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“ Statistics” iIs HARD

It can be very complicated as well, but the deep
reasons that statistical inference is HARD can be shown
with alarmingly simple problems on Upper Limits.

 |will assume that we really care about the answer:
This is often not the case for Upper Limits, but suppose
we start to “exclude” all masses of the S.M. Higgs (!).

| hope it becomes clear that one should perform three
classes of caclulations (Bayesian credible intervals,
likelihood ratio intervals, and Neyman’s confidence
Intervals) and compare.

Bob Cousins, Terascale, 6 Oct 2011



Start with simple problem, add complications:

Adapted from R. Cousins, Am. J. Phys. 63 398 (1995)

Poisson process P(n|y) = u”e'“/n!
Measurement of n yields n=3.

Substituting n=3 into P(n|p) yields the
Likelihood function L(p).

[ B B B B
It is tempting to consider area ., L(p) =pdeHy3r
under L, but L(n) is not a a ]

probability density in p:
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How to get upper (or lower) limit on p ?

Consider 90% upper

and 90% lower limits on p.

Together they form an 80% central interval for p.

1) Frequentist confic
Find p, s.t. Poisson

ence limit method:
°(n<3 | w,) =0.1. p, =6.68

Find p,s.t. Poisson

°(n>23 | w,) =0.1. p,=1.10
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2) Likelihood ratio method.
Based on L(w) /L(w, ), equivalently:

—2InL(w) — (-2InL(y,, ) £ Z?, for Zreal.

Asymptotically (note regularity conditions) this interval
approaches a frequentist central confidence interval with
C.L. corresponding to + Z Gaussian standard deviations.
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For 80% central interval, Z=1.28.
90% upper and lower limits are:
n, = 5.80
n,=1.29



3) Bayesian method.
Different definition of probability: degree of belief.
With that definition, one can have pdf's in p (!)
P(u[n=3) oc L(u) p(w),
pP(u|n=3) = posterior pdf for u, given n=3
L(un) = Likelihood function from above for n=3
p(w) = prior pdf for u, before incorporating n=3.

Vast literature on Bayesian methods and priors.
This literature has largely been ignored in HEP,
where most papers use uniform prior for p.

In HEP, practice is generally what Bayesian
statisticians call “pseudo-Bayesian”.

Bob Cousins, Terascal le, 6 Oct 2011
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Deep Foundational Issue: Confidence Principle
(Frequentist Coverage) vs Likelihood Principle

The Likelihood ratio interval and the Bayesian
interval use L(u) given the observed n=3, but

make no use of P(n|p) for any n#3. This is the
essence of the Likelihood Principle.

The confidence interval relying on P(n<3 | u) and
P(n>3 | u) used probabilities of data not observed.

This violates the L.P.

This turns out to be a huge deal:
In general, cannot have both coverage and L.P.
Whole approach of tail probabilities violates L.P. !

Bob Cousins, Terascal le, 6 Oct 2011



Summary of 80% Central Intervals, n=3
(Endpoints are 90% lower and upper limits)

| Frequentist Likelihood | Bayesian Credible
Confidence Ratio

14, 14,] [1.10, 6.68] [1.29, 5.80] p(u) c 1 [1.74, 6.68]
pP(w) oc 1/u [1.10, 5.32]

Requires prior pdf? No No Yes

Provides No No Yes

P(parameter|data)?

Random variable in Koy Uy, Koy Uy, M,

Pty € Lig, p,1)"

Coverage guaranteed? | Yes (but over- | No No

“Confidence Principle” | coverage...)

Obeys “Likelihood No Yes Yes (exception re

Principle”? Jeffreys prior)
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Now add complications:
First, a known mean background b, say b=2.8.

Central frequentist confidence interval shifts
downward by 2.8. As n decreases or b increases,
interval can “reject” regions where no sensitivity,
and even reject all values of p (null interval!).

Likelihood-ratio interval hits vertical axis before
going up by Delta: running into violation of
regularity conditions.

Bayesian interval is at least superficially well-
behaved: historically was adopted by PDG
(following Helene paper). But how to interpret P?

Bob Cousins, Terascal le, 6 Oct 2011
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Likelthood Principle Example

The “Karmen Problem”
You expect background events sampled from a Poisson
mean b=2.8, assumed known precisely.

For signal mean y, the total number of events n is then
sampled from Poisson mean p+b.

So P(n) = (u+b)" exp(-pu-b)/n!

Then you see no events at all! l.e., n=0.

L(p) = (ut+b)° exp(-p-b)/0! = exp(-p) exp(-b)

Bob Cousins, Terascale, 6 Oct 2011
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Likelthood Principle Example

The “Karmen Problem”

You expect background events sampled from a Poisson
mean b=2.8, assumed known precisely.

For signal mean y, the total number of events n is then
sampled from Poisson mean p+b.

