Physics beyond the standard model II

Thorsten Kuhl DESY Zeuthen, 27.08.2024

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

DESY.

Last time...

http://cds.cern.ch/record/2804061

The Standard model is very precise, but...

Last time (2)...

 ...there are a bunch of things it cannot explain: 9 fermion masses (m_u , m_d , m_c , m_s , m_b , m_t ; m_e , m_μ , m_η , m_τ)

- 2 Higgs boson parameters: the mass & VEV (m_H , v)
- + 3 coupling parameters (g_w , g', g_s)
- + 4 CKM parameters (3 mixing angles + 1 CP violating phase)
- + 1 CP violating phase in QCD (see later)

19 free parameters

+

$$\delta M_H^2 = \frac{G_{\rm F} \Lambda^2}{4\pi^2 \sqrt{2}} (6M_W^2 + 3M_Z^2 + M_H^2 - 12m_t^2)$$

$$\delta M_H^2 \big|_{t-\text{loop}} \approx -\frac{3G_{\text{F}}}{\pi^2 \sqrt{2}} m_t^2 \Lambda^2 \approx -0.075 \,\Lambda^2$$

"bare mass" tuned very finely, $O(10^{-4})$ - $O(10^{-34})$ GeV!

Last time (3)...

- Discussed multiple SM extension:
 - Axions + ALPs 0
 - 2HDM(+a)0
 - SUSY 0
 - **GUTs** 0
 - Extra dimensions Ο

Big Ideas SUSY Compositeness. Extra dimensions Extended **Higgs Sector** Top Partner W'/Z' Minimal Dark Matter Hidden Sector

Multiverse

???

 α_1 a2 α_3 SOFTSUSY 3.6.2 10 15 5 log₁₀(Q/GeV) IR Brane (has SM) graviton warp factor

z=R

DESY.

Today:

• Will discuss experiments searching for physics beyond the Standard Model

The LHC

→ circumference 27 km

→ proton-proton collisions with a CME of $\sqrt{s} = 13$ TeV

→ interacting particles are quarks, so their CME often smaller

 \rightarrow detectors surround points of collision

https://previews.123rf.com/images/denisnata/denisn ata1003/denisnata100300048/6555910-black-spiral-t elephone-cable-isolated-on-white-background.jpg

Experiments at the LHC

https://www.weltmaschine.de/sites/sites_custom/site_weltmaschine/content/e2 8861/e36564/e36588/e36608/0511013_01-A4-at-144-dpi.jpg https://cms.cern/sites/default/files/field/image/cds-record-1275108-hoch-2007 1215_721-nice.jpg

How to search for BSM physics at colliders

- BSM physics must be rare and/or involve heavy particles (else discovered)
- Two search principles:
 - OBSM physics slightly modifies masses, couplings, etc.
 → investigate these effects in SM precision measurements
 - BSM physics particles produced in proton collisions
 - \rightarrow search for the particles / reconstruct their decays, etc.
 - $\rightarrow\,$ ideally investigate signatures that are rare in the SM

Metrics to keep in mind

- BSM physics must be rare and/or involve heavy particles (else discovered)
- Cross-section must not be too low, else will not be able to discover anything
 - \rightarrow important model metric
- Too investigate very rare signatures need many collision events
- The mass of the particles must not be heavier than \sqrt{s} , else not produced
- Can only detect particles produced in area of detector (detector not infinite) and if detector sufficiently efficient

 \rightarrow important collider metrics: $\sqrt{s},$ luminosity, detector efficiency

$$N_{obs} = \int \mathscr{L}(t) \sigma \varepsilon A dt$$

The ATLAS detector

How do we measure particles with the ATLAS detector?

https://cameo.mfa.org/images/b/ba/2000.979-CR9834-d1.jpg

(summary on the next slide)

Particle reconstruction: ATLAS detector

Q ---- had. 1 had. 2 had. 3 ... had. n

- Multi-layer detector, measure particles via their interaction with the detector
- Inner-most detector: measure tracks of charged particles (electron, muon, charged hadron)
- ECAL / HCAL: measure energy of EM-interacting / hadronically interacting particle

 \rightarrow concept: make particles lose all their energy and measure the loss

- Muon chambers for high precision muon momentum measurements
- NB: due to quark confinement, quarks cannot exist alone

 → form collimated hadron sprays, we call these "jets"

What about invisible particles?

https://cameo.mfa.org/images/b/ba/2000.979-CR9834-d1.jpg

(summary on the next slide)

How do we measure invisible particles?

