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“Statistics” is HARD 

• It can be very complicated as well,  but the deep 
reasons that statistical inference is HARD can be shown 
with alarmingly simple problems on Upper Limits. 

• I will assume that we really care about the answer:               
This is often not the case for Upper Limits, but suppose  
we start to “exclude” all masses of the S.M. Higgs (!). 

• I hope it becomes clear that one should perform three 
classes of caclulations (Bayesian credible intervals, 
likelihood ratio intervals, and Neyman’s confidence 
intervals) and compare. 
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Start with simple problem, add complications: 
 
Poisson process P(n|µ) = µne-µ/n!  
Measurement of n yields n=3. 
Substituting n=3 into P(n|µ) yields the                               
Likelihood function L(µ).  
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L(µ) = µ3e-µ/3!  It is tempting to consider area 
under L, but L(µ) is not a 
probability density in µ: 
 
Area under L is meaningless.  

µ 

µML = 3  

Adapted from R. Cousins,  Am. J. Phys. 63 398  (1995) 
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How to get upper (or lower) limit on µ ?  
Consider 90% upper and 90% lower limits on µ. 
Together they form an 80% central interval for µ.    
 
1) Frequentist confidence limit method: 
Find µu s.t. Poisson P(n≤3 | µu)  = 0.1.  µu = 6.68 
Find µ l s.t. Poisson P(n≥3 | µl )  = 0.1.  µ l = 1.10 
 
 



Bob Cousins, Terascale, 6 Oct 2011 5 

2) Likelihood ratio method. 
Based on L(µ) /L(µML),  equivalently: 
 

–2lnL(µ) – (–2lnL(µML)) ≤  Z2,  for Z real.  
 

Asymptotically (note regularity conditions) this interval 
approaches a frequentist central confidence interval with 
C.L. corresponding to ± Z Gaussian standard deviations. 

For 80% central interval, Z=1.28. 
90% upper and lower limits are: 
µu = 5.80 
µ l = 1.29 
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3) Bayesian method. 
Different definition of probability: degree of belief. 
With that definition, one can have pdf’s in µ (!) 
p(µ|n=3) ∝ L(µ) p(µ),  

p(µ|n=3)  = posterior pdf for µ, given n=3 
L(µ)  = Likelihood function from above for n=3 
p(µ) = prior pdf for µ, before incorporating n=3. 

 
Vast literature on Bayesian methods and priors. 
This literature has largely been ignored in HEP, 
where most papers use uniform prior for µ. 
In HEP, practice is generally what Bayesian 
statisticians call “pseudo-Bayesian”. 
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p(µ) ∝ 1 
µu = 6.68 
µ l = 1.74 

Graph of posterior 
pdf is a density, so 
area under it has 
meaning.  
 
With 10% of area 
under posterior in 
each tail, obtain 90% 
upper and lower 
credible limits. 
 
Interval of course 
depends on prior.  
 

p(µ) ∝ 1/µ  
µu = 5.32 
µ l = 1.10 



Bob Cousins, Terascale, 6 Oct 2011 8 

Deep Foundational Issue: Confidence Principle 
(Frequentist Coverage) vs Likelihood Principle  
The Likelihood ratio interval and the Bayesian 
interval use L(µ) given the observed n=3, but 
make no use of P(n|µ) for any n≠3.  This is the 
essence of the Likelihood Principle. 
The confidence interval relying on P(n≤3 | µ)  and 
P(n≥3 | µ) used probabilities of data not observed. 
This violates the L.P. 
This turns out to be a huge deal:  
In general, cannot have both coverage and L.P. 
Whole approach of tail probabilities violates L.P. ! 
 



Summary of 80% Central Intervals, n=3 
(Endpoints are 90% lower and upper limits) 
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Frequentist 
Confidence  

Likelihood 
Ratio 

Bayesian Credible 

[µl , µu] [1.10, 6.68] [1.29, 5.80] p(µ) ∝ 1    [1.74, 6.68] 
p(µ) ∝ 1/µ [1.10, 5.32] 

Requires prior pdf? No No Yes 

Provides 
P(parameter|data)? 

No No Yes 

Random variable in 
“P(µt ∈ [µl , µu])”: 

µ l , µ u  µ l , µ u  µ t 

Coverage guaranteed? 
“Confidence Principle” 

Yes (but over-
coverage…) 

No No 

Obeys “Likelihood 
Principle”? 

