuum states! \rightarrow spontaneous symmetry breaking \rightarrow get new particle with

field a, the axion! This new term leads to an additional potential (via "non-perturbative topological fluctuations of the gluon fields") \rightarrow it's minimum is given by $\Theta = \xi a / f_a \rightarrow i.e.$ CP-violating term disappears!

• Mass:
$$m_a = 5.691(51) \left(\frac{10^9 \text{ GeV}}{f_a}\right) \text{meV}$$

Page 16

Axions and ALPs

- Axion arises from spontaneous symmetry breaking of a U(1) symmetry
- Introduces counter term in QCD which cancels the CP-violating phase
- Typically interact via photons $a \rightarrow \gamma\gamma$
- Mass m_a tied to "decay constant" f_a : $m_a = m_a(f_a)$
- Most natural: $f_a = v_{EW} = 246 \text{ GeV}$ $\rightarrow m_a = 131 \text{ keV} \rightarrow \text{ excluded}$
- Need more complex theories, e.g. KSVZ, DFSZ
- Or use generalisation of Axions: Axion like particles (ALPs): $\rightarrow m_a \neq m_a(f_a)$
 - $\rightarrow\,$ arise e.g. from string theories
- Axions are a good dark matter candidate DESY.

https://ned.ipac.caltech.edu/level5/March06/Overduin/Figures/figure24.jpg

2HDM (+a) model

- In the DFSZ model: extend sector by second Higgs doublet
- 2HDM models general class of models
- Second Higgs doublet leads to many new scalar / pseudoscalar particles
 → many new interactions possible
- New bosons often assumed to be heavy
- Very popular as basis as relatively "easy" and flexible, e.g.
 - 2HDM + axion (DFSZ)
 - 2HDM + pseudoscalar + DM (2HDM + a)
- Comes with new parameters (masses, mixing angles, ...)

WIMPs

- 2HDM+a DM is "WIMP" \rightarrow Different DM production than w/ Axions
- Assumptions:
 - DM is stable & made of particles Ο
 - DM is produced from annihilation of SM / DM particles Ο
 - DM is destroyed by annihilation Ο

The WIMP "miracle"

 DM density today depends on the annihilation rate

> $a_{X} = \langle \sigma_{XX} \rangle > n_{X}$ (σ_{xx} = self-interac. x-sec, v = velocity, n_{x} = DM particle density)

- Can calculate the DM density tod compare it to measured density $\rightarrow \sigma_{xx} \approx 1 \text{ pb}$
- For a particle with weak selfcoupling (as weak as the electrov force) & mass of O(100 GeV) $\rightarrow \sigma_{xx} \approx 1 \text{ pb!}$
- Weak interacting massive parti (WIMPs) intrinsically give the correct DM density!!!!
- This is referred to as WIMP "miracle"

doi:10.1017/CBO9780511770739

rpp2022-rev-susy-1-theory

Page 21

MSSM particle content Table reproduced from M. Thomson, Modern Particle Physics, Cambridge 2013

Supersymmetry (SUSY)

- Supersymmetry = to each SM particle assign a supersymmetric partner
 - Q |fermion> = |boson> \rightarrow new name: s + original name Ο
 - Q |boson> = |fermion> \rightarrow new name: remove "on", add "ino" Ο
- With this symmetry, can design many different theories, MSSM one of simplest ٠

Particle		Spin	Super-partic		article	Spin
Quark	q	1/2		Squark	$\widetilde{q}_{L},\widetilde{q}_{R}$	0
Lepton	f	1/2		Slepton	$\widetilde{\ell}_{L}^{\pm}, \widetilde{\ell}_{R}^{\pm}$	0
Neutrino	ν	1/2		Sneutrino	$\widetilde{v}_{L}, \widetilde{v_{R}}$ (?)	0
Gluon	g	1		Gluino	ĝ	1⁄2
Photon	Y	1	γ Ì	Neutralino (mass eigenstate)	$\mathbf{x} \circ \mathbf{x} \circ$	
Z boson	Z	1	Ĩ		$\chi_1^{\prime}, \chi_2^{\prime},$	1⁄2
Higgs	н	0	$\widetilde{H}_{1}^{0}, \widetilde{H}_{2}^{0}$		$\chi_3^{\circ}, \chi_4^{\circ}$	
			Ĥ±	Chargino (mass eigenstate)	$\chi_1^{\pm}, \chi_2^{\pm}$	1/2
W-boson	W±	1	Ŵ±			

SUSY & the hierarchy problem

- Recall the hierarchy problem: bare Higgs mass ≠ measured Higgs mass
 → high degree of fine-tuning
- SUSY can (in principle) "naturally" solve the hierarchy problem
 - Superpartners add loop corrections which cancel the SM loop correction quadratic terms (but logarithmic terms remain)
 - Often requires masses of sparticles to be in O(GeV) / O(TeV)
 → not observed so far, but could be at higher TeV scale

