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Setting limits on Poisson parameter

Consider again the case of finding n = n, + n, events where
n, events from known processes (background)
n, events from a new process (signal)

are Poisson r.v.s with means s, b, and thus n = n_ + n,

1s also Poisson with mean =s + b. Assume b 1s known.

Suppose we are searching for evidence of the signal process,
but the number of events found is roughly equal to the
expected number of background events, e.g., b = 4.6 and we
observe n_,, = 5 events.

The evidence for the presence of signal events 1s not
statistically significant,

— set upper limit on the parameter s.
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Upper limit for Poisson parameter

Find the hypothetical value of s such that there 1s a given small
probability, say, y = 0.05, to find as few events as we did or less:

Nobs n
v = P(n < nops; s, b) = Z (s +0) o~ (51D)

n=0

n!

Solve numerically for s = s
confidence level of 1-v.

up» this gives an upper limit on s at a

Example: suppose b =0 and we find n_ = 0. For 1-y=0.95,
vy=P(n=20;5,b=0)=¢° — sup=—Iny=3.00
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Calculating Poisson parameter limits

To solve for s,,, 5,,, can exploit relation to x* distribution:

. D g
Slo = lF_21 (a;2n) — b Quantile of y~ distribution
2 X

/

12 T T T T T

1 =
sup=_F 5 (1-:2(n+1)~b =
For low fluctuation of #n the ©
formula can give negative
result for s, ,; 1.e. confidence

interval 1s empty.
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Limits near a physical boundary

Suppose e.g. b = 2.5 and we observe n = 0.

[f we choose CL = 0.9, we find from the formula for s,

Physicist:
We already knew s > 0 before we started; can’t use negative
upper limit to report result of expensive experiment!

Statistician:
The interval 1s designed to cover the true value only 90%
of the time — this was clearly not one of those times.

Not uncommon dilemma when limit of parameter is close to a
physical boundary.
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Expected limit for s =0
Physicist: I should have used CL = 0.95 — then s,, = 0.496
Even better: for CL = 0.917923 we gets = 107!

Reality check: with b = 2.5, typical Poisson fluctuation in 7 1s
at least V2.5 = 1.6. How can the limit be so low?

Look at the mean limit for the [
no-signal hypothesis (s = 0)
(sensitivity).

Distribution of 95% CL limits
with 5 =12.5,5 = 0. - —N
Mean upper limit = 4.44 |

| | | [ 1l ||-||ﬂ|,1|_||||
0 5 10 15

Sup
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The Bayesian approach to limits

In Bayesian statistics need to start with ‘prior pdf’ a(6), this
reflects degree of belief about 6 before doing the experiment.

Bayes’ theorem tells how our beliefs should be updated in
light of the data x:

_ L))
p(6l2) = (o n a7 O)

Integrate posterior pdf p(60 | x) to give interval with any desired
probability content.

For e.g. n ~ Poisson(s+b), 95% CL upper limit on s from

Sup
0.95 = / p(s|n) ds

— 0
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Bayesian prior for Poisson parameter
Include knowledge that s >0 by setting prior s(s) = 0 for s<0.

Could try to reflect “prior ignorance’ with e.g.

1 s>0
7'('(8):{

O otherwise

Not normalized but this 1s OK as long as L(s) dies off for large s.

Not invariant under change of parameter — if we had used instead
a flat prior for, say, the mass of the Higgs boson, this would
imply a non-flat prior for the expected number of Higgs events.

Doesn’t really reflect a reasonable degree of belief, but often used
as a point of reference;

or viewed as a recipe for producing an interval whose frequentist
properties can be studied (coverage will depend on true s).
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Bayesian interval with flat prior for s

Solve numerically to find limit s,

For special case b = 0, Bayesian upper limit with flat prior
numerically same as classical case (‘coincidence’).

Otherwise Bayesian limit 1s
everywhere greater than
classical (‘conservative’).

Never goes negative.

Bayesian v.up (1-B=0.95)

Doesn’t depend on b 1f n = 0.
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Priors from formal rules

Because of difficulties in encoding a vague degree of belief

in a prior, one often attempts to derive the prior from formal rules,
e.g., to satisfy certain invariance principles or to provide maximum
information gain for a certain set of measurements.

Often called “objective priors”
Form basis of Objective Bayesian Statistics

The priors do not reflect a degree of belief (but might represent
possible extreme cases).