No  Yes Yes (exception re 
Jeffreys prior) 
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Now add complications:  
First, a known mean background b, say b=2.8. 
 
Central frequentist confidence interval shifts 
downward by 2.8.  As n decreases or b increases, 
interval can “reject” regions where no sensitivity, 
and even reject all values of µ (null interval!). 
 
Likelihood-ratio interval hits vertical axis before 
going up by Delta: running into violation of 
regularity conditions. 
 
Bayesian interval is at least superficially well-
behaved: historically was adopted by PDG 
(following Helene paper).  But how to interpret P? 



Likelihood Principle Example 
The “Karmen Problem” 

You expect background events sampled from a Poisson 
mean b=2.8, assumed known precisely.   

For signal mean µ, the total number of events n is then 
sampled from Poisson mean µ+b.   

So P(n) = (µ+b)n exp(-µ-b)/n!  
Then you see no events at all! I.e., n=0. 
L(µ) = (µ+b)0 exp(-µ-b)/0!  = exp(-µ) exp(-b) 
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Likelihood Principle Example 
The “Karmen Problem” 

You expect background events sampled from a Poisson 
mean b=2.8, assumed known precisely.   

For signal mean µ, the total number of events n is then 
sampled from Poisson mean µ+b.   

So P(n) = (µ+b)n exp(-µ-b)/n!  
Then you see no events at all! I.e., n=0. 
L(µ) = (µ+b)0 exp(-µ-b)/0!  = exp(-µ) exp(-b) 

Note that changing b from 0 to 2.8 changes L(µ) only by the 
constant factor exp(-b).  This gets renormalized away in any 
Bayesian calculation, and is irrelevant for likelihood ratios.  
So for zero events observed, likelihood-based inference 
about signal mean µ is independent of expected b. 

For essentially all frequentist confidence interval constructions, 
the fact that n=0 is less likely for b=2.8 than for b=0 results in 
narrower confidence intervals for µ as b increases.  Clear 
violation of the L.P. 
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Likelihood Principle Discussion 
We will not resolve this issue, but should 

be aware of it. 
• See book by Berger & Wolpert, but be 

prepared for the “Stopping Rule 
Principle” to set your head spinning. 

• When frequentist intervals and limits 
badly violate the L.P., use great caution 
in interpreting them! 

• And when Bayesian inferences badly 
violate the Confidence Principle 
(frequentist coverage), again use great 
caution! 
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Poisson with Known Mean Background 

1996 PDG RPP, a la Helene or Zech 1998 PDG RPP, a la Feldman & Cousins 
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Now add systematic uncertainties:  
1) Uncertainty on mean background b. 
2) Uncertainty on product of luminosity and 
efficiencies. 
This complicates things enormously! 
 
Takes us into territory of “nuisance parameters” and 
research problems in professional statistics literature 
for which there is still no clearly preferred solution. 
Cousins review at PhyStat05: http://www.physics.ox.ac.uk/phystat05/proceedings/ 
Demortier review at PhyStat07: http://phystat-lhc.web.cern.ch/phystat-lhc/2008-001.pdf  

 
Remember: we would like a numerical answer for 
which “90%” corresponds, at least approximately, 
to some definition of probability!   
 
 

http://www.physics.ox.ac.uk/phystat05/proceedings/�
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Treatment of Nuisance Parameters within Each Paradigm 
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1) Frequentist Confidence Intervals.   
(Full) Neyman construction.  (See my HCPSS lectures.) 
For each point in the subspace of nuisance parameters, 
treat them as fixed true values and perform a Neyman 
construction for multi-D confidence regions in the full 
space of all parameters.  Project these regions onto the 
subspace of the parameter of interest. 
 
Problem(s): Typically intractable and causes 
overcoverage, and therefore rarely attempted.  
Tractability recovered by doing the construction in the 
lower dimensional space of the profile likelihood 
function.  Not well-studied. 



Nuisance Parameters within Each Paradigm (Cont.) 
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2) Likelihood intervals: “Profile likelihood Method”. 
For each value of the parameter of interest, search the 
full subspace of nuisance parameters for the point at 
which the likelihood is maximized.  Associate that value 
of the likelihood with that value of the parameter of 
interest.  The set of such likelihoods is called the profile 
likelihood, and is a function only of the parameter of 
interest.  The math is now reduced to the case of no 
nuisance parameters.  
(Familiar to many as MINUIT MINOS.) 
 