So P(n) = (u+b)" exp(-pu-b)/n!
Then you see no events at all! l.e., n=0.

L(n) = (n+b)° exp(-p-b)/0! = exp(-p) exp(-b)

Note that changing b from 0 to 2.8 changes L(n) only by the
constant factor exp(-b). This gets renormalized away in any
Bayesian calculation, and is irrelevant for likelihood ratios.
So for zero events observed, likelihood-based inference
about signal mean p is independent of expected b.

For essentially all frequentist confidence interval constructions,
the fact that n=0 is less likely for b=2.8 than for b=0 results in
narrower confidence intervals for p as b increases. Clear
violation of the L.P.

Bob Cousins, Terascale, 6 Oct 2011
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Likelihood Principle Discussion

We will not resolve this issue, but should
be aware of It.

« See book by Berger & Wolpert, but be
prepared for the “Stopping Rule
Principle” to set your head spinning.

 When frequentist intervals and limits
badly violate the L.P., use great caution
In interpreting them!

« And when Bayesian inferences badly
violate the Confidence Principle
(frequentist coverage), again use great
caution!

Bob Cousins, Terascale, 6 Oct 2011
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Poisson with Known Mean Background

1996 PDG RPP, a la Helene or Zech 1998 PDG RPP, a la Feldman & Cousins
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Figure 28.8:  90% coufidence coefficient upper limit on the munber of signal Figure 20.5:  90% confidence intervals [y, po]on the number of
events as a function of the expected munber of background events. For example, if signal events as u function of the expected munber of backgroud
the expected background is 8 events and 5 events are observed, then the signal is events b, For example, if the expected background is 8 events
4.0 (approximately ) or less with 90% confidence. Dashed portions indicate regions and 5 events are observed, then the signal is 2,60 or less with
where it is to be expected that the number observed would excced the munber W confidence, Dotted portions of the pg curves on the npper

left indicate regions where jyy is non-zero (as shown by the inset ).

actually observed = 99% of the time, even in the complete absence of signal. ; ; s '
Dashed portions in the lower right indicate regions where the

probability of obtaining the number of events observed or fewer

is less than 1%, even if p = 0. Horizontal curve sections oocur
because of discrete number statistics, Tables showing these data
as well as the CL = 68.27%, 95%, and 99% results are given in

Bob Cousins, Terascale, 6 Oct 2011 Ref. 11. 14



Now add systematic uncertainties:

1) Uncertainty on mean background b.

2) Uncertainty on product of luminosity and
efficiencies.

This complicates things enormously!

Takes us into territory of “nuisance parameters” and
research problems in professional statistics literature

for which there is still no clearly preferred solution.

Cousins review at PhyStat05: http://www.physics.ox.ac.uk/phystatO5/proceedings/
Demortier review at PhyStat07: http://phystat-lhc.web.cern.ch/phystat-lnc/2008-001.pdf

Remember: we would like a numerical answer for
which “90%” corresponds, at least approximately,
to some definition of probability!

Bob Cousins, Terascale, 6 Oct 2011
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Treatment of Nuisance Parameters within Each Paradigm

1) Frequentist Confidence Intervals.

(Full) Neyman construction. (See my HCPSS lectures.)
For each point in the subspace of nuisance parameters,
treat them as fixed true values and perform a Neyman
construction for multi-D confidence regions in the full
space of all parameters. Project these regions onto the
subspace of the parameter of interest.

Problem(s): Typically intractable and causes
overcoverage, and therefore rarely attempted.
Tractability recovered by doing the construction in the
lower dimensional space of the profile likelihood
function. Not well-studied.

Bob Cousins, Terascale, 6 Oct 2011



Nuisance Parameters within Each Paradigm (Cont.)

2) Likelihood intervals: “Profile likelihood Method”.

For each value of the parameter of interest, search the
full subspace of nuisance parameters for the point at
which the likelihood is maximized. Associate that value
of the likelthood with that value of the parameter of
Interest. The set of such likelihoods is called the profile
likelihood, and is a function only of the parameter of
interest. The math is now reduced to the case of no
nuisance parameters.

(Familiar to many as MINUIT MINQOS.)

Problem(s): This has a reputation of underestimating the
true uncertainties. In Poisson problems, this is partially
compensated by effect due to discreteness of n.

In HEP, profile likelihood (MINUIT MINOS) gives good
performance in many problems.

Bob Cousins, Terascale, 6 Oct 2011
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Nuisance Parameters within Each Paradigm (Cont.)

3) Bayesian credible intervals:

Construct a multi-D prior pdf P(parameters) for the
space spanned by all parameters; multiply by
P(data|parameters) for the data obtained; integrate
over the full subspace of all nuisance parameters; you
are left with the posterior pdf for the parameter of
Interest. The math is now reduced to the case of no
nuisance parameters.