- Neutrinos and potential BSM particles interact weakly with detector \rightarrow no signal
- But: if produced with particles that produce a signal: use momentum conservation to infer on them
- Protons collide heads on: momentum of interacting particles in direction orthogonal to the beam axis is ~0
- Momentum is conserved → momenta of all particles in the plane transverse to the beam axis must sum to zero → can infer on the total momentum of the particles escaping detection and the direction in the transverse plane

→ this is called Missing Transverse Momentum and the magnitude Missing Transverse Energy (MET) $0 = \sum_{all} \overrightarrow{p}_{T,i} = \sum_{all} \overrightarrow{p}_{T,i} + \sum_{all} \overrightarrow{p}_{T,j}$

How do we search for the BSM particles?

- In the data, select those collision events with:
 - 2 jets compatible with a bottom-quark
 - 2 leptons
 - MET compatible with $2x \chi_{1}^{0}$ and $2x \nu$ (= a lot of MET)

- Maybe an invariant mass requirement on the system of b-W- χ_1^0
- Caveat: we might not have saved these events in ATLAS!!
 - Protons collide every 25 ns in ATLAS
 - \rightarrow 1 Mb of data / event or 40 Tb of data per second!!
 - \rightarrow cannot store this!! & most not of interest (low energy)
 - Solution: coarsely analyse all collision event as they happen
 - Only store events fulfilling certain criteria, e.g. 6 jets, 2 leps \rightarrow "triggering"
 - So: the BSM physics you can find depends on your trigger criteria!

Triggering criteria in ATLAS (in 2018)

• Lots of triggers there! But sometimes need to add one...