Breaking supersymmetry

- If the supersymmetry is exact: $m_{\text{sparticle}} = m_{\text{particle}} \rightarrow \text{ not observed!}$
- Supersymmetry **must** be broken!
- Can assume it is spontaneously broken \rightarrow additional goldstone fermion
 - If breaking is local (not global) \rightarrow theory incorporates gravity!
- SUSY models come with many new particles
 → many new Feynman diagrams in principle possible
 - \rightarrow potentially new final states to explore

arxiv:hep-ph/9709356

ATLAS-SUSY-2020-27

ATLAS-SUSY-2018-08

rpp2022-rev-susy-1-theory

R-parity and Dark Matter

- SM is B-L invariant (B = baryon number, L = lepton number)

 → in general SUSY breaks this → proton becomes unstable
 but it can explain Matter-Antimatter Asymmetry
- If requiring B-L in SUSY, R=(-1)^{3(B-L)+2S} (S=spin) is conserved (particles: R = +1, sparticles: R = -1)
- If assume that R-parity is conserved: sparticles always produced in pairs
- Further consequence: there exists a lightest supersymmetric particle (LSP), which must be neutral and weakly interacting (i.e. a WIMP)
 → DM candidate!!

(but then SUSY cannot explain Matter-Antimatter asymmetry)

DESY.

rpp2022-rev-susy-1-theory

New issues with SUSY

- SUSY can solve many of the SM "problems"
 - DM candidate if R-parity is conserved a.
 - matter/anti-matter asymmetry if R-partity b. is violated, but then you have flavor changing neutral currents as well, proton decay
 - Hierarchy problem C.
 - d. Unify the three forces at higher energy (see next pages)
 - e. Add gravity (some SUSY models)
- Minimal broken model: MSSM

DESY.

- \rightarrow 124 free parameters (SUSY is broken)
- → Very many SUSY models around

(Anti-) Screening

- Recall running couplings:
 - QED: screening of electric charges by vacuum fluctuations make visible charge decrease as a function of distance
 - QCD: have virtual quark (screening) & gluon pairs (ant-screening): effective colour charge increases as a function of distance

Running coupling & GUTs

- Leads to a concept called running coupling: the coupling constant is a function of energy
- QED: coupling constant diverges as energy $\rightarrow 0$
- QCD/Weak theory: coupling constant diverges as energy $\rightarrow \infty$
- Coupling constants almost equal at 10¹⁵ GeV → are they part of one unified theory?
- SM: U(1) x SU(2) x SU(3) EM Weak Strong
- U(1) x SU(2) x SU(3) \subset SU(5), SO(10) \rightarrow one group to generate all interactions?
- "Grand unified theories"

DESY.

How the couplings meet in GUTs

- Many theories contain grand unification:
 - SUSY
 - Extra dimension theories
- GUTs predict additional particles \rightarrow make proton unstable \rightarrow test GUTs

Kaluza-Klein extra dimension theories

- rpp2022-rev-extra -dimensions wikipedia:Kaluza-Klein_theory
- Add additional spatial dimensions \rightarrow allows to combine gravity with SM
- Kaluza + Klein, 1920': attempt to unify gravity with electromagnetism
 - 5-dimensional base space with 1 compactified dimension (imagine a cylinder of radius R)
 - A complex scalar field theory on that 5D space results in a 4-dimensional scalar field theory + an infinite number of massive scalar fields
 - E.g. (4+1)D GR becomes 4D GR + EM + 1 scalar field (not resembling nature)

ADD extra dimension models

- rpp2022-rev-extra-dimensions arxiv:hep-ph/9803315 chill_warwick_lhc_lecture_5
- ADD (Arkani-Hamed, Dimopoulos, Dvali) theory builds on KK approach:
 - SM is only realised in 3+1 spacetime, a "brane"
 - Gravity propagates through δ other compact dimensions of size R, thereby being diluted at length scales >> R
 - Gravity is stronger at length scales < R, but weaker > R
 - ADD theory introduces a spin-2 graviton & graviscalars (not relevant)

 - Experiments which test gravitation on very small scale exist (CHORUS)

Randall-Sundrum model

- Add one (compact) dimension to spacetime
- The SM fields do not propagate to this extra dimension and are confined to a "brane" on one end of the dimension
- The graviton can propagate through the extra dimension
- It's probability density function exponentially decreases as a function of the extra dimension, minimal at SM brane, maximal on the other side
 → explains why impact of gravity is so small
- Solves hierarchy problem

Effective Field Theories

- All models mentioned so far add quite specific terms to the Lagrangian
- What if the BSM physics is actually quite different from the discussed? What if we cannot produce the particles as they are too heavy?
- Effective Field Theories assume: new physics is at higher energy scales, e.g. the new particles have much larger masses then the accelerator
 - These new particles are not directly produced, but exist in propagator, lead to interactions \rightarrow analogous to Fermi-beta-decay theory
- Use a effective very general Lagrangian with all possible forms of interactions and fit data to it
- EFT does not explicitly solve SM problems, but give hints what the new physics contains

Excerpt of the Warsaw basis

 Warsaw basis = listing of dimension six operators (as dim=5 operators produce neutrino masses, dim=6 operators are the lowest dim operators with potentially new physics)

Summary

- The Standard Model of particle physics appears to be incomplete
 - Dark Matter/Energy, hierarchy problem, strong-CP problem, SM parameters, group structure, unification, gravity, matter-antimatter asymmetry, ...
- Large list of models extending the SM
- Discussion of experimental tests of these models next lecture ;)