Problem(s): The multi-D prior pdf is a problem for both
subjective and non-subjective priors. Until very
recently, in HEP there has been almost no use of the
favored non-subjective priors (reference priors of
Bernardo and Berger). The high-D integral can be a
technical problem, more and more overcome by
Markov Chain Monte Carlo.

Bob Cousins, Terascale, 6 Oct 2011
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Hybrid Techniques: Introduction to Pragmatism

Given these difficulties, it iIs common in HEP to
relax foundational rigor and:

 Treat nuisance parameters in a Bayesian way while
treating the parameter of interest in a frequentist way, or

 Treat nuisance parameters by profile likelihood while
treating parameter of interest another way, or

« Use the Bayesian framework (even without the priors
recommended by statisticians), but evaluate the
frequentist performance.

In effect (as in profile likelihood) one gets approximate
coverage while respecting the L.P.

« The properties of the result are more important than the
“derivation” !

Bob Cousins, Terascale, 6 Oct 2011
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Example of treating nuisance parameter in a
Bayesian way while treating parameter of interest
In a frequentist way

Nuclear Instruments and Methods in Physics Research A32() (1992) 331-335

Incorporating systematic uncertainties into an upper limit

Robert D. Cousins
Physics Department, University of California, Los Angeles, CA 90024, USA

A main point of this “C-H”
paper was that for small n,

| AN effect of syst error on

Our statistical approach includes both classical an .

Bayesian elements [1]. Our treatment of the Poisson upper I!mlt went as s quare
parameter is classical, the type of statistics we gener- of relative syst error:

ally prefer. Because we average over a probability 10% syst error has

distribution for the experimental sensitivity, our treat- = o
ment of that quantity is necessarily Bayesian. negllglble effect on limit.

Virgil L. Highland
Physics Department, Temple University, Philadelphia, PA 19122, USA

Luc Demortier pointed out that
result is same as G. Box’s prior
predictive p-value (1980).

Bob Cousins, Terascale, 6 Oct 2011
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Problems with treating nuisance parameters in a
Bayesian way while treating parameter of interest
In a frequentist way

1) Inherits all the unresolved issues of priors from
Bayesian methods.

2) Since method mixes definitions of P, results have
no guaranteed properties and must be studied on
case-by-case basis.

a) Numerous studies have shown that results for
upper limits at 90-95% C.L. (the C-H case) are
reasonable, though typically over-covering.

b) Kyle Cranmer showed at Oxford PhyStat (2005)

that claimed 5-sigma discovery could really be 4.2.

Bob Cousins, Terascal le, 6 Oct 2011
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About Those Priors...

« There are many flavors of Bayesians among
statisticians, in two broad categories:

— “Subjective”: P is personalistic degree of belief.
Prior encodes that. Strong foundational arguments of
“coherence”. (B. DeFinetti, J. Savage, et al.)

— “Objective” (self-description): uses “formal rules” for
priors, attempting to “let the data speak as loud as
possible”. (H. Jeffreys, J. Bernardo, J. Berger, et al.)

 “Non-informative” priors do not exist: a prior always
Inputs information!

 Improper priors (e.g., uniform on [0,]) can cause all
kinds of trouble: Equalities become proportionalities!
Stats literature has important insights on how to avoid
some traps.

Bob Cousins, Terascale, 6 Oct 2011
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Can “subjective” be taken out of “degree of belief”?

A Dbrightidea, vigorously pursued by physicist Harold
Jeffreys in in mid-20™ century: Can one define a prior
pP(x) which contains as little information as possible, so
that the posterior pdf is dominated by the likelthood?

 Thereally really thoughtless idea*, recognized by
Jeffreys as such, but dismayingly common in HEP: just
choose p(u) uniform in whatever metric you happen to
be using!

e The “objective” priors from Jeffreys’s rule and from
“reference priors of Bernardo define the prior based on

properties of the measuring apparatus, not from
thinking about the parameter!

*In spite of having a fancy name, Laplace’s Principle of Insufficient Reason

Bob Cousins, Terascale, 6 Oct 2011 23



“Uniform Prior” Requires a Choice of Metric

“Jeffreys Prior” uses a prior uniform in a metric related to the
Fisher information (technical term).

Poisson signal mean p, no background: p(w) = 1/sqrt(w)
Poisson signal mean u, mean background b: p(u) = 1/sqrt(ut+b)
Unbounded mean p of gaussian: p(p) =1
RMS deviation of a Gaussian when mean fixed: p(oc) = 1/o
Binomial parameter p, 0<p <1: p(p) = p*?(1 - p)V2=Beta(1/2,1/2)
If measuring apparatus has Gaussian resolution in m, the prior
IS uniform in m.
If it has Gaussian resolution in m?, the prior is uniform in m2.

Jeffreys prior yields pdfs which are consistent under
transformation into different metrics.