In a Subjective Bayesian analysis, using objective priors can be an
important part of the sensitivity analysis.
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Priors from formal rules (cont.)

In Objective Bayesian analysis, can use the intervals in a
frequentist way, 1.e., regard Bayes’ theorem as a recipe to produce
an interval with certain coverage properties. For a review see:

Robert E. Kass and Larry Wasserman, The Selection of Prior Distributions by

Formal Rules, J. Am. Stat. Assoc., Vol. 91, No. 435, pp. 1343-1370 (1996).

Formal priors have not been widely used in HEP, but there 1s
recent interest in this direction; see e.g.

L. Demortier, S. Jain and H. Prosper, Reference priors for high
energy physics, Phys. Rev. D 82 (2010) 034002,
arxiv:1002.1111 (Feb 2010)
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Jeffreys’ prior

According to Jeffreys’ rule, take prior according to

7(0) x \/det(1(8))
where

L(x|0) dx

I..(6) = — 0% In L(x|0) B _/ 0%In L(x|0)
Y N | ae'ia‘gj B ("_)9,1‘(‘:)«9]'

1s the Fisher information matrix.

One can show that this leads to inference that is invariant under
a transformation of parameters.

For a Gaussian mean, the Jeffreys’ prior 1s constant; for a Poisson
mean u it is proportional to 1/Nu.
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Jeffreys’ prior for Poisson mean

Suppose n ~ Poisson(u). To find the Jeffreys’ prior for u,

ey, 0% In L o

n! 0112 I

() o</ I(p) = —

So e.g. for = s + b, this means the prior a(s) ~ 1/\(s + b),
which depends on b. Note this 1s not designed as a degree of
belief about s.
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Bayesian limits with uncertainty on b

Uncertainty on b goes into the prior, e.g.,

w(s,b) = mws(s)mp(b) (or include correlations as appropriate)
ns(s) = const, ~1/vVs+Db...
1 2 /5,2
(b)) = —— ¢ (b=bmeas)®/207 (5 \yhatever
p(b) Vanon ( )

Put this into Bayes’ theorem,
p(s,bn) o L(n|s, b)m(s,b)

Marginalize over the nuisance parameter b,

p(sln) = /p(s,b{n) db

Then use p(s|n) to find intervals for s with any desired
probability content.
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Digression: marginalization with MCMC

Bayesian computations involve integrals like

p(6ol2) = [ p(bo, 01]w) o1 .

often high dimensionality and impossible 1n closed form,

also impossible with ‘normal’ acceptance-rejection Monte Carlo.

Markov Cham Monte Carlo (MCMC) has revolutionized
Bayesian computation.

Google for ‘MCMC’, ‘Metropolis’, ‘Bayesian computation’, ...

MCMC generates correlated sequence of random numbers:
cannot use for many applications, e.g., detector MC;
effective stat. error greater than Vn .

—

Basic idea: sample multidimensional @,
look, e.g., only at distribution of parameters of interest.
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MCMC basics: Metropolis-Hastings algorithm
Goal: given an n-dimensional pdf p(0) |,

generate a sequence of points 51, 52, 53, .

Proposal density q(6; 6p)

_ eg Gaussian centred
2) Generate 0 ~ q(6: 6p) about 0o

1) Start at some point 50

1

3) Form Hastings test ratio a = min

p(0)q(0o; ) }
p(00)q(8; 6p)

4) Generate u ~ Uniform|[0, 1]

5) If u < «, 51 =0 , +— move to proposed point

else 9, = 0y <« old point repeated
6) Iterate
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Metropolis-Hastings (continued)

This rule produces a correlated sequence of points (note how
cach new point depends on the previous one).

For our purposes this correlation 1s not fatal, but statistical
errors larger than naive v/n .

The proposal density can be (almost) anything, but choose
so as to minimize autocorrelation. Often take proposal
density symmetric: q(0; 0g) = q(0g; 0)

p(6)
p(0p)

Le. if the proposed step is to a point of higher p(6) , take it;
if not, only take the step with probability p(8)/p(0g) -
If proposed step rejected, hop 1n place.

Test ratio 1s (Metropolis-Hastings): o = min |1,
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More on priors

Suppose we measure n ~ Poisson(s+b), goal i1s to make inference
about s.

Suppose b 1s not known exactly but we have an estimate b
with uncertainty o.