Problem(s): This has a reputation of underestimating the 
true uncertainties.  In Poisson problems,  this is partially 
compensated by effect due to discreteness of n.              
In HEP, profile likelihood (MINUIT MINOS) gives good 
performance in many problems. 



Nuisance Parameters within Each Paradigm (Cont.) 
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3) Bayesian credible intervals:  
Construct a multi-D prior pdf P(parameters) for the 
space spanned by all parameters; multiply by 
P(data|parameters) for the data obtained; integrate 
over the full subspace of all nuisance parameters; you 
are left with the posterior pdf for the parameter of 
interest. The math is now reduced to the case of no 
nuisance parameters. 
 
Problem(s): The multi-D prior pdf is a problem for both 
subjective and non-subjective priors.  Until very 
recently, in HEP there has been almost no use of the 
favored non-subjective priors (reference priors of 
Bernardo and Berger). The high-D integral can be a 
technical problem, more and more overcome by 
Markov Chain Monte Carlo. 
 



Hybrid Techniques: Introduction to Pragmatism  
 

Given these difficulties, it is common in HEP to 
relax foundational rigor and: 

 
• Treat nuisance parameters in a Bayesian way while 

treating the parameter of interest in a frequentist way, or 
• Treat nuisance parameters by profile likelihood while 

treating parameter of interest another way, or 
• Use the Bayesian framework (even without the priors 

recommended by statisticians), but evaluate the 
frequentist performance.                                                     
In effect (as in profile likelihood) one gets approximate 
coverage while respecting the L.P. 

• The properties of the result are more important than the 
“derivation” ! 
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Example of treating nuisance parameter in a 
Bayesian way while treating parameter of interest 
in a frequentist way 

Luc Demortier pointed out that 
result is same as G. Box’s prior 
predictive p-value (1980). 

A main point of this “C-H” 
paper was that for small n, 
effect of syst error on 
upper limit went as square 
of relative syst error: 
10% syst error has 
negligible effect on limit. 
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Problems with treating nuisance parameters in a 
Bayesian way while treating parameter of interest 
in a frequentist way 
 
1) Inherits all the unresolved issues of priors from 
Bayesian methods. 
 

2) Since method mixes definitions of P, results have 
no guaranteed properties and must be studied on 
case-by-case basis. 
a) Numerous studies have shown that results for 

upper limits at 90-95% C.L. (the C-H case) are 
reasonable, though typically over-covering. 

b) Kyle Cranmer showed at Oxford PhyStat (2005) 
that claimed 5-sigma discovery could really be 4.2. 



About Those Priors… 
• There are many flavors of Bayesians among 

statisticians, in two broad categories: 
– “Subjective”: P is personalistic degree of belief.  

Prior encodes that. Strong foundational arguments of 
“coherence”. (B. DeFinetti, J. Savage, et al.) 

– “Objective” (self-description): uses “formal rules” for 
priors, attempting to “let the data speak as loud as 
possible”. (H. Jeffreys, J. Bernardo, J. Berger, et al.) 

• “Non-informative” priors do not exist: a prior always 
inputs information! 

• Improper priors (e.g., uniform on [0,∞]) can cause all 
kinds of trouble: Equalities become proportionalities! 
Stats literature has important insights on how to avoid 
some traps. 
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Can “subjective” be taken out of “degree of belief”? 

• A bright idea, vigorously pursued by physicist Harold 
Jeffreys in in mid-20th century: Can one define a prior 
p(µ) which contains as little information as possible, so 
that the posterior pdf is dominated by the likelihood? 

• The really really thoughtless idea*, recognized by 
Jeffreys as such, but dismayingly common in HEP: just 
choose p(µ) uniform in whatever metric you happen to 
be using!  

• The “objective” priors from Jeffreys’s rule and from 
“reference priors of Bernardo define the prior based on 
properties of the measuring apparatus, not from 
thinking about the parameter! 
 