Welch and Peers famously showed that Bayesian intervals with
Jeffrey’s prior have good coverage (to order 1/n).

Bob Cousins, Terascale, 6 Oct 2011
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Workshop on
Confidence Limits

27-28 March, 2000
Fermilab 1-West Conference Room
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Sensitivity Analysis

e Since a Bayesian result depends on the prior
probabilities, which are either personalistic or with
elements of arbitrariness, it is widely recommended by
Bayesian statisticians to study the sensitivity of the
result to varying the prior.

Bob Cousins, Terascale, 6 Oct 2011 26



Bounded Gausian problem:
Measurement x is unbiased Gaussian estimate of u:
p(x|) ~ &~ -a7125"

What is the 95% C.L. Upper Limit (UL) for uif the
physical model for p(x|u) exists only for u4>0 ?

Without the constraint on g, traditional frequentist
and Bayesian methods both yield:

UL =X+ 1.640,

and 95% C.L. central confidence interval iIs x + 1.960.

See next slide:

Bob Cousins, Terascal le, 6 Oct 2011
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Graphical display of intervals is a confidence belt:
Confidence interval include all values of g for which
horizontal blue line is intersected by vertical line
drawn at measured value of x.
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Upper limit=x + 1.64 o Central interval =x £1.96 ¢
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With the constraint 4= 0, the story takes us not only
to the heart of Bayesians-frequentist disputes, but
also to frequentist criticisms of Neyman & Pearson

by Sir Ronald Fisher and Sir David Cox!
2_105.... JHE R S L L S R A A ?105”” JAE A R L R L R B R
~ v
8- 8 .
7t A 7t =
6 6
5 5F
af aF
3 3
2f 2
H=0 —— o s ey L R B T A N S S
Measured Mean x Measured Mean x

For x<-1.64c with UL, and for x<-1.96¢c with central
Intervals, the confidence interval is the null set!

| refer to the plot on left as the “diagonal line”.
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So, what did people in HEP do?

The problem arose in experiments with true u << o,
so that measured x<0 was common.

Some chose to move x<0 to physical boundary of L.

A SEARCH FOR THE DECAY 70 — 3y *-

J.DUCLOS **, D. FREYTAG, K. SCHLﬁPMANN and V.SOERGEL
CERN, Geneva, Switsevland

J. HEINTZE and H. RIESEBERG
I. Phystkalisches Institut des Universitil Heidelberg, Germany

NEUTRAL DECAY BRANCHING RATIOS OF THE n° MESON
C. Baltay,{ P. Franzini, J. Kim, R. Newman, and N. Yeh

Columbia University, New York, New York, and Brookhaven National Laboratory, Upton, New York

L. Kirsch

Brandeis University, Waltham, Massachusetts

Bob Cousins, Terascale, 6 Oct 2011

Phys Lett 19 253 (1965)
X=-05x25
Set x=0 and proceeded.

PRL 19 1495 (1967)
Xx=-0.06+0.14
Set x=0 and proceeded.
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With this ad hoc patch, UL = max(x,0) + 1.64c.
“95% C.L.” intervals had 100% coverage (!) iIf u<1.64

-
o
T

Mean u

=y L) w L w =2 e | [=2] w
T T T T T T T T T[T T T T[T T T T[T T T T[T I T T TTTT 7T

o

-3Illl-2IIJ|-1lI|lolIIJ1IlI|2llII3IIII4l|115]IJI6|l|l7
Measured Mean x

I'll refer to this as the
“original Diagonal plus Horizontal Line”,
“DHL” for short.

Bob Cousins, Terascale, 6 Oct 2011
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Precision measurement of the muon momentum in pion decay at rest

M. Daum, G. H. Eaton, R. Frosch, H. Hirschmann, J. McCulloch,* R. C. Mmehaxt and E. Steiner
Swiss Institute for Nuclear Research, SIN, 5234 Villigen, Switzerland

m,ﬂ2='0.13i0.14 (MeV/¢?)? PhyS Rev D20

Following the method recommended by the Par- 2692 (1979)

ticle Data Group,® illustrated in Fig. 22, we cal-

culated the upper limit of the muon-neutrino mass.
The result is

m,  <0.57 MeV/c? (90% confidence level). (9)

FM?) A&
(am?, V21)"1)
M 1
T L T b
-0.2 0 m%y 0.2 mé 0.4 [[Mev)?/c*)

FIG. 22, According to the prescription of the Particle
Data Group (Ref. 33) the upper limit m; of the muon-
neutrino mass is calculated from the squares mass m,
and its uncertainty A(me, 2) by setting the probability
function F(M?) to zero for M%< 0, as indicated in the fig—
ure.

