Identification-efficiency Scale-Factors

for forward electrons in the ATLAS experiment @ 13 TeV

Lukas Bayer Hamburg, 25.04.2024

HELMHOLTZ

Geometry

of the ATLAS experiment

Central Region ($|\eta| < 2.5$)

- Silicon pixel and microstrip detectors
- Transition radiation tracker
- Electromagnetic calorimeter

Forward Region ($|\eta| > 2.5$)

- Electromagnetic end-cap calorimeter (EMEC)
 - $2.5 < |\eta| < 3.2$
- Forward calorimeter (FCAL)
 - $3.2 < |\eta| < 4.9$

Electron Identification

in the forward region

- No tracking information, only calorimeter
- Rely on shower shape to discriminate electrons from jets etc.
- Calculate electron likelihood via multi-variate analysis
- Choose threshold as identification criterion
 - (very very loose, very loose, loose, medium, tight)

LH Working Point Versions

ID and Background Efficiencies

DESY. fwd eID SFs | Lukas Bayer

tight ID loose ID MC 2015/16, 13 TeV, 36.2 fb⁻¹, eeCF MC 2015/16, 13 TeV, 36.2 fb⁻¹, eeCF 1 0 0.8 0.8 ID efficiency efficiency loose ID tight ID 06 $p_T > 20 \text{ GeV}$ $p_T > 20 \text{ GeV}$ □ 0.4 LH new LH new 0.2 0.2 LH old I H old cut-based cut-based 0.0 0.0 3.0 3.5 4.0 4.5 3.0 4.5 3.5 4.0 $|\eta|$ $|\eta|$ MC 2015/16, 13 TeV, QCD dijet sample MC 2015/16, 13 TeV, QCD dijet sample 1.0 LH new LH new LH old LH old efficiency 0.20 0.15 Background efficiency cut-based cut-based loose ID tight ID Background $p_T > 20 \text{ GeV}$ $p_T > 20 \text{ GeV}$ 0.95 0.095 3.5 4.0 3.5 4.0 4.5 3.0 4.5 3.0 https://indico.cern.ch/event/984796/contributions/4180608/attachments/2171408/3666061/210114 fwd electron identification mh.pdf |n|

- Versions:
 - LH new: mc16 20190729 0
 - (used here)
 - LH old: mc16 20180822 (current standard)
 - cut-based: mc15 20150812

tuned with 2015/16 physics Main STDM4 data and mc16 Monte-Carlo

- ID efficiency estimated using **MCTruthPartClassifier**
- Background efficiency estimated using QCD dijet sample to select fake forward electrons

https://indico.cern.ch/event/999892/contributions/4199454/subcontributions/326621/attachments/2180678/3683535/210129 update mh.pdf

Shower Shapes

before applying fudge factors (in EMEC)

Shower Shapes

after applying fudge factors (in EMEC)

Efficiency Correction

Motivation

- Residual shower shape differences after applying fudge factors
 - \rightarrow lead to ID efficiency differences between data and MC
 - \rightarrow need to correct Monte-Carlo efficiency by applying scale-factors to events
- shower shapes and real/fake-electron discrimination power depend on electron energy and traversed material / detector parts
 → determine identification efficiency in bins of p, and |η|
- electron identification efficiency a priori unknown in data
 - \rightarrow need to extract using fit or counting method after background subtraction
 - \rightarrow need well calibrated sample of real forward electrons!

Forward Electron Energy

Calibration Process

- correcting the raw energy of ٠ forward electrons using multi-variate-analysis
- harmonizing the energy • response of calorimeter cells
- matching the mass spectrum of • the Z boson in data and Monte-Carlo (in-situ calibration)
- performed by Craig Wells
- for more details, see: ٠ https://cds.cern.ch/record/ 2789786?In=en

Tag and Probe Method

to get unbiased sample of forward electrons

select electron pair from known resonance:

- no charge information for forward electron!
 - significant amount of background in selected sample
 - > need to model and fit signal / background