ATL-DAQ-PUB-2019-001/

		Trigger Sele	L1 Peak	HLT Peak	
Trigger	Typical offline selection	L1 [GeV]	HLT [GeV]	Rate [kHz]	Rate [Hz]
		11[001]		$L=2.0\times10^{34} \text{ cm}^{-2}\text{s}^{-1}$	
Single leptons	Single isolated μ , $p_{\rm T} > 27$ GeV	20	26 (i)	16	218
	Single isolated tight $e, p_{\rm T} > 27 \text{ GeV}$	22 (i)	26 (i)	31	195
	Single μ , $p_{\rm T} > 52$ GeV	20	50	16	70
	Single $e, p_{\rm T} > 61 {\rm GeV}$	22 (i)	60	28	20
	Single τ , $p_{\rm T}$ > 170 GeV	100	160	1.4	42
Two leptons	Two μ , each $p_{\rm T} > 15 \text{ GeV}$	2 × 10	2×14	2.2	30
	Two μ , $p_{\rm T}$ > 23, 9 GeV	20	22, 8	16	47
	Two very loose e , each $p_{\rm T} > 18 {\rm GeV}$	2 × 15 (i)	2×17	2.0	13
	One <i>e</i> & one μ , $p_{\rm T} > 8, 25 {\rm GeV}$	20 (µ)	7, 24	16	6
	One loose e & one μ , $p_{\rm T} > 18$, 15 GeV	15, 10	17, 14	2.6	5
	One <i>e</i> & one μ , $p_{\rm T} > 27, 9 {\rm GeV}$	22 (e, i)	26, 8	21	4
	Two τ , $p_{\rm T} > 40, 30 {\rm GeV}$	20 (i), 12 (i) (+jets, topo)	35, 25	5.7	93
	One τ & one isolated μ , $p_{\rm T} > 30$, 15 GeV	12 (i), 10 (+jets)	25, 14 (i)	2.4	17
	One τ & one isolated $e, p_{\rm T} > 30, 18 \text{ GeV}$	12 (i), 15 (i) (+jets)	25, 17 (i)	4.6	19
	Three very loose $e, p_{\rm T} > 25, 13, 13 \text{ GeV}$	$20, 2 \times 10$	24, 2 × 12	1.6	0.1
	Three μ , each $p_{\rm T} > 7 {\rm GeV}$	3×6	3×6	0.2	7
Three leptons	Three μ , $p_{\rm T} > 21, 2 \times 5$ GeV	20	$20, 2 \times 4$	16	9
	Two μ & one loose $e, p_{\rm T} > 2 \times 11, 13 \text{ GeV}$	$2 \times 10 \ (\mu)$	$2 \times 10, 12$	2.2	0.5
	Two loose e & one μ , $p_{\rm T} > 2 \times 13$, 11 GeV	$2 \times 8, 10$	2 × 12, 10	2.3	0.1
Signle photon	One loose γ , $p_{\rm T} > 145$ GeV	24 (i)	140	24	47
	Two loose γ , each $p_{\rm T} > 55 {\rm GeV}$	2×20	2 × 50	3.0	7
Two photons	Two γ , $p_{\rm T}$ > 40, 30 GeV	2×20	35, 25	3.0	21
	Two isolated tight γ , each $p_{\rm T} > 25 {\rm GeV}$	2 × 15 (i)	2 × 20 (i)	2.0	15
	Jet $(R = 0.4), p_{\rm T} > 435 {\rm GeV}$	100	420	3.7	35
Single jet	Jet $(R = 1.0), p_{\rm T} > 480 {\rm GeV}$	111 (topo: $R = 1.0$)	460	2.6	42
	Jet $(R = 1.0)$, $p_{\rm T} > 450$ GeV, $m_{\rm jet} > 45$ GeV	111 (topo: $R = 1.0$)	420, $m_{jet} > 35$	2.6	36
	One <i>b</i> ($\epsilon = 60\%$), <i>p</i> _T > 285 GeV	100	275	3.6	15
	Two $b \ (\epsilon = 60\%), p_{\rm T} > 185, 70 {\rm GeV}$	100	175, 60	3.6	11
<i>b</i> -jets	One $b \ (\epsilon = 40\%)$ & three jets, each $p_{\rm T} > 85 \text{ GeV}$	4 × 15	4×75	1.5	14
-	Two <i>b</i> (ϵ = 70%) & one jet, <i>p</i> _T > 65, 65, 160 GeV	2 × 30, 85	2 × 55, 150	1.3	17
	Two b ($\epsilon = 60\%$) & two jets, each $p_{\rm T} > 65$ GeV	$4 \times 15, \eta < 2.5$	4×55	3.2	15
	Four jets, each $p_{\rm T} > 125$ GeV	3 × 50	4×115	0.5	16
M14:5-4-	Five jets, each $p_{\rm T} > 95$ GeV	4 × 15	5 × 85	4.8	10
Multijets	Six jets, each $p_{\rm T} > 80 \text{ GeV}$	4 × 15	6×70	4.8	4
	Six jets, each $p_{\rm T} > 60$ GeV, $ \eta < 2.0$	4 × 15	$6 \times 55, \eta < 2.4$	4.8	15
$E_{\rm T}^{\rm miss}$	$E_{\rm T}^{\rm miss} > 200 {\rm GeV}$	50	110	5.1	94
<i>B</i> -physics	Two μ , $p_T > 11, 6$ GeV, $0.1 < m(\mu, \mu) < 14$ GeV	11.6	$11, 6 (di-\mu)$	2.9	55
	Two μ , $p_T > 6$, 6 GeV, 2.5 < m(μ , μ) < 4.0 GeV	$2 \times 6 (J/\psi, \text{topo})$	$2 \times 6 (J/\psi)$	1.4	55
	Two μ , $p_T > 6$, 6 GeV, 4.7 < m(μ , μ) < 5.9 GeV	$2 \times 6 (B, \text{topo})$	$2 \times 6 (B)$	1.4	6
	Two μ , $p_{\rm T} > 6$, 6 GeV, 7 < m(μ , μ) < 12 GeV	$2 \times 6 (\Upsilon, \text{topo})$	$2 \times 6 (\Upsilon)$	1.2	12
Main Rate B-physics and L	ight States Rate		L	86	1750 200

Model dependence of collider searches

- Disadvantage of triggering: need to know what you are looking for...
- Need to select a model to design your search!
 - \rightarrow BSM searches at collider depend on the model you are investigating!!!!

https://www.ataxia.org/wp-content/uploads/2022/07/needle-in-a-haystack-175284 6_960_720.jpg

Ok fine, we triggered, we reconstructed our particles, what's next?