*In spite of having a fancy name,  Laplace’s Principle of Insufficient Reason 
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“Uniform Prior” Requires a Choice of Metric 
“Jeffreys Prior”  uses a prior uniform in a metric related to the 

Fisher information (technical term).   
Poisson signal mean µ, no background: p(µ) = 1/sqrt(µ) 
Poisson signal mean µ, mean background b: p(µ) = 1/sqrt(µ+b) 
Unbounded mean µ of gaussian: p(µ) = 1 
RMS deviation of a Gaussian when mean fixed: p(σ) = 1/σ 

Binomial parameter ρ, 0 ≤ ρ ≤1 : p(ρ) = ρ-1/2(1 - ρ)-1/2 = Beta(1/2,1/2) 
If measuring apparatus has Gaussian resolution in m, the prior 

is uniform in m.   
If it has Gaussian resolution in m2, the prior is uniform in m2. 
Jeffreys prior yields pdfs which are consistent under 

transformation into different metrics. 
Welch and Peers famously showed that Bayesian intervals with 

Jeffrey’s prior have good coverage (to order 1/n). 
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Jim Berger: 
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Sensitivity Analysis 
• Since a Bayesian result depends on the prior 

probabilities, which are either personalistic or with 
elements of arbitrariness, it is widely recommended by 
Bayesian statisticians to study the sensitivity of the 
result to varying the prior. 
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Bounded Gausian problem: 
Measurement x is unbiased Gaussian estimate of µ:  

                 p(x |µ) ∼ e –(x – µ)2 / 2σ2. 
What is the 95% C.L. Upper Limit (UL) for µ if the 
physical model for p(x |µ) exists only for µ ≥ 0 ?  
Without the constraint on µ, traditional frequentist 
and Bayesian methods both yield: 
                           UL = x + 1.64 σ, 
and 95% C.L. central confidence interval is x ± 1.96 σ. 
See next slide: 
 
 
 Bob Cousins, Terascale, 6 Oct 2011 27 



Bob Cousins, Terascale, 6 Oct 2011 28 

Graphical display of intervals is a confidence belt: 
Confidence interval include all values of µ for which 
horizontal blue line is intersected by vertical line 
drawn at measured value of x. 

Upper limit = x + 1.64 σ Central interval = x ± 1.96 σ 

µ=0 
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With the constraint µ ≥ 0, the story takes us not only 
to the heart of Bayesians-frequentist disputes, but 
also to frequentist criticisms of Neyman & Pearson 
by Sir Ronald Fisher and Sir David Cox! 
 

For x < −1.64 σ with UL, and for x < −1.96 σ with central 
intervals, the confidence interval is the null set! 
I refer to the plot on left as the “diagonal line”.  

µ=0 



So, what did people in HEP do?  
The problem arose in experiments with true µ << σ, 
so that measured x<0 was common. 
Some chose to move x<0 to physical boundary of µ. 
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Phys Lett 19 253 (1965) 
x = – 0.5 ± 2.5 
Set x=0 and proceeded.   
 
 
 
 
 

PRL 19 1495 (1967) 
x = – 0.06 ± 0.14 
Set x=0 and proceeded.   
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With this ad hoc patch, UL = max(x,0) + 1.64 σ.      
“95% C.L.” intervals had 100% coverage (!)  if µ < 1.64   
 

I’ll refer to this as the 
“original Diagonal plus Horizontal Line”,  
“DHL” for short.  
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Phys Rev D20 
2692 (1979) 
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The 1979 prescription alleged 
to be that of the PDG was 
numerically equivalent to:  
p(x |µ)  ∼  e –(x – µ)2 / 2σ2. 
⇒L (x0|µ) ∼ e –(x0 – µ)2 / 2σ2. 
Prior p(µ) ∼ 1 if µ ≥ 0, else 0.  
Posterior p(µ|x0) ∝ L(µ) p(µ). 
This is a prob. density in µ. 
Renormalize and integrate to 
find µUL with 5% tail probability. 
This prescription did appear in 
PDG Review of Particle Physics 
since 1986. 
Belt of Bayesian UL at right. 

Daum, et al. 
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2002: Physicist Mark Mandelkern writes Statistics 
review article asking statisticians for advice (!) 

…                                                          

Editor asks five statisticians to Comment.            
Leon Jay Gleser is truly incisive, emphasizing: 
“…the predata measure of risk is not necessarily the 
correct postdata measure of uncertainty.” 
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Insights by Sir Ronald Fisher in 1956  
and Sir David Cox in 1958 pointed to  
situations in which Most Powerful  
Neyman-Pearson tests gave answers  
clearly not relevant to the data at hand!   
The basic idea is that sometimes there are 
“recognizable subsets” of the sample space (x) for 
which the N-P C.L. (computed from the whole space) 
is in conflict with properties of the subset. 
In our problem, we are clearly in this situation when 
the “upper limit” is null or unphysical: conditional 
probability of coverage within that recognizable part 
of the sample space is zero! 
A whole literature.  First, a simple clean example. 
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Let p(x |µ)  =  1 if µ –½ ≤ x ≤ µ +½ ; 0 otherwise. 
 
