Introduction to Accelerator Physics

Part 3

Pedro Castro / Accelerator Physics Group (MPY) Zeuthen, 9th August 2024

Accelerator lectures framework in Summer Student Prog.

<u>12th Aug.</u>: Accelerator R&D at DESY, Anne Oppelt

<u>Today:</u> focus on synchrotrons and synchrotron technology

synchrotrons: machines for discoveries

Facility	Particle(s) discovered	Year of discovery	Nobel Price
SPEAR	charm quark	1974	1976
SPEAR	tau lepton	1975	1995
PETRA	gluon	1979	
S $ar{p}$ pS	W^{\pm} , Z bosons	1983	1984
SLC, LEP	$N_{\rm v}=3$		
Tevatron	top quark	1995	
LHC	Higgs	2012	2013

Main HEP discoveries at synchrotrons in the last 50 years

Main HEP discoveries at synchrotrons in the last 50 years

Scope of this lecture:

- 1. Synchrotrons: key components and their <u>challenges to reach high energies</u>:
 - Dipole magnetic fields
 - Superconducting dipoles
 - Quadrupole magnets to focus beams
- 2. Synchrotrons and Linear Accelerators:
 - Acceleration using radio-frequency electomagnetic fields

Motion in electric and magnetic fields

Equation of motion under Lorentz Force

Motion in magnetic fields

if the electric field is zero ($\vec{E} = 0$), then

Magnetic fields do not change the particles energy

Motion in magnetic fields

if the electric field is zero (E=0), then

$$\vec{F} = \frac{d\vec{p}}{dt} = q \cdot \vec{v} \times \vec{B}$$

$$E^2 = \vec{p}^2 c^2 + E_0^2 \qquad \text{energy-momentum relation in special relativity}}$$

$$\text{total energy} \qquad \qquad \text{energy at rest}$$

$$\text{momentum}$$

Motion in magnetic fields

if the electric field is zero (E=0), then

$$\vec{F} = \frac{d\vec{p}}{dt} = q \cdot \vec{v} \times \vec{B}$$

$$E^{2} = \vec{p}^{2}c^{2} + E_{0}^{2}$$

$$E\frac{dE}{dt} = c^{2}\vec{p}\frac{d\vec{p}}{dt} = c^{2}q\vec{p}(\vec{v}\times\vec{B}) = c^{2}q|\vec{p}| |\vec{v}\times\vec{B}| \cos \phi = 0$$
since $\vec{v}\times\vec{B} \perp \vec{v} \Rightarrow \phi = 90^{\circ}$

Magnetic fields do not change the particles energy, only electric fields do !

acceleration with DC electric fields

In general:

- Static magnetic fields \rightarrow to guide (bend + focus) particle beams
- Static electric fields \rightarrow accelerate particle beams (low energy)
- Radio-frequency EM fields \rightarrow accelerate particle beams (high E)

acceleration with RF (radio-frequency) electric fields

RF cavity basics: a cylindrical cavity

RF cavity basics: a cylindrical cavity

LC circuit (or resonant circuit) analogy:

RF cavity basics: a cylindrical cavity

LC circuit (or resonant circuit) analogy:

Equations for the electric and magnetic fields in a pill box cavity

set of solutions with $B_z = 0$ (that is, \vec{B} is transverse) $E_{z} = E_{0}J_{m}\left(x_{mn}\frac{r}{R}\right)\cos m\theta \cos\left(\frac{p\pi}{l}z\right)e^{j\omega t}$ $E_{r} = -\frac{p\pi}{l}\frac{R}{x_{mn}}E_{0}J'_{m}\left(x_{mn}\frac{r}{R}\right)\cos m\theta \sin\left(\frac{p\pi}{l}z\right)e^{j\omega t}$ $E_{\theta} = -\frac{p\pi}{l}\frac{mR^{2}}{x_{mn}^{2}r}E_{0}J_{m}\left(x_{mn}\frac{r}{R}\right)\sin m\theta \sin\left(\frac{p\pi}{l}z\right)e^{j\omega t}$ $B_z = 0$ $B_{r} = -j\omega \frac{mR^{2}}{x_{mn}^{2} rc^{2}} E_{0}J_{m}\left(x_{mn}\frac{r}{R}\right) \sin m\theta \cos\left(\frac{p\pi}{l}z\right)e^{j\omega t}$ $B_{\theta} = -j\omega \frac{R}{x_{mn}c^{2}} E_{0}J'_{m}\left(x_{mn}\frac{r}{R}\right) \cos m\theta \cos\left(\frac{p\pi}{l}z\right)e^{j\omega t}$ indices: m = 0,1,2,...: number of full period variations in θ of the fields n = 1,2,...: number of zeros of the axial field component in \vec{r}

p = 0,1,2,...: number of half period variations in z of the fields

 J_m : Bessel's functions J'_m : derivative of the Bessel's

$$x_{mn}$$
: n-th root of J_m (that is, $J_m(x_{mn}) = 0$)

а

ngular frequency :
$$\omega = c \sqrt{\left(\frac{x_{mn}}{R}\right)^2 + \left(\frac{p\pi}{l}\right)^2}$$

DESY.