- The entire dataset still contains very many events €
- BSM physics is rare → need to filter data to filter data to filter data to filter bata to filter data to filter bata to filter
- Use e.g. number of reconstructed electron momenta, etc.
- Filtered data comprised of our signal & Standard Model background, the simulation of the SM backgrounds is not perfect
- Define multiple "filters" = "regions"
 - **Signal regions:** much signal, little bkg.
 - **Control regions:** estimate bkg.
 - Validation regions: verify bkg. estimate

Variable 1

Searching for SUSY

- Recall: there are many SUSY models, e.g. MSSM, pMSSM, CMSSM, etc.
- In practice: study simplified versions of these models to reduce number of parameters to study
- Often also reduce number of production channels / decay channels
- Result give an **indication** for what would happen in the full model

SUSY example: stop-2L

SUSY-2018-08

2 leptons (aka electrons / muons)

Stop-2L: final distribution

SUSY-2018-08

Stop-2L: final distribution

SUSY-2018-08

There are many SUSY searches out there

There are many SUSY searches out there

- SUSY particle masses between 100 GeV and 1 TeV largely excluded
- Some models under pressure; hierarchy problem only solved if masses "light"

	Model	Si	gnature	ſĹ	$\mathcal{L} dt [\mathrm{fb}^{-1}]$]	Mass limit			
S	$\tilde{q}\tilde{q},\tilde{q}{ ightarrow}q\tilde{\chi}_{1}^{0}$	0 e,µ mono-jet	2-6 jets 1-3 jets	E_T^{miss} E_T^{miss}	140 140	<i>q̃</i> [1×, 8× Degen.] <i>q̃</i> [8× Degen.]	1. 1. 0.9	0	1.85	$m(\tilde{\chi}_1^0) \leq 400 \text{ GeV}$ $m(\tilde{q}) \cdot m(\tilde{\chi}_1^0) = 5 \text{ GeV}$
Inclusive Searche	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	2-6 jets	E_T^{miss}	140	750 JOS	Forbidde	n 1	2.3 1.15-1.95	$\mathfrak{m}(ilde{\chi}_1^0)=0~\mathrm{GeV}$ $\mathfrak{m}(ilde{\chi}_1^0)=1000~\mathrm{GeV}$
	$\begin{array}{l} \tilde{g}\tilde{g}, \ \tilde{g} \rightarrow q \bar{q} W \tilde{\chi}^0_1 \\ \tilde{g}\tilde{g}, \ \tilde{g} \rightarrow q \bar{q} (\ell \ell) \tilde{\chi}^0_1 \\ \tilde{g}\tilde{g}, \ \tilde{g} \rightarrow q q W Z \tilde{\chi}^0_1 \end{array}$	1 e,μ ee,μμ 0 e,μ SS e,μ	2-6 jets 2 jets 7-11 jets 6 jets	E_T^{miss} E_T^{miss}	140 140 140 140	121 121 021 021		1.15	2.2 2.2 1.97	m($\tilde{\chi}_{1}^{0}$)<600 GeV m($\tilde{\chi}_{1}^{0}$)<700 GeV m($\tilde{\chi}_{1}^{0}$)<600 GeV m(\tilde{g})-m($\tilde{\chi}_{1}^{0}$)=200 GeV
	$\tilde{g}\tilde{g}, \; \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_1^0$	0-1 <i>e</i> , μ SS <i>e</i> , μ	3 <i>b</i> 6 jets	Σ_T^{miss}	140 140	agi agi		1.25	2.45	$m(\tilde{\chi}_{1}^{0}) < 500 \text{ GeV}$ $m(\tilde{g}) \cdot m(\tilde{\chi}_{1}^{0}) = 300 \text{ GeV}$
3 rd gen. squarks direct production	$\tilde{b}_1 \tilde{b}_1$	0 <i>e</i> , <i>µ</i>	2 b	E_T^{miss}	140	${ar b_1\ ilde b_1}$	0.68	1.255		$m(\tilde{\chi}_1^0) < 400 \mathrm{GeV}$ 10 GeV $< \Delta m(\tilde{b}_1, \tilde{\chi}_1^0) < 20 \mathrm{GeV}$
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 <i>e</i> , μ 2 τ	6 b 2 b	E_T^{miss} E_T^{miss}	140 140	<i>b</i> ₁ Forbidden <i>b</i> ₁	0.13-0.85	0.23-1.35	$\Delta m(\tilde{\chi}^0_2, \Delta m(\tilde{\chi}^0_2, \tilde{\chi}^0_2))$	$ \tilde{\chi}_{1}^{0} = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV} _{2}^{0}, \tilde{\chi}_{1}^{0} = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV} $