	Tag Electron (central)	Probe Electron (forward)
Inl	< 2.47 (excluding crack)	> 2.5 < 4.9
P _t	> 27 GeV	> 20 GeV
ID	tight + isolation	no requirement
trigger	HLT_e26_Ihtight_nod0_ivarloose HLT_e60_Ihmedium_nod0 HLT_e140_Ihloose_nod0	
isEE_reco	passed	
DQ	passed	
MC truth- matching	passed	

Efficiency Fit

Basic model

- Signal
 - Monte-Carlo approach
 - Shape modified by ID selection
 - · Size modified by ID efficiency

example using 2017 data 3.4 < $|\eta^{fwd}|$ < 3.5 30 GeV < p_t^{fwd} < 35 GeV

 $D^{ID} = S^{\text{all}} \cdot \epsilon_S^{ID} + B$

fit parameters in blue

Efficiency Fit Basic model: Signal

- Signal
 - Monte-Carlo approach
 - Shape modified by ID selection
 - Size modified by ID efficiency
 - Normalized to match data

$$D^{ID}(m_{\ell\ell}) = \mu \widetilde{S}^{ID}(m_{\ell\ell}) \epsilon_{S}^{ID} + B(m_{\ell\ell})$$
normalization
correction
$$\widetilde{S}^{ID}(m_{\ell\ell}) = \frac{S^{ID}(m_{\ell\ell})}{\epsilon_{S}^{ID}}$$

Efficiency Fit

Basic model: Background

- Signal
 - Monte-Carlo approach
 - Shape modified by ID selection
 - Size modified by ID efficiency
 - Normalized to match data

- Background
 - Shape and size a priori unknown
 - Data-driven approach
 - · Expect shape to be independent of chosen ID
 - Expect normalization to depend heavily on chosen ID

$$D^{ID}(m_{\ell\ell}) = \mu \widetilde{S}^{ID}(m_{\ell\ell}) \epsilon_{S}^{ID} + B^{!VVL}(m_{\ell\ell}) \frac{\epsilon_{B}^{ID}}{1 - \epsilon_{B}^{VVL}}$$

- use as initial parameters ٠ for background shape

$$D^{VVL!T}(m_{\ell\ell}) = \mu \widetilde{S}^{VVL!T}(m_{\ell\ell})(\epsilon_{S}^{VVL} - \epsilon_{S}^{T}) + B^{!VVL}(m_{\ell\ell})\frac{\epsilon_{B}^{VVL} - \epsilon_{B}^{T}}{1 - \epsilon_{B}^{VVL}}$$

- dominated by signal
- use to fit the POI

- significant contributions to both background and signal .
- increasing statistics and # data points to help the fit ٠
 - (the model has too many d.o.f. to be fitted in 2 regions) •

Results: fit

example: 2017 data, $3.6 < |\eta^{fwd}| < 4.0$, 40 GeV $< p_t^{fwd} < 50$ GeV

— Data

- Background estimate
- - Signal estimate
- Total estimate

Results: fwd tight Efficiency

data

Monte-Carlo

Results: fwd tight Scale-Factor (SF) 2017

Scale-Factor: (data) ϵ_{S}^{lL} SF

Results: control plots

example: 2017 data, mll

Results: control plots

example: 2017 data, phi lead

Results: control plots

example: 2017 data, eta fwd

Systematic Uncertainties

BkgExtrap

	Tag Electron	Probe Electron Signal Region	Probe Electron Control Region
ID	tight + isolation (TIC)	tight (T)	failing very very loose (nVVL) failing very loose (nVL)

CenID

	Tag Electron	Probe Electron Signal Region	Probe Electron Control Region
ID	tight + isolation (TIC) tight (T)	tight (T)	failing very very loose (nVVL)

Systematic Uncertainties

DESY. fwd eID SFs | Lukas Bayer

Comparison

to forward electron ID SF calculation by Luxin Zhang (University of Science and Technology of China)