Page 20

set of solutions with
$$B_z = 0$$
 (that is, \vec{B} is transverse)

$$\begin{cases}
E_z = E_0 J_m \left(x_{mn} \frac{r}{R} \right) \cos m\theta \cos \left(\frac{p\pi}{l} z \right) e^{j\omega t} \\
E_r = -\frac{p\pi}{l} \frac{R}{x_{mn}} E_0 J'_m \left(x_{mn} \frac{r}{R} \right) \cos m\theta \sin \left(\frac{p\pi}{l} z \right) e^{j\omega t} \\
E_\theta = -\frac{p\pi}{l} \frac{mR^2}{x_{mn}^2 r} E_0 J_m \left(x_{mn} \frac{r}{R} \right) \sin m\theta \sin \left(\frac{p\pi}{l} z \right) e^{j\omega t} \\
B_z = 0 \\
B_r = -j\omega \frac{mR^2}{x_{mn}^2 rc^2} E_0 J_m \left(x_{mn} \frac{r}{R} \right) \sin m\theta \cos \left(\frac{p\pi}{l} z \right) e^{j\omega t} \\
B_\theta = -j\omega \frac{R}{x_{mn}c^2} E_0 J'_m \left(x_{mn} \frac{r}{R} \right) \cos m\theta \cos \left(\frac{p\pi}{l} z \right) e^{j\omega t} \\
\text{indices:}
\end{cases}$$

m = 0, 1, 2, ...: number of full period variations in θ of the fields n = 1,2,...: number of zeros of the axial field component in \vec{r} p = 0,1,2,...: number of half period variations in z of the fields

 x_{mn} : n-th root of J_m (that is, $J_m(x_{mn}) = 0$) J_m : Bessel's functions J'_m : derivative of the Bessel's functions angular frequency : $\omega = c \left| \left(\frac{x_{mn}}{R} \right)^2 + \left(\frac{p\pi}{I} \right)^2 \right|$ DESY.

Page 21

set of solutions with $B_z = 0$ (that is, \vec{B} is transverse) $E_{z} = E_{0}J_{m}\left(x_{mn}\frac{r}{P}\right)\cos m\theta \cos\left(\frac{p\pi}{I}z\right)e^{j\omega t}$ $E_r = -\frac{p\pi}{l} \frac{R}{x_{mn}} E_0 \underline{J'_m} \left(x_{mn} \frac{r}{R} \right) \cos m\theta \sin \left(\frac{p\pi}{l} z \right) e^{j\omega t}$ $E_{\theta} = -\frac{p\pi}{l} \frac{mR^2}{x_{mn}^2 r} E_0 J_m \left(x_{mn} \frac{r}{R} \right) \sin m\theta \sin \left(\frac{p\pi}{l} z \right) e^{j\omega t}$ $B_{\pi} = 0$ $B_r = -j\omega \frac{mR^2}{x_{mn}^2 rc^2} E_0 J_m \left(x_{mn} \frac{r}{R} \right) \sin m\theta \cos \left(\frac{p\pi}{l} z \right) e^{j\omega t}$ $\int B_{\theta} = -j\omega \frac{R}{x_{mn}c^2} E_0 J'_m \left(x_{mn} \frac{r}{R} \right) \cos m\theta \cos \left(\frac{p\pi}{I} z \right) e^{j\omega t}$ indices:

m = 0,1,2,...: number of full period variations in θ of the fields n = 1,2,...: number of zeros of the axial field component in \vec{r} p = 0,1,2,...: number of half period variations in z of the fields

 J_m : Bessel's functions

 x_{mn} : n-th root of J_m (that is, $J_m(x_{mn}) = 0$)

$$J'_m$$
: derivative of the Bessel's functions
angular frequency: $\omega = c \sqrt{\left(\frac{x_{mn}}{R}\right)^2 + \left(\frac{p\pi}{l}\right)^2}$

DESY.