	$ \begin{split} \tilde{\iota}_{1}\tilde{\iota}_{1}, \tilde{\iota}_{1} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{\iota}_{1}\tilde{\iota}_{1}, \tilde{\iota}_{1} \rightarrow W b \tilde{\chi}_{1}^{0} \\ \tilde{\iota}_{1}\tilde{\iota}_{1}, \tilde{\iota}_{1} \rightarrow \tilde{\tau}_{1} b \nu, \tilde{\tau}_{1} \rightarrow \tau \tilde{G} \end{split} $	0-1 e,μ 1 e,μ 1-2 τ	\geq 1 jet 3 jets/1 b 2 jets/1 b	E_T^{miss} E_T^{miss} E_T^{miss}	140 140 140		Forbidden 1 . Forbidden	1.25 05 1.4		$m(\tilde{\chi}_{1}^{0})=1 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})=500 \text{ GeV}$ $m(\tilde{\tau}_{1})=800 \text{ GeV}$
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	0 e,μ 0 e,μ	2 c mono-jet	E_T^{miss} E_T^{miss}	36.1 140	\tilde{c} \tilde{t}_1	0.85			$m(\tilde{\chi}_1^0)=0 \text{ GeV}$ $m(\tilde{\iota}_1,\tilde{c})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$
	$ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h \tilde{\chi}_1^0 \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z $	1-2 <i>e</i> , μ 3 <i>e</i> , μ	1-4 <i>b</i> 1 <i>b</i>	E_T^{miss} E_T^{miss}	140 140	\tilde{t}_1 \tilde{t}_2	0.06 Forbidden 0.86	7-1.18	$m(\tilde{\chi}_1^0)=3$	$m(\tilde{\chi}_{2}^{0})$ =500 GeV 60 GeV, $m(\tilde{t}_{1})$ - $m(\tilde{\chi}_{1}^{0})$ = 40 GeV
EW direct	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	Multiple ℓ /jets $ee, \mu\mu$	≥ 1 jet	E_T^{miss} E_T^{miss}	140 140	$ \frac{\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{0}^{0}}{\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}} $ 0.205	0.96		n	$m(\tilde{\chi}_1^0)=0$, wino-bino $n(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)=5$ GeV, wino-bino
	$ \begin{array}{ccc} \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{+} \text{ via } WW & & & & & \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \text{ via } Wh & & & & & \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{0} \text{ via } \tilde{\ell}_{L}/\tilde{\nu} & & & & \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-} \text{ via } \tilde{\ell}_{L}/\tilde{\nu} & & & & \\ \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} & & & & & \\ \end{array} $		0 jets ≥ 1 jet	T_T^{miss} T_T^{miss} T_T^{miss} E_T^{miss} E_T^{miss} E_T^{miss} E_T^{miss}	140 140 140 140 140 140	$ \begin{array}{c} \tilde{\chi}_1^{\pm} \\ \tilde{\chi}_1^{\pm} / \tilde{\chi}_2^{0} \textit{Forbidden} \\ \tilde{\chi}_1^{\pm} \\ \tilde{r} [\tilde{r}_{\mathrm{R}}, \tilde{r}_{\mathrm{R},\mathrm{I}}] \\ \tilde{\ell} \\ \tilde{\ell} \end{array} $	0.42 1 0.34 0.48 0.7	.06 0		$\begin{split} & m(\tilde{\chi}_{1}^{0}){=}0, wino-bino \\ & m(\tilde{\chi}_{1}^{0}){=}70 GeV, wino-bino \\ & m(\tilde{\chi}_{1}^{0}){=}0.5(m(\tilde{\chi}_{1}^{1})+m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{0}){=}0 \\ & m(\tilde{\chi}_{1}^{0}){=}0 \\ & m(\tilde{\chi}_{1}^{0}){=}0 \\ & m(\tilde{\chi}_{1}^{0}){=}10 GeV \end{split}$
	ĤĤ, Ĥ→hĜ/ZĜ	0 e, μ 4 e, μ 0 e, μ ≥ 2 e, μ		E_T^{miss} E_T^{miss} E_T^{miss} E_T^{miss}	140 140 140 140	Й Й Й Й	0.55 0.45-0.93 0.77		BR	$\begin{array}{c} BR(\tilde{\chi}_1^0 \to h\tilde{G}) = 1\\ BR(\tilde{\chi}_1^0 \to Z\tilde{G}) = 1\\ BR(\chi_1^0 \to Z\tilde{G}) = 1\\ BR(\chi_1^0 \to Z\tilde{G}) = BR(\tilde{\chi}_1^0 \to h\tilde{G}) = 0.5 \end{array}$