For Bayesian analysis, first reflex may be to write down a
Gaussian prior for b,

m(b) = 1 o—(b=0)%/o}

B V2mo,

But a Gaussian could be problematic because €.g.
b > 0, so need to truncate and renormalize;
tails fall off very quickly, may not reflect true uncertainty.
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Gamma prior for b

What 1s 1n fact our prior information about 5? It may be that
we estimated b using a separate measurement (e.g., background
control sample) with

m ~ Poisson(th) (7= scale factor, here assume known)

Having made the control measurement we can use Bayes’ theorem
to get the probability for b given m,

,..-b e _
m(blm) oc P(m|b)my(b) ox (75) e ()

m!
If we take the “original” prior (b) to be to be constant for b > 0,

then the posterior si(b|m), which becomes the subsequent prior
when we measure 7 and infer s, 1s a Gamma distribution with:

mean= (m+ 1)/t
standard dev. =V(m + 1) /T
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Gamma distribution

1
: _ a—1 _—x/p3
Ir, & = X (&
FElx] = ap
Viz] = ap?
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Frequentist approach to same problem

In the frequentist approach we would regard both variables

n ~ Poisson(s+b)
m ~ Poisson(7bh)

as constituting the data, and thus the full likelihood function is

L(s b) _ (s + b)ne_(Sij) (7h)™ J—

n! m!

Use this to construct test of s with e.g. profile likelihood ratio
A(s) = 25:0)
L(5,0)

Note here that the likelihood refers to both » and m, whereas
the likelihood used 1n the Bayesian calculation only modeled #.
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Choice of test for limits

Often we want to ask what values of ¢ can be excluded on
the grounds that some lower value of 1 describes the data better.

To do this take the alternative to correspond to lower values of .
The critical region to test u thus contains low values of the data.
— One-sided (e.g., upper) limit.

In other cases we want to exclude ¢ on the grounds that some other
measure of incompatibility between 1t and the data exceeds some
threshold (e.g., likelihood ratio wrt two-sided alternative).

The critical region can contain both high and low data values.

— Two-sided or unified (Feldman-Cousins) intervals.
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A test statistic for upper limits

For purposes of setting an upper limit on u can use

Q>

)

where  A(p) = —
0 L > i L(jt,

D>

—2InAp) p<p L,
du = | )

I.e. for purposes of setting an upper limit, take critical region of
test to correspond to data outcomes better described by a
lower value of u.

From observed g, find p-value:  pp = / f(qu|p) dqy

4y ,0bs

Large sample approximation: p, = 1— @(\/(E)

95% CL upper limit on u 1s highest value for which p-value 1s
not less than 0.05.
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Unified (Feldman-Cousins) intervals

We can use directly

D

L(p.
L(ji.

)
)

t, =—2InA(p) where  A(p) =

>

as a test statistic for a hypothesized wu.

Large discrepancy between data and hypothesis can correspond
either to the estimate for u being observed high or low relative

to u.

This 1s essentially the statistic used for Feldman-Cousins intervals

(here also treats nuisance parameters).
G. Feldman and R.D. Cousins, Phys. Rev. D 57 (1998) 3873.

Lower edge of interval can be at u = 0, depending on data.
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Distribution of »

Using Wald approximation, f (¢ |u’) 1s noncentral chi-square
for one degree of freedom:

| 11 1 w— '\ 1 p— '\
, — Y — AN — — —
Fltulp') = NRL [cxp ( 5 (\/7‘“ + - > + exp 5 (wfp - )

Special case of u= u ' 1s chi-square for one d.o.f. (Wilks).

The p-value for an observed value ot 7, 1s
pp=1—=F(tup)=2(1-2 (\/5))

and the corresponding significance is
Zy =07 (1—p,) =" (20 (V) — 1)
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Upper/lower edges of F-C interval for u versus b
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Lower edge may be at zero, depending on data.

For n =0, upper edge has (weak) dependence on b.
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Feldman-Cousins discussion

The initial motivation for Feldman-Cousins (unified) confidence
intervals was to eliminate null intervals.

The F-C limits are based on a likelihood ratio for a test of u
with respect to the alternative consisting of all other allowed values

of 1 (not just, say, lower values).

The interval’s upper edge 1s higher than the limit from the one-
sided test, and lower values of © may be excluded as well. A
substantial downward fluctuation in the data gives a low (but
nonzero) limit.