. T, G. Trippe, private communication, 1976,
Bob Cousins, Terascale, 6 Oct 2011 32



The 1979 prescription alleged
to be that of the PDG was
numerically equivalent to:

p(x |w) ~ etx-wi2e”

:>£ (XOlﬂ) ~ @ —(Xo_lu)z/Zo'Zl

Prior p(u) ~1if u>0, else 0.
Posterior p(ulx,) oc L(1) p(L).
This is a prob. density in L.
Renormalize and integrate to
find g, with 5% tail probability.

This prescription did appear in
PDG Review of Particle Physics
since 1986.

Belt of Bayesian UL at right.

Bob Cousins, Terascale, 6 Oct 2011
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FIG. 22, According to the prescription of the Particle
Data Group (Ref. 33) the upper limit m, of the muon-
neutrino mass is calculated from the squares mass m,
and its uncertainty A(m, %) by setting the probability

. 9 ( 2 N . .
function F(M*) to zero for M*“<0, as indicated in the fig-
ure.
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2002: Physicist Mark Mandelkern writes Statistics
review article asking statisticians for advice (!)

Setting Confidence Intervals for

STATISTICAL
Bounded Parameters SCIENCE

Mark Mandelkern

Abstract.  Setting confidence bounds is an essential part of the reporting of
experimental results. Current physics experiments are often done to measure

nonnegative parameters that are small and may be zero and to search for small
signals in the presence of backgrounds. ...

Editor asks five statisticians to Comment.
Leon Jay Gleser is truly incisive, emphasizing:

“...the predata measure of risk is not necessarily the
correct postdata measure of uncertainty.”

Bob Cousins, Terascale, 6 Oct 2011
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Insights by Sir Ronald Fisher in 1956
and Sir David Cox in 1958 pointed to
situations in which Most Powerful
Neyman-Pearson tests gave answers
clearly not relevant to the data at hand!

The basic idea Is that sometimes there are
“recognizable subsets” of the sample space (x) for
which the N-P C.L. (computed from the whole space)
IS In conflict with properties of the subset.

In our problem, we are clearly in this situation when
the “upper limit” is null or unphysical: conditional
probability of coverage within that recognizable part
of the sample space is zero!

A whole literature. First, a simple clean example.

Bob Cousins, Terascale, 6 Oct 2011
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Letp(X|p) = 1if u—%<x< u+Y2; 0 otherwise.

P(x]| )

X
<€

R
Two measurements x,,X, are made.
What is a central confidence interval for g ?

Most Powerful one-sided N-P tests lead to the
68% C.L. central interval u= (X, + X,)/2 £ 0.22.

This uncertainty is determined by the ensemble of
all possible measurements x,X,.

It Is a pre-data assessment of uncertainty.

Bob Cousins, Terascale, 6 Oct 2011
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But once data is in hand, if |x;—X,| Is close to 1, we
know that we have a much more accurate
measurement of g for our particular “lucky” data.

L)
<€ | )’u
X3
L,(1)
<€ . )’u

The “relevant” post-data assessment of uncertainty
about g depends on |x;—X,|, which can be used to

partition the sample space into recognizable
subsets.

Bob Cousins, Terascale, 6 Oct 2011
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In clean cases with such as this, the coverage of the
conditional statements in the unconditional
ensemble is exact, though power is less.

In the 1980’s, Glunter Zech attempted (in the related
Poisson problem) to build in exact conditional
coverage from the beginning of the construction of
upper limits on a bounded parameter. His
calculation, which inspired CLg, leads to
over-coverage in the unconditional ensemble.

In 2002, statistician Gleser pointed us to 1959+
literature on conditional coverage as a tool for

evaluating confidence sets built to have perfect
unconditional coverage.

Bob Cousins, Terascale, 6 Oct 2011
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More from Leon Jay Gleser

“The subset of samples having the property that the

sample mean is two standard deviations to the left of
zero would have been called a ‘recognizable subset’

by Fisher (1956).”

Bob Cousins, Terascale, 6 Oct 2011
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More from Leon Jay Gleser

“Buehler (1959), and later Robinson (1979),
Introduced the notion of conditionally admissible
tests and confidence intervals—those procedures
whose frequentist control of error (coverage
probability, level of significance) was not adversely
affected by the realization that a given data set
belonged to arecognizable subset of samples.”

Very enlightening literature — see my recent post

Negatively Biased Relevant Subsets Induced by the
Most-Powerful One-Sided Upper Confidence Limits
for a Bounded Physical Parameter

http://arxiv.org/abs/1109.2023

Bob Cousins, Terascale, 6 Oct 2011
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More from Leon Jay Gleser

“...any confidence intervals that keep a constant
width as X becomes more negative, as some of the
physicists seem to desire, are indicating not
necessarily what the data shows through the model
and likelihood, but rather desiderata imposed
external to the statistical model.”