1 TeV

100 GeV

Searching form Dark Matter with Stop-2L

- In a simplified Dark Matter model, can produce Dark Matter from a mediator radiating off an inner top-quark line
- This mediator decays into 2x DM particle
- Final state the same as in Stop-2L!!!
- Simultaneously search for SUSY and DM!!!
 - You can reinterpret the same data in two

<u>SUSY-2018-08</u>

Stop-2L Dark Matter results

Exclude DM mediator masses up to 300 GeV

Searching for Dark Matter in tW+DM

- tW+DM high x-sec
- Two W-bosons: zero, one or two visible leptons (e,μ)
- **0L, 1L, 2L channel** → basically 3 separate searches
- To get maximum sensitivity
 - \rightarrow combine the three searches

tW+DM: results

Exclude DM mediator masses up to 300 GeV

Other ways to search for Dark Matter

DESY.

Direct detection Dark Matter searches

- Assume: permanent flow of DM particles through planet earth
- **DM scatters with nuclei** (as no EM interaction) → **measurable**
- Number of scattered DM particles depends on:
 - \circ Density of DM, $\rho_0\text{=}0.3~GeV/c^2/cm^3$
 - DM velocity w.r.t. earth ~220 km/s
 - DM-nuclei cross-section
 - Mass of DM & interacting nucleus
 - Mass of detector \rightarrow higher better
 - Spin of DM particle and spin sensitivity of target material
 - Minimum recoil energy sensitivity of detector → lower better

arxiv:1903.03026

Experimental setups of DD experiments

- Measure recoil of nuclei by DM
 → phonons/heat
- Backgrounds:
 - nuclear recoils by neutrons, cosmic muons
 - particles (γ , β^{\pm}) from radioactive decays \rightarrow often interact via EM
- Use very pure, non-activated, well-selected materials & shielding
- Measure two signals: one from EM recoil (e.g. charge; higher for bkg.); one from nuclear recoil (e.g. heat)

Image credit bottom: https://th-thumbnailer.cdn-si-edu.com/3Qxw0k7nJ0cC7BUwbFSP5zHO 6w8=/fit-in/1600x0/https%3A%2F%2Ftf-cmsv2-smithsonianmag-media .s3.amazonaws.com%2Ffiler%2F42%2Fd5%2F42d5a303-b006-4972-9efa-92797a25ba9c%2F31667821088_f762d2c200_0.jpg

arxiv:1903.03026

Cryogenic detectors:

- At very low T (mK)
- Scattering DM increases T
- Bkg. ionises material
 → separate signal
- Materials: Ge, Si

Noble liquid detectors:

- E.g. liquid Ar, Xe
- Phonons from DM → photons + ionisation
- Example XENON experiment
- Detect photons with PMTs at the side
- Detect ionisation by E-field + scintillation signal at the top
- Ratio of photons/ionisation different for DM / bkg.

Page 32

DD experiments – results

- Direct detection experiment results interpreted in terms of Effective Field Theories, no assumption on interaction mechanism of DM and nucleus
- The neutrino floor is not that far!