This means that when a value of u 1s excluded, it 1s because
there 1s a probability a for the data to fluctuate either high or low
in a manner corresponding to less compatibility as measured by
the likelihood ratio.
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Coverage probability of intervals for Poisson mean

Probability for interval to cover s as function of s
(note effect of Poisson discreteness).
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Summary for first three lectures

Using a frequentist statistical test we can:
test the background-only model (rejection = discovery),
test possible signal models (rejection leads to limits).

For large enough data sample, approximate formulae allow for
easy evaluation of discovery/exclusion significance.

The important properties of limits include:
specified probability to cover true parameter.

Bayesian approach extends probability to degree of belief,
and also produce intervals with good frequentist properties.

We saw in the Poisson example that with a one-sided test,
all parameter values can be excluded (null interval).
We will return to this point on Friday.
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Extra slides
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PHYSTAT 2011 :
( ) Reference priors

divergence of posterior relative to prior:

Dlm,p| = / p(flz) In pfr?‘;)) do

This maximizes the expected posterior information
about 6 when the prior density is z(6).

Finding reference priors “easy” for one parameter:

Theorem 1 Let 2¥) = {z,,..., 2.} denote k conditionally inde-

pendent observations from M. For sufficiently large k
m(6) o< exp {E w4l log pi(6 | 2*))]}
where p(8 2®) o [[5, p(z; | 0) h(6) is the posterior which cor-

responds to any arbitrarily chosen strictly positive prior function

h(0) which makes the posterior proper for any z'*.
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(PHYSTAT 2011) J. Bernardo,
Reference priors (2) L. Demortier,
M. Pierini
Actual recipe to find reference prior nontrivial;
see references from Bernardo’s talk, website of

Berger (www.stat.duke.edu/~berger/papers) and also
Demortier, Jain, Prosper, PRD 82:33, 34002 arX1v:1002.1111:

L m(0)
mr(9) = im TS

exp { / p(zgy | 0) In [ T §<(§§)|'§>)f<(§))de] dw(’”}

with m.(6)

Prior depends on order of parameters. (Is order dependence
important? Symmetrize? Sample result from different orderings?)
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(PHYSTAT 2011) L. Demortier

There still seem to be some important puzzles regarding reference priors:

@ What is the proper probabilistic interpretation of a reference posterior?
- Reference posterior probabilities are not subjective probabilities! So
what are they then?

- Can reference posterior inferences be reported by themselves, or
should they be reported only as part of a sensitivity analysis? If the
latter, how should one choose alternative priors?

@® How should we deal with the compact set normalization procedure?

- The general definition of reference priors involves the taking of limits,
and this must be done carefully in order to avoid infinities; the standard
approach is to use sequences of nested compact sets that converge to
the whole parameter space.

- Unfortunately there is no unique way of choosing these compact sets,
and there is no guarantee that different choices lead to the same result,
or even

his ambiguity prevents us from designing a cdmpletely genera>
umerical algorithm.

© How should we handle Tmpiicitstatisticat moaels ¢

- Can we combine ABC methods with numerical algorithms for
computing reference posteriors?

G. Cowan Discovery and limits / DESY, 4-7 October 2011 / Lecture 3 34



G. Schott
RooStats PHYSTAT2011

a collaborative project with contributors from ATLAS, CMS and

ROOT aimed to provide & consolidate statistical tools needed by
LHC

»using same tools: compare easily results across experiments
- not only desirable but necessary for combinations

RooStats is built on top of the RooFit toolkit :
« data modelling language (for PDFs, likelihoods, ...)
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. G. Schott
RooFit Workspaces PHYSTAT2011

RooWorkspace class of RooFit: possibility to save it to a ROOT file

- very good for electronic publication of data
and likelihood function

- and greatly help for combination (that's the
format agreed to share between Atlas & CMS)

Rooworkspace w("w”,"joint workspace™) ;

// Import top-level pdfs and all their components, variables
w.amport(“channelA. root:w:pdfA” ,RenameAl IVariablesExcept (A", “mhiggs™))
w.import(“channelB_root:w:pdfB8” ,Renamevariable("mH"”, "'mhiggs™)) ;

w.import(” =
// Construct joint pdf
w.lfactory(“STMUL : : Joint (chan[A,B,C],A—pdlA,B—pdIB,C- )

Able to construct full likelthood for combination of channels
(or experiments).
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K. Cranmer
PHYSTAT2011

Combined ATLAS/CMS Higgs search

The full model has
top level model
12 observables and P | ATLAS part
50 parameters
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At this point, no correlated parameter of interest

systematics across experiments y= DR
ocsmBRsum