- different shower-shape correction (only affects EMEC)
- different electron energy calibration
- different η binning
 - o using η instead of $|\eta| \rightarrow$ not assuming forward-backward symmetry of detector / efficiency
 - o but much coarser binning in η (6 vs 14 bins)
 - # events per bin in same order of magnitude
- different methodology to determine SFs:
 - Luxin: subtract background and count events
 - in narrow region around Z peak
 - Lukas: perform simultaneous fit in 3 ID regions
 - in wide mll window
 - \rightarrow less sensitive to calibration errors

$$\epsilon_{S}^{ID} = \frac{N_{S}^{\text{passID}}}{N_{S}^{\text{all}}}$$

$$D^{ID}(m_{\ell\ell}) = \mu \widetilde{S}^{ID}(m_{\ell\ell}) \epsilon_S^{ID} + B^{!VVL}(m_{\ell\ell}) rac{\epsilon_B^{ID}}{1 - \epsilon_B^{VVL}}$$

Comparison

of forward electron ID SFs

Luxin's SFs

SF

Lukas' SFs (recomputed with coarse binning)

DESY. fwd eID SFs | Lukas Bayer

Summary and conclusion

- successfully computed full-Run2 tight-ID efficiency scale-factors for forward electrons using
 - tag-and-probe method to select sample
 - simultaneous fit in 3 ID regions to determine efficiencies
- results for 2017 presented here (2015/16 and 2018 in Backup)
 - SFs are able to resolve significant data-to-Monte-Carlo differences in control plots
- comparison to Luxin's SFs
 - observed differences due to calibration, shower-shape corrections and methodology of SF computation
 - our SFs have finer binning
 - assume forward-backward symmetry
 - justified since forward and backward SFs agree with each other within uncertainties
 - more suited for our analysis of Z four-fold cross-section measurement and extraction of angular coefficients
 - less dependent on background model
 - less sensitive to energy miscalibration
 - [analysis glance: https://atlas-glance.cern.ch/atlas/analysis/analyses/details.php?ref_code=ANA-STDM-2018-46]

Thank you for your attention

Contact

Deutsches Elektronen-Lukas BayerSynchrotron DESYDESY ATLAS Standard-Model Group

www.desy.de

lukas.bayer@desy.de

Backup: fwd tight Efficiency 2015/16

data

Monte-Carlo

Backup: fwd tight Efficiency 2018

data

Monte-Carlo

Backup: fwd tight Scale-Factor (SF) 2015/16

Backup: fwd tight Scale-Factor (SF) 2018

Scale-Factor: (data) ϵ_{S}^{lL} SF

Backup: Shower Shapes

effect of shower shape fudging on signal efficiency

DESY. fwd eID SFs | Lukas Bayer https://indico.cern.ch/event/1029884/contributions/4324284/subcontributions/336811/attachments/2236810/3791516/210430_update_mh.pdf Page 32

Backup: Systematic Uncertainties

why is the signal contamination uncertainty large in the ECAL?

underflow bin (-15) in mva likelihood

- originates from failed events in which no mva score could be assigned
- larger in data than Monte-Carlo
- larger in EMEC than FCAL
- events fail VVL
- not respected in ID working point definitions

Backup: Background Estimation

in Luxin Zhang's SF calculation

µe reweight method for W+jets, ttbar, WW...

ATI AS

Data

Mue

7000

6000

5000

4000

3000

2000

1000

Data red.

template fit for multijet (MJ) estimation

- multijet template:
 - reverse cen iso (but keep ID) 0
 - reverse fwd ID loose 0
- fit mll range 70-114 GeV
- for each p_{t} and η bin
- for each ID region

https://indico.cern.ch/event/1338305/contributions/5634730/attachments/2740583/4767060/FinalReport_FwdSSAndID_231025.pdf Page 34

Backup: Systematics

categories of uncertainties

eta: 3.8-4.

[these plots show only those uncertainties of Luxin's results, that correspond to a certain source, and the full uncertainty of my results for comparison]

DESY. fwd eID SFs | Lukas Bayer

Backup: Relative Differences

of forward electron ID SFs

relative differences

DESY. fwd eID SFs | Lukas Bayer

Backup: Control Plots without SFs

with SFs

Backup: Control Plots without SFs

with SFs