DESY.

Nucleus

Nucleus

χ

rpp2022-rev-dark-matter

χ

DD experiments – comparison to collider

- Comparing to collider: need to use a "simplified DM model" $\rightarrow\,$ additional mediator ϕ/a

Indirect detection Dark Matter searches

- In areas of high mass density: Dark Matter will annihilate → indirect detection
- Annihilation yields signals such as photon pairs, neutrinos, baryons
- High mass density areas: sun, galaxy centers, ...
- Production rate of IDD events depends on:
 - Annihilation rate / cross-section
 - Dark Matter density
 - The number of final state particles

$$\Gamma_f^A = c \frac{\rho_{\rm DM}^2}{m_{\rm DM}^2} \langle \sigma v \rangle N_f^A$$

Indirect Detection

https://www.youcanseethemilkyway.com/wp-content/uploads/2023/01/M assive_Black_Hole_at_the_Center_of_the_Milky_Way.jpg

rpp2022-revdark-matter

Experimental techniques of indirect detection

Photons

- produced e.g. when DM + DM \rightarrow quarks
- search for high energy photons
 ("gamma rays") e.g. from the galactic center
- experiments: e.g. FERMI-LAT

Neutrinos

- \circ produced e.g. in the sun
- search for high energy neutrinos from sun
- experiments: e.g. IceCube, Kamiokande

Antiparticles

- $\circ \quad \ \ \text{produced e.g. if DM + DM} \ \rightarrow \ e^+e^-$
- charged particles deflected in universe \rightarrow generally search for antiparticles
- experiments: e.g. HEAT, AMS, HESS

arxiv:1604.00014

Indirect detection: results

Covered mass range comparable to DD

- Exciting result: excess of positrons observed by multiple experiments (AMS, FERMI, PAMELA)
- Yet unclear if it is due to Dark Matter, astrophysical origin investigated

DESY.

Axions

- Searches so far considered WIMP DM
 → mass & x-sec. similar to weak bosons
- Also covered Axion Dark Matter last time
 → much lighter DM candidates
 - \rightarrow origin from solution of strong CP probl.
- Interact with SM matter by 2-photon vertex

(Lecture 1)

Axions search experiments

- Idea of Axion experiments:
 - can interact with Axions by exposing them to strong magnetic fields (=high photon flux)
 - can produce Axions by using strong lasers and strong magnetic fields
- ALPs experiment: shine laser into a strong magnetic field
 - photons converted to Axions
 - photons stopped by wall, Axions pass through
 - \circ on the other side: another strong magnet \rightarrow Axions converted to photons

https://particle-physics.desy.de/sites/site_particle-physics/content/e221990/e222445/e22 8223/e228225/e228229/ALPS_ger.jpg

arxiv:1410.2566

Searching for Axions from & in the universe

- CAST / (Baby-)IAXO experiments: search for Axions produced in sun
 - use a large magnet to point at the sun: Axions converted to photons
 - measure these photons
- The magnetic fields converting (photons \rightarrow Axions) & (Axions \rightarrow photons) can also be of astrophysical origin
 - \circ reduced attenuation of high energy photons

https://mediastream.cern.ch/MediaArchive/Photo/Public/2002/ 0209017/0209017_01/0209017_01-A4-at-144-dpi.jpg

DESY.

Axions: exclusion limits

Ciaran O'Hare, AxionLimits, doi:10.5281/zenodo.3932430, Link

The magnetic moment of the muon

- Recall: circular current = magnetic field \rightarrow can be attributed to a magnetic moment
- Similarly: charged particles on circular orbits & spinning around themselves exhibit magnetic moment
- Magnetic moment basically indicates how strongly a particle is affected by a magnetic field

- For the muon: $g_{\mu} \simeq 2$, loop effects $\rightarrow g > 2$
- Calculate and measure the difference: $a_{\mu} = (g_{\mu} - 2) / 2$
 - \rightarrow stress-test Standard Model (the loops it predicts)

11658471.811(0.160)

total

The magnetic moment of the muon

a_µ :Calculations

 α^{5}

rpp2022-rev-g-2-muonanom-mag-moment

How to measure g-2

• Produce muons, store ring via dipole magnets

https://upload.wikimedia.org/wikipedia/commons/7/7c/Fermilab_g-2_%28E989%29_ring.jpg

How to measure g-2 (2)

- Two frequencies:
 - \circ rotation frequency of muons (cyclotron frequency) ω_c
 - \circ precision frequency due to spin ω_s
- Their difference depends on g-2!!!
 - → measure ω_a & **B** → g-2 (*)!!