 J_m : Bessel's functions

set of solutions with
$$B_z = 0$$
 (that is, \vec{B} is transverse)
 $E_z = E_0 J_m \left(\frac{x_{mn}}{R} \frac{r}{R} \right) \cos m\theta \cos \left(\frac{p\pi}{l} z \right) e^{j\omega t}$
 $E_r = -\frac{p\pi}{l} \frac{R}{x_{mn}} E_0 J'_m \left(\frac{x_{mn}}{R} \frac{r}{R} \right) \cos m\theta \sin \left(\frac{p\pi}{l} z \right) e^{j\omega t}$
 $E_\theta = -\frac{p\pi}{l} \frac{mR^2}{x_{mn}^2 r} E_0 J_m \left(\frac{x_{mn}}{R} \frac{r}{R} \right) \sin m\theta \sin \left(\frac{p\pi}{l} z \right) e^{j\omega t}$
 $B_z = 0$
 $B_r = -j\omega \frac{mR^2}{x_{mn}^2 rc^2} E_0 J_m \left(\frac{x_{mn}}{R} \frac{r}{R} \right) \sin m\theta \cos \left(\frac{p\pi}{l} z \right) e^{j\omega t}$
 $E_\theta = -j\omega \frac{R}{x_{mn}^2 rc^2} E_0 J_m \left(\frac{x_{mn}}{R} \frac{r}{R} \right) \cos m\theta \cos \left(\frac{p\pi}{l} z \right) e^{j\omega t}$
hdices:
 $= 0, 1, 2, ...:$ number of full period variations in θ of the fields

n = 1,2,...: number of zeros of the axial field component in \vec{r}

p = 0,1,2,...: number of half period variations in z of the fields

 $J_{m} : \text{Bessel's functions} \qquad x_{mn} : \text{n-th root of } J_{m} \text{ (that is, } J_{m}(x_{mn}) = 0)$ $J'_{m} : \text{derivative of the Bessel's functions} \qquad \text{angular frequency} : \omega = c \sqrt{\left(\frac{x_{mn}}{R}\right)^{2} + \left(\frac{p\pi}{l}\right)^{2}}$ DESY.
Page 24

set of solutions with $B_z = 0$ (that is, \vec{B} is transverse) $E_{z} = E_{0}J_{m}\left(x_{mn}\frac{r}{P}\right)\cos m\theta \cos\left(\frac{p\pi}{I}z\right)e^{j\omega t}$ $E_r = -\frac{p\pi}{l} \frac{R}{x_{mn}} E_0 J'_m \left(x_{mn} \frac{r}{R} \right) \cos m\theta \sin \left(\frac{p\pi}{l} z \right) e^{j\omega t}$ $E_{\theta} = -\frac{p\pi}{l} \frac{mR^2}{x_{mn}^2 r} E_0 J_m \left(x_{mn} \frac{r}{R} \right) \sin m\theta \sin \left(\frac{p\pi}{l} z \right) e^{j\omega t}$ $B_{7} = 0$ $B_r = -j\omega \frac{mR^2}{x_{mn}^2 rc^2} E_0 J_m \left(x_{mn} \frac{r}{R} \right) \sin m\theta \cos \left(\frac{p\pi}{l} z \right) e^{j\omega t}$ $\int B_{\theta} = -j\omega \frac{R}{x_{mn}c^2} E_0 J'_m \left(x_{mn} \frac{r}{R} \right) \cos m\theta \cos \left(\frac{p\pi}{I} z \right) e^{j\omega t}$ indices: m = 0,1,2,...: number of full period variations in θ of the fields n = 1,2,...: number of zeros of the axial field component in \vec{r} p = 0,1,2,...: number of half period variations in z of the fields

 J_m : Bessel's functions

$$x_{mn}$$
: n-th root of J_m (that is, $J_m(x_{mn}) = 0$)

$$J'_m$$
 : derivative of the Bessel's functions

angular frequency :
$$\omega = c \sqrt{\left(\frac{x_{mn}}{R}\right)^2 + \left(\frac{p\pi}{l}\right)^2}$$

DESY.