 
 
Two measurements x1,x2 are made.   
What is a central confidence interval for µ ? 
Most Powerful one-sided N-P tests lead to the      
68% C.L. central interval µ = (x1 + x2)/2 ± 0.22.  
This uncertainty is determined by the ensemble of   
all possible measurements x1,x2.   
It is a pre-data assessment of uncertainty.  

P(x|µ) 

µ µ+½ µ−½ 

x 



But once data is in hand, if |x1–x2| is close to 1, we 
know that we have a much more accurate 
measurement of µ for our particular “lucky” data.  
 
 
 
 
 
The “relevant” post-data assessment of uncertainty 
about µ depends on |x1–x2|, which can be used to 
partition the sample space into recognizable 
subsets.  
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L1(µ) 

x1 

µ 

L2(µ) 

x2 

µ 
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In clean cases with such as this, the coverage of the 
conditional statements in the unconditional 
ensemble is exact, though power is less.   
In the 1980’s, Günter Zech attempted (in the related 
Poisson problem) to build in exact conditional 
coverage from the beginning of the construction of 
upper limits on a bounded parameter.  His 
calculation, which inspired CLS, leads to              
over-coverage in the unconditional ensemble. 
In 2002, statistician Gleser pointed us to 1959+ 
literature on conditional coverage as a tool for 
evaluating confidence sets built to have perfect 
unconditional coverage. 



Bob Cousins, Terascale, 6 Oct 2011 39 

More from Leon Jay Gleser 

“The subset of samples having the property that the 
sample mean is two standard deviations to the left of 
zero would have been called a ‘recognizable subset’ 
by Fisher (1956).”  
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More from Leon Jay Gleser 

“Buehler (1959), and later Robinson (1979), 
introduced the notion of conditionally admissible 
tests and confidence intervals—those procedures 
whose frequentist control of error (coverage 
probability, level of significance) was not adversely 
affected by the realization that a given data set 
belonged to a recognizable subset of samples.” 
 
Very enlightening literature – see my recent post  

http://arxiv.org/abs/1109.2023 

http://arxiv.org/abs/1109.2023�
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More from Leon Jay Gleser 

“…any confidence intervals that keep a constant 
width as X becomes more negative, as some of the 
physicists seem to desire, are indicating not 
necessarily what the data shows through the model 
and likelihood, but rather desiderata imposed 
external to the statistical model.” 
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Deep Connections to Bayesian Statistics 
Furthermore, a number of theorems have been 
proved in the last 50 years making connections 
between: 
• Good frequentist conditional coverage properties  
• The existence of any prior for which the Bayesian 

credible set resembles the confidence set. 
Taking “resembles” to the extreme leads to the 
likelihood principle and breakdown in unconditional 
coverage.   
But as a useful guide for when post-data inference 
can be misleading, this is a remarkable deep 
connection between frequentist confidence intervals 
(statements about P(data|parameter)) and credible 
intervals (statements about P(parameter|data)) ! 
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Deep Connections to Bayesian Statistics (cont.) 

Beginning in 2000, statistician Jim Berger has 
argued at four of our meetings that bad conditional 
properties can be so hard to detect in frequentist 
methods that one is better off using Bayesian 
methods with priors known to have approximate 
unconditional coverage. 
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1) 1960’s and beyond:                                  
UL = max(x, 0) + 1.64 σ   

2) 1979 “PDG” (real 1986 PDG) and beyond:                
Bayesian with uniform prior 

3) 1997: Alex Read et al. (LEP)                   
CLS 

4) 1997: Feldman and Cousins (NOMAD)      
Unified Approach 

5) 2010: Power Constrained Limits;   
Cowan, Cranmer, Gross, Vitells (ATLAS): 
UL = max(0, max(x, xPCL) + 1.64 σ)  
 

 

Five methods used for bounded Gaussian mean problem 



Neyman’s Confidence Interval construction, 1934-37 

Given p(x|µ ) from a model: 
For each value of µ, draw a 
horizontal acceptance 
interval [x1,x2] such that                       
p(x ∈ [x1,x2] | µ ) =  1 – α.   
Upon performing expt and 
obtaining the value x0 , draw 
the vertical line through x0.   
The vertical confidence 
interval [µ1, µ2] with              
C.L. = 1 – α is the union of 
all values of µ for which the 
corresponding acceptance 
interval is intercepted by the 
vertical line. 