*in reality you measure ωP - the Lamor frequency of the free proton - instead of ${\boldsymbol B}$

a=0

021

How to measure g-2 (3)

- Muon is not stable and decays
- Measure energy of decay positrons

 → Most energetic if muon momentum & spin align!
- If filter out most energetic positrons, see modulation with frequency ω_a !!!

Sweigart, PhD thesis

- If filter out most energetic positrons, see modulation with frequency $\omega_a!!!$
- Besides ω_a , must measure **B**!
- Measure magnetic field with special "trolley" measuring the field very precisely
 DESY. every three days & many other tools

https://conference.ippp.dur.ac.uk/event/999/contributions/522 Wattachments/4218/4977/Schreckenberger Planck2021.pdf

Results of g-2

- g-2 measured extremely precisely to ~10 digits!
- Correction from HVP in loop calculation needs input from data used in the calculation:
 - Hadronic vacuum polarisation measurement using data from e⁺e⁻-colliders
 - $\rightarrow~5.1\sigma$ discrepancy to meas.
 - Excluding some of the data leads to a better agreement
 - The other is from lattice QCD

 → agrees better with
 measurement!

Proton stability

- Proton is stable in SM (Baryon number conservation)
- Grand Unified Theories can predict that the proton is not stable
- "Not stable" \rightarrow lifetimes >10³⁰ y

- Search for proton decay e.g. with Super-Kamiokande
 - 27.5 T of Water → many protons
 - $\circ \quad \text{Search for } p \ \rightarrow \ \ell^{\scriptscriptstyle +} \ \pi^{\scriptscriptstyle 0}$
 - Proton lifetime > 10³⁴ y
- Multiple models excluded, but still room for SUSY ;)

DESY.

Summary

- Many, many searches / experiments targeting BSM physics
- Constraints on many model parameters, yet not clear what BSM physics is
- Many exciting experiments/results coming up investigating BSM physics further, e.g.
 - HL-LHC Ο
 - **XENON** n-ton Ο
 - ALPS II Ο
 - BabyIAXO Ο
 - g-2 full data set Ο
 - Hyper Kamiokande Ο
 - ...and many more! Ο
- What will we find?

Backup slides

Stop-2L: statistical analysis

1. Triggering

2. Event selection & background estimation

SUSY-2018-08

3. Statistical analysis

How compatible is the data with the Standard Model prediction? (Data Analysis lecture) $\ell = -2\ln\left(\frac{\mathcal{L}(\mathsf{data},H_1)}{\mathcal{L}(\mathsf{data},H_0)}\right)$

3a) If very compatible \rightarrow up to which x-sec. can I exclude BSM physics? \rightarrow *exclusion limits*

3b) If not compatible \rightarrow check 10³⁵x for mistakes

- \rightarrow Check 10³³X for mistakes
- → CELEBRATE!!!

Direct detection Dark Matter searches 1903.03026

- Assume: permanent flow of DM particles through planet earth
- DM scatters with SM particles
 → measurable!
- DM scatters with nuclei as no EM int.
- No. scattered DM particles depends:
 - Density of DM \rightarrow from rotation curve: ρ₀=0.3 GeV/c²/cm³ (±50%)
 - DM velocity w.r.t. planet earth,
 ~220 km/s with some variation
 - DM-nuclei cross-section
 - Mass of DM & interacting nuclei
 - Spin of DM particle and sensitivity of target material

Indirect detection all in one slide

https://www.mpi-hd.mpg.de/lin/events/isapp2011/pages/lectures/de_los_Heros.pdf

Contact

DESY.

Deutsches Elektronen-Synchrotron

www.desy.de

Ben Brüers ATLAS group (Zeuthen) ben.brueers@desy.de +49 33762 7-7640