Bob Cousins, Terascale, 6 Oct 2011 41



Deep Connections to Bayesian Statistics

Furthermore, a number of theorems have been
proved in the last 50 years making connections
between:

 Good frequentist conditional coverage properties

 The existence of any prior for which the Bayesian
credible set resembles the confidence set.

Taking “resembles” to the extreme leads to the
likelihood principle and breakdown in unconditional
coverage.

But as a useful guide for when post-data inference
can be misleading, this is a remarkable deep
connection between frequentist confidence intervals
(statements about P(data|parameter)) and credible
Intervals (statements about P(parameter|data)) !

Bob Cousins, Terascale, 6 Oct 2011

42



Deep Connections to Bayesian Statistics (cont.)

Beginning in 2000, statistician Jim Berger has

argued

at four of our meetings that bad conditional

properties can be so hard to detect in frequentist

method
method

unconc

s that one is better off using Bayesian
s with priors known to have approximate
Itional coverage.

Bob Cousins, Terascale, 6 Oct 2011
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Five methods used for bounded Gaussian mean problem

1) 1960’s and beyond:

=@ UL=max(x,0)+1.64c

| 42) 1979“PDG" (real 1986 PDG) and beyond:
=4 Bayesian with uniform prior

_43) 1997: Alex Read et al. (LEP)

" _<4) 1997: Feldman and Cousins (NOMAD)
Unified Approach

2010: Power Constrained Limits;
Cowan, Cranmer, Gross, Vitells (ATLAS):
UL = max(0, max(x, Xp¢ ) + 1.640)

Bob Cousins, Terascal le, 6 Oct 2011 44



Neyman’s Confidence Interval construction, 1934-37

Given p(xX|u ) from a model:
For each value of g4, draw a
horizontal acceptance
Interval [X;,X,] such that

p(x € [X3.X] [ ) = 1-a.
Upon performing expt and
obtaining the value x,, draw
the vertical line through x,.

The vertical confidence S A N R S
interval [y, 1] with Measured Mean x
C.L.=1-oais the union of
all values of ufor which the
corresponding acceptance
Interval is intercepted by the
vertical line.

-
(=
TT]

Mean u

(=N N w & o [=2) ~ [=2] w0
BLEEEEARAR AR LR AR AN AR RAREN RRRERRA
N
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Unified Approach of Feldman and Cousins

h
=)

(=N ) w & o [=2) ~ [=2] 1]
Fprrrryrrrrprrrrfrereprrrrpri e irrrprr i rrri]

Starting points:
1) Remove null intervals
2) 95% coverage for all .

Mean
S :
N ]
I .
h}\ 111 I:

Immediately: 95% acceptance
interval for u=0Is [— oo, 1.64].

Leads to Unified Approach: [uy, 1]
1) For low and negative x, x4=0. ! = _
2) n=0 excluded when rejected N e = P U TP VW |
by one-tailed test at 1-C.L. (!) vicasured Hean
3) Atlarge X, [u,14,] cOnverges to
central interval.
[Above seen by S. Ciampolillo,
who also moved x<0 to 0.] F-C:
4) Interval based on Ay? (L.R.)
5) Cures “flip-flop” problem. Phys Rev D57 3873 (1998)

i 7
pd 7
4

5
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Phys. Rev. D57 3873 (1998)

Unified approach to the classical statistical analysis of small signals

Gary J. Feldman”

Department of Physics, Harvard University, Cambridge, Massachusetts 02138

Robert D. Cousins’

Department of Physics and Astronomy, University of California, Los Angeles, California 90095

“Test for 0=0," &

“Is B, iIn confidence interval for 0”

Using the Likelihood Ratio Test, this
correspondence is the basis of the

“Unified Approach”
Intervals/regions of F-C.

In Gaussian problem, -2In(LR) =

“Unified Approach” solves “flip-
flopping problem — see paper.

Generalizes well.

Bob Cousins, Terascale, 6 Oct 2011
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Kendall and Stuart

CHAPTER 22
LIKELTHOOD RATIO TESTS AND TEST EFFICIENCY

The LR statistic
221  The ML method discussed in Chapter |8 is aconstructive method of obtaining estimators
which, under certain conditions, have desirable properties. A method of test construction closely
allied to it is the likelihood ratio (LR) method, proposed by Neyman and Pearson (1928). It has
played a role in the theory of tests analogous to that of the ML method in the theory of estimation.
As before, we have the LF
n
Lexi8) = [ o),
i=1
where 8 = (8., 8,) is a vector of ¥ + 5 = k parameters (¢ = |, 5 > 0) and x may also be a vector.
We wish to test the hypothesis
Ho: 8, =8, (22.1)

which is composite unless s = 0, against
Hy o8, # 6.