45 Bob Cousins, Terascale, 6 Oct 2011 
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Unified Approach of Feldman and Cousins 
Starting points:                              
1) Remove null intervals               
2) 95% coverage for all µ. 
Immediately: 95% acceptance 
interval for µ =0 is [– ∞, 1.64].                      
Leads to Unified Approach: [µ1,µ2] 
1) For low and negative x, µ1=0.  
2) µ =0 excluded when rejected 

by one-tailed test  at 1–C.L. (!) 
3) At large x, [µ1,µ2] converges to 

central interval. 
[Above seen by S. Ciampolillo, 
who also moved x<0 to 0.] F-C: 
4) Interval based on ∆χ2 (L.R.) 
5) Cures “flip-flop” problem. 
 
 

Phys Rev D57 3873 (1998)  



“Test for θ=θ0” ↔  
“Is θ0 in confidence interval for θ” 

Using the Likelihood Ratio Test, this 
correspondence is the basis of the 
“Unified Approach” 
intervals/regions of F-C.  
In Gaussian problem, –2ln(LR) = ∆χ2. 
“Unified Approach” solves “flip-
flopping problem – see paper. 
Generalizes well. 
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Kendall and Stuart 

Phys. Rev. D57 3873 (1998) 
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“But Bob, I insist on an upper limit!” 
“Do I need to define upper for you?” 

Bob:  Let’s consider two deep points. 
1) Insisting on a CCGV upper limit means insisting 
on not rejecting µ = 0 at 95% while simultaneously 
rejecting µ which has a better ∆χ2 than µ = 0 (say 
when x = 2).   This is related to the “extra” power of 
CCGV upper limit when it  rejects µ = 1 when x = –1. 
2) Insisting on an upper limit means insisting on 
over-coverage (unless null intervals are brought 
back).  Intervals with correct coverage, based on ∆χ2, 
allow for more relevant and interpretable post-data 
inference. 
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“But Bob, CCGV intervals have more power!” 

Bob: 
The most powerful confidence belt is the original 
diagonal line with null intervals.  It also has perfect 
coverage.  
Yet it bothers most of us.  Power is a pre-data 
concept which must be supplemented by post-data 
considerations. 
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“But Bob, I don’t want to exclude µ=0 unless I have 5σ! ” 

Bob:  Let’s consider two more points. 
1) Reporting a 95% interval which does not include 
µ=0 is not declaring discovery (or evidence, or 
indication, or…).   
The F-C interval is reporting those values of µ which 
have the best ∆χ2(µ) = χ2(µ) – χ2(µbest) given the 
observed x.  That would seem to be very useful! 
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“But Bob, I don’t want to exclude µ=0 unless I have 5σ! ” 

 
2) A very useful number to report is that value of C.L. 
for which µ=0 is just included in the F-C interval.   
E.g., for x=2, µ=0 is in the 97.72% C.L. F-C interval.  
(1- C.L.FC is just the one-sided p-value for 2σ.)           
Or one can quote the number of sigma.                  
This is in fact what we are used to doing!                    
It all falls out naturally from the “Unified” Approach. 
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“But Bob, isn’t µ too tightly constrained when x<<0?” 

Bob: Gleser (above) points out this behavior  
is consistent with the likelihood principle.   
It does however call into question the model:          
the assumption of Gaussian shape and value of σ. 
Statistician Woodroofe commenting on Mandelkern: 
``The unified method…clearly provides an 
improvement over the Neyman intervals…however, 
…it can produce unbelievably short intervals.'‘ 
Woodroofe & Sen (2009): add uncertainty to σ, leads 
to looser constraint for x<<0. This could be more 
fruitful approach than power constraint. 
I think it’s a better fit to physicist’s thinking (and was 
in fact the answer for electron neutrino mass!) 



Conclusion: Think Hard about This: 
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Frequentist 
Confidence  

Likelihood 
Ratio 

Bayesian Credible 

Requires prior pdf? No No Yes 

Provides 
P(parameter|data)? 