- m = 0 : rotation symmetry of the fields n = 1 : no zeros of the axial field component in \vec{r} p = 0 : no variation in z of the fields
- J_m : Bessel's functions
- J'_m : derivative of the Bessel's functions

angular frequency :
$$\omega = c \frac{x_{01}}{R}$$
 $x_{01} = 2.405$

- m = 0 : rotation symmetry of the fields n = 1 : no zeros of the axial field component in \vec{r} p = 0 : no variation in z of the fields
- J_m : Bessel's functions

 J'_m : derivative of the Bessel's functions

angular frequency :
$$\omega = c \frac{x_{01}}{R}$$
 $x_{01} = 2.405$

Pill box cavity: 3D visualisation of E and B

Equations for the electric and magnetic fields in a pill box cavity

Examples of pill box cavities

DESY cavity (pill box)

ADONE cavity 51 MHz (pill box) Frascati lab, Italy

ADONE cavity 51 MHz (pill box) **Examples of pill box cavities** Frascati lab, Italy ADONE in 1963, Laboratori Nazionali di Frascati, Italy Page 31

Superconducting cavity used at DESY

Superconducting cavity used in FLASH (0.3 km) and in XFEL (3 km)

	Free-electron LASer in Hamburg	0.3 km	DESY	2004-	?	e-	1.2 GeV
European <u>X</u> -ray <u>F</u> ree- <u>E</u> lectron <u>L</u> aser		3 km	DESY	2016-	?	e-	17.5 GeV
	International Linear Collider	30 km	?	?		e-/e+	2x250 GeV

Superconducting cavity used at DESY

material: pure Niobium

operating temperature: 2 K

accelerating field gradient: up to 35 MV/m

Cavities inside a cryostat

Cavities inside a cryostat

Cavities inside an accelerator module (cryostat)

module installation in FLASH (2004)

<u>Free-electron LAS</u>er in <u>Hamburg</u> (FLASH)

<u>Free-electron LAS</u>er in <u>Hamburg</u> (FLASH)

100 accelerator modules (cryostats) in XFEL

Superconducting cavities at HERA

16 cavities 500 MHz

Superconducting Particle Accelerator

From 1992 to 2007, eight of these superconducting accelerator components were used in the 6.3-kilometre long storage ring HERA to accelerate electrons and their antiparticles, positrons.

Two four-cell cavities are arranged in one thermal vessel (cryostat). The cavities are made of the metal niobium which becomes superconducting at a temperature of minus 269 degrees Celsius. At this temperature, particles are accelerated almost without electric resistance and thus very efficiently with a very high electric alternating voltage which is injected in the middle between the cavities. During HERA operation, this cavity reached an accelerating gradient of 5 million volts per metre.

Superconducting cavities at LEP

272 cavities 352 MHz

Superconducting cavities at LHC

16 cavities 400 MHz

Other accelerators using superconducting cavities

- 5 de-commissioned
- 11 in operation
- 4 in construction
- 10 in design phase

Total = 30

full list: <u>http://tesla-new.desy.de/srf_accelerators</u>

Superconducting cavity used in FLASH and in XFEL

Superconducting cavity used in FLASH (0.3 km) and in XFEL (3 km)

Accelerating field map

Is there a net acceleration?

Simulation of the fundamental mode: electric field lines

Is there a net acceleration? timing is the key

Is there a net acceleration? timing is the key

for protrons, $\beta < 1$

example: ESS (European Spallation Source), Lund, Sweden

Superconducting cavity used at DESY

Frequently Asked Questions

- 1) Why this shape?
- 2)

3)

4)

Multipacting mitigation in superconducting cavities

Page 65

1) Why this shape? to reduce/avoid multipacting

2) How to feed \vec{E} in?

3)

4)

Superconducting cavity used in FLASH and in XFEL

Fundamental mode coupler (input coupler)

- 1) Why this shape? to reduce/avoid multipacting
- 2) How to feed \vec{E} in? with input couplers
- 3) How to measure \vec{E} ?

4)

Superconducting cavity used in FLASH and in XFEL

1) Why this shape? to reduce/avoid multipacting

2) How to feed \vec{E} in? with input couplers

3) How to measure \vec{E} ? with pick up antennas

4) What are HOM couplers for?

1)	Why this shape?		to reduce/avoid multipacting
2)	How to feed \vec{E} in?		with input couplers
3)	How to measure $ec{E}$?	with pick up antennas

4) What are HOM couplers for? to reduce HOM (wakefields)

Summing-up of this part

Particle acceleration using radio-frequency fields:

MEDIA DATABASE. "Electron acceleration – a virtual simulation"

DESY→Press→Media database→European XFEL (with filter: media type=movies)

https://media.desy.de/DESYmediabank/?l=en#l=en&cid=3980&cname=European%20XFEL&f=2165&s=&p=&r=

YouTube: <u>https://www.youtube.com/watch?v=FJO_DmM4q7M</u> search text: electron acceleration

Contact

DESY. Deutsches Elektronen-Synchrotron Pedro Castro MPY pedro.castro@desy.de

www.desy.de