We know that there is generally no UMP test in this situation, but that there may be a UMPU test
—-«¢f. 21.31.
The LR methad first requires us to find the ML estimators of (8., #,), giving the unconditional

maximum of the LF

Lix|yy. 8,). (222
and also 1o find the ML estimators of 8, when Hp holds,' giving the conditional maximum of
the LF .

Lix|@., 0, 22.3)

b, in (22.3) has been given a double circunflex to emphasize that it does not in general coincide
with @, in (22.2). Now consider the likelihood ratio?

Lixi8,0, 0,
§ = Lxifro.9,) (22.4)
L(x|8,.0,)

Since (22.4) 1s the ratio of a conditional maximum of the LF to its unconditional maximum, we
clearly have

O=l=1L (22.5)

Intuitively, I is a reasonable test statistic for Hy: it is the maximum likelihood under Hy as a
fraction of its largest possible value, and large values of { signify that Hy is reasonably acceptable.
The critical region for the test statistic is therefore

I 2 ¢, (22.6)

where ¢ is determined lrom the distribumtion g{/) of ! 1o give a size-c (est, that is,
f gihdl = e 1221
1]

Nerther maximum value of the LF is affected by a change of parameter from @ o 7(#), the ML
estimator of T(#) heing () — cf. 18.3. Thus the LR statistic is invariant under reparametrization.
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“But Bob, | insist on an upper limit!”

“Do | need to define upper for you?” *

Bob: Let’'s consider two deep points. a 55555555

uuuuuuuuuuu

1) Insisting on a CCGV upper limit means insisting
on not rejecting =0 at 95% while simultaneously
rejecting g which has a better Ay?than =0 (say
when x =2). This is related to the “extra” power of
CCGV upper limit when it rejects g=1when x =-1.

2) Insisting on an upper limit means insisting on
over-coverage (unless null intervals are brought
back). Intervals with correct coverage, based on Ay?,
allow for more relevant and interpretable post-data
Inference.

Bob Cousins, Terascale, 6 Oct 2011

48



“But Bob, CCGV intervals have more power?!’

Bob:

:::::::::::

uuuuuuuuuuu

diagonal line with null intervals. It also has perfect
coverage.

Yet it bothers most of us. Power Is a pre-data
concept which must be supplemented by post-data
considerations.

Bob Cousins, Terascale, 6 Oct 2011 49



“But Bob, | don’t want to exclude =0 unless | have 5c! ”

Bob: Let’s consider two more points. 5

1) Reporting a 95% interval which does not includ

=0 1s not declaring discovery (or evidence, or
Indication, or...).

The F-C interval is reporting those values of gwhich

have the best Ax?(w) = x?(1) — x*(1,0s) given the
observed x. That would seem to be very useful!

Bob Cousins, Terascale, 6 Oct 2011 50



“But Bob, | don’t want to exclude =0 unless | have 5c! ”

o

uuuuuuuuuu

for which 4=0 is just included in the F-C interval.

E.g., for x=2, 4=0is in the 97.72% C.L. F-C interval.
(1- C.L..c IS Just the one-sided p-value for 2c.)

Or one can quote the number of sigma.
This is in fact what we are used to doing!
It all falls out naturally from the “Unified” Approach.

Bob Cousins, Terascal le, 6 Oct 2011 51



“But Bob, isn’t gtoo tightly constrained when x<<0?”

Bob: Gleser (above) points out this behavior §
IS consistent with the likelihood principle.

It does however call into question the model; = ==
the assumption of Gaussian shape and value of o.

NN

Statistician Woodroofe commenting on Mandelkern:
“The unified method...clearly provides an
Improvement over the Neyman intervals...however,
...It can produce unbelievably short intervals."

Woodroofe & Sen (2009): add uncertainty to o, leads
to looser constraint for x<<0. This could be more
fruitful approach than power constraint.

| think it’s a better fit to physicist’s thinking (and was
In fact the answer for electron neutrino mass!)

Bob Cousins, Terascale, 6 Oct 2011 52



Conclusion: Think Hard about This:

Frequentist Likelihood Bayesian Credible
Confidence Ratio
Requires prior pdf? No No Yes
Provides No No Yes
P(parameter|data)?
Random variable in Koy 1y, Koy 1, J7x
Pl € [y 1)
Coverage guaranteed? | Yes (but over- | No No
“Confidence Principle” | coverage...)
Obeys “Likelihood No Yes Yes (exception re
Principle”? Jeffreys prior)

hope you will reach the conclusion, as many of us
nave, that for “hard” problems one should compare
the three methods. For the first column F-C (actually
Kendall and Stuart) has many useful features.