No No Yes 

Random variable in 
“P(µt ∈ [µl , µu])”: 

µ l , µ u  µ l , µ u  µ t 

Coverage guaranteed? 
“Confidence Principle” 

Yes (but over-
coverage…) 

No No 

Obeys “Likelihood 
Principle”? 

No  Yes Yes (exception re 
Jeffreys prior) 

I hope you will reach the conclusion, as many of us 
have, that for “hard” problems one should compare 
the three methods.  For the first column F-C (actually 
Kendall and Stuart) has many useful features. 



Recommended reading 
Books: Among the many books available, I usually recommend the following 

progression, reading the first three cover-to-cover, and consulting the last 
one as needed: 

1) Philip R. Bevington and D.Keith Robinson, Data Reduction and Error 
Analysis for the Physical Sciences (Quick read for undergrad-level review) 

2) Glen Cowan, Statistical Data Analysis (Solid foundation for HEP) 
3) Frederick James, Statistical Methods in Experimental Physics, World 

Scientific, 2006. (This is the second edition of the influential 1971 book by 
Eadie et al., has more advanced theory, many examples) 

4) A. Stuart, K. Ord, S. Arnold, Kendall’s Advanced Theory of Statistics, Vol. 
2A, 6th edition, 1999; and earlier editions of this “Kendall and Stuart” 
series.  (Authoritative on classical frequentist statistics; anyone 
contemplating a NIM paper on statistics should look in here first!) 

PhyStat conference series: Beginning with Confidence Limits Workshops in 
2000, links at http://phystat-lhc.web.cern.ch/phystat-lhc/ and 
http://www.physics.ox.ac.uk/phystat05/ 

By now there are many many web pages with lists of statistics references – 
Google on your favorite topic.   

My Bayesian reading list is the set of citations in my Comment, Phys. Rev. 
Lett. 101 029101 (2008), especially refs 2, 8, 9, 10, 11 (and 7 for model 
selection) 
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BACKUP 
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The diagonal line rejects values of µ partially based 
on absolute χ2 rather than ∆χ2 with respect to best fit. 
χ2(µ) = (x – µ)2 ; µ ≥ 0. 
For x = –1: min χ2 is at µ=0:  χ2(µ=0) = 1.  
UL from diagonal line is UL = 0.64. 
Note that χ2(µ =0.64) = (–1 – 0.64)2 =  2.70.  
Interval only includes µ  for which χ2 itself (not ∆χ2 !) 
is less than “book value” ∆χ2 = 2.70 for 1-sided limit!  
Such “goodness of fit” intervals are known to have 
problem in other contexts. 
So: try to use ∆χ2(µ) = χ2(µ) – χ2(µbest). 
How to make correspondence between ∆χ2 and C.L.?  
The answer to that would not come until 1998. 
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Confidence Intervals and Coverage 
Let µt be the unknown true value of µ . In repeated 
experiments, confidence intervals will have different 
endpoints [µ1, µ2], since the endpoints are functions of the 
randomly sampled x.                                                          
A little thought will convince you that a fraction C.L. = 1 – α 
of intervals obtained by Neyman’s construction will contain 
(“cover”) the fixed but unknown µt . I.e.,   
P(µt ∈ [µ1, µ2])  =  C.L. = 1 – α.   
The endpoints µ1,µ2 are the random variables (!).  
Coverage is a property of the set of confidence intervals, 
not of any one interval. 
 

Bob Cousins, Terascale, 6 Oct 2011 59 



Bob Cousins.  Bayes...and the LHC, 12 Sep 2011 60 

F-C 
Traditional central 
Traditional upper 

Unified and Un-Unified Intervals 
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Feldman-Cousins for Two-sided Bound -1 ≤ µ ≤ 1, σ=1  
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Flip-Flop Plot 



P, Conditional P, and Derivation of Bayes’ Theorem       
in Pictures 

A B 
Whole space 

P(B) × P(A|B) =  × = 

P(A)  =  P(B)  =  

P(A ∩ B) =  

P(B|A) =  P(A|B) =  

P(A) × P(B|A) =  × = =   P(A ∩ B)  

=   P(A ∩ B)  

⇒  P(B|A)  = P(A|B) × P(B) / P(A)  Bob Cousins.  Bayes...and the LHC, 12 Sep 2011 63 