Bob Cousins, Terascale, 6 Oct 2011 53



Recommended reading

Books: Among the many books available, | usually recommend the following
progression, reading the first three cover-to-cover, and consulting the last
one as needed.:

1) Philip R. Bevington and D.Keith Robinson, Data Reduction and Error
Analysis for the Physical Sciences (Quick read for undergrad-level review)

2) Glen Cowan, Statistical Data Analysis (Solid foundation for HEP)

3) Frederick James, Statistical Methods in Experimental Physics, World
Scientific, 2006. (This is the second edition of the influential 1971 book by
Eadie et al., has more advanced theory, many examples)

4) A. Stuart, K. Ord, S. Arnold, Kendall’s Advanced Theory of Statistics, Vol.
2A, 6" edition, 1999; and earlier editions of this “Kendall and Stuart”
series. (Authoritative on classical frequentist statistics; anyone
contemplating a NIM paper on statistics should look in here first!)

PhyStat conference series: Beginning with Confidence Limits Workshops in
2000, links at http://phystat-lhc.web.cern.ch/phystat-lhc/ and
http:/lwww.physics.ox.ac.uk/phystat05/

By now there are many many web pages with lists of statistics references —
Google on your favorite topic.

My Bayesian reading list is the set of citations in my Comment, Phys. Rev.
Lett. 101 029101 (2008), especially refs 2, 8, 9, 10, 11 (and 7 for model
selection)

Bob Cousins, Terascale, 6 Oct 2011 54
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Robert E. Kass and Larry Wasserman, “The Selection of Prior
Distributions by Formal Rules,” J. Amer. Stat. Assoc. 91

1343 (1996).

Telba Z. Irony and Nozer D. Singpurwalla, “Non-informative
priors do not exist: A dialogue with Jose M. Bernardo,” J.
Statistical Planning and Inference 65 159 (1997).

J.O. Berger and L.R. Pericchi, “Objective Bayesian Methods for
Model Selection: Introduction and Comparison,” in Model
Selection, Inst. of Mathematical Statistics Lecture Notes-
Monograph Series, ed. P. Lahiri, vol 38 (2001) pp .135-207

James Berger, “The Case for Objective Bayesian Analysis,”
Bayesian Analysis 1 385 (2006)

Michael Goldstein, “Subjective Bayesian Analysis: Principles
and Practice,” Bayesian Analysis 1 403 (2006)

Bob Cousins, Terascale, 6 Oct 2011



Bob Cousins, Terascale, 6 Oct 2011

BACKUP

57



The diagonal line rejects values of g partially based

on absolute y2rather than Ay? with respect to best flt.

) = (X - ; u20.
For x ==1: min y?is at £=0: ¥?(u=0)=1

UL from diagonal line is UL = 0.64.

Note that y%(x=0.64) = (-1 — 0.64)° = 2.70.

Interval only includes g for which x2 itself (not Ay? I)

Is less than “book value” Ay? =2.70 for 1-sided limit!
Such “goodness of fit” intervals are known to have
problem in other contexts.

So: try to use Ax*(g) = x*(1) — X*(Hpest)-
How to make correspondence between Ay? and C.L.?
The answer to that would not come until 1998.

Bob Cousins. Bayes...and the LHC, 12 Sep 2011

58



Confidence Intervals and Coverage

Let w4 be the unknown true value of x4 . In repeated
experiments, confidence intervals will have different
endpoints [, ], since the endpoints are functions of the
randomly sampled x.

A little thought will convince you that a fraction C.L.=1 -«
of intervals obtained by Neyman’s construction will contain
(“cover”) the fixed but unknown g . l.e.,

Pl € [, w]) = CL.=1-aq.
The endpoints y,,u, are the random variables (!).

Coverage is a property of the set of confidence intervals,
not of any one interval.

Bob Cousins, Terascale, 6 Oct 2011
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Unified and Un-Unified Intervals

110:IIIIIIIIIIIIIIIIIIIIIIIIII T TTTTTT

Mean
N\

F-C
Traditional central
Traditional upper

N

3 2 1 0 1 2 3 4 5 6 7
Measured Mean x
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Feldman-Cousins for Two-sided Bound -1 < <1, o=1
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Measured Mean x
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Bob Cousins. Bayes...and the LHC, 12 Sep 2011

10

SN 2 oo

Mean U

S5 IR VS T SN

Flip-Flop Plot

Measured Mean x

flllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIL
= //Z
- // .
: ) 4 » e
: / é
= %
ElIIIIIIIIlIIlIIIIIII IIIIlIIIlIIlIIIIlIIlE
2 -1 0 1 2 3 4 5 6 7 8

62



P, Conditional P, and Derivation of Bayes’ Theorem
In Pictures ’

@D
P(A) = —— P(B) = ——
] ]

Whole space

¢
‘B P(A|B) = D P(B|A) =

¢
PANB)= i

4 4

P(A) x P(B|A) = ‘ X 0 = = P(A N B)
4 4

P(B) x P(A|B) = ; @ = P(A N B)

Bob Cousins. Bayes...and the LHC, 12 Sep 2011 = P(BlA) - P(AlB) X P(B) / P(A)



