



Co-funded by the European Union

# Update on Supernova Neutrinos at ESSnuSB

Monojit Ghosh

Ruđer Bošković Institute, Zagreb, Croatia 2nd ESSnuSB+ Annual Meeting, Hamburg 23 – 27 September, 2024



# Recap: Core Collapse Supernova

- When a star > 8 M<sub>☉</sub> comes to the end of its life, often the core of the star collapses and it explodes with huge energy and luminosity.
- Neutrinos of different flavours are produced in the energy range around few tens of MeV
- Till now we are only able to detect neutrinos from SN1987A supernova occurred at a distance of 50 kpc from Earth
- Only 24 events are detected by:

(i) water Cherenkov Kamiokande II,(ii) water Cherenkov Irvine-Michigan-Brookhaven (IMB)(iii) scintillator Baskan

Tarantula Nebula in the Large Magellanic Cloud. Supernova 1987A visible as the very bright star



### Recap: Neutrino Flux



Primary neutrino spectra

$$\Phi_{\nu}(E) = N\left(\frac{E_{\nu}}{\langle E_{\nu} \rangle}\right)^{\alpha} \exp\left[-(\alpha+1)\frac{E_{\nu}}{\langle E_{\nu} \rangle}\right]$$
  

$$\alpha = \text{Pinching parameter}$$
  

$$N = \frac{(\alpha+1)^{\alpha+1}}{\langle E_{\nu} \rangle \Gamma(\alpha+1)}$$

$$F_{\nu}^{0} = \frac{L_{\nu}}{\langle E_{\nu} \rangle} \Phi_{\nu}(E), \quad L = Luminosity$$

L and  $\alpha$  are Model Dependent: Figure is for Garching Model

Many other models are available

# Recap: Preliminary Study with ESSnuSB

Considered 3 supernova flux models and calculated events

Model 1: Livermore -> first ever supernova model with 1-D numerical simulation

Model 2: GKVM -> uses S matrix formalism as well as hydro dynamical density profiles

Model 3: Garching -> electron-capture model simulated in spherical symmetry framework

- Water Target: 538 kt
- Signal selection efficiency: 95%
- Gaussian energy resolution:

$$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(E-E')^2}{2\sigma^2}} \text{ with } \sigma = 0.10, 0.15, 0.20$$

| Recap: Results                           |      | Livermore | GKVM     | Garching |
|------------------------------------------|------|-----------|----------|----------|
|                                          |      | 148,686   | 88,528.8 | 51,068.7 |
| $\overline{v_e} + p \rightarrow n + e^+$ |      |           |          |          |
|                                          | GKVM | Garching  |          |          |



Calculated for 10 kpc

#### This talk

- Take Garching flux model The one considered in DUNE analysis
- Consider ESSnuSB with 15% Gaussian energy resolution
- Include the effect of Oscillation
- Consider both standard and 3+1 scenario

# Flavour Oscillations Inside Supernova



 $v_e$ 

# 3 flavour MSW Transition

$$\begin{split} F_{\nu_e} &= p F_{\nu_e}^0 + (1-p) F_{\nu_x}^0 ,\\ F_{\bar{\nu}_e} &= \bar{p} F_{\bar{\nu}_e}^0 + (1-\bar{p}) F_{\nu_x}^0 ,\\ 2F_{\nu_x} &= (1-p) F_{\nu_e}^0 + (1+p) F_{\nu_x}^0 ,\\ 2F_{\bar{\nu}_x} &= (1-\bar{p}) F_{\bar{\nu}_e}^0 + (1+\bar{p}) F_{\bar{\nu}_x}^0 , \end{split}$$

| Ordering | р                                  | $\overline{p}$                     |
|----------|------------------------------------|------------------------------------|
| Normal   | $sin^2 \theta_{13}$                | $cos^2\theta_{12}cos^2\theta_{13}$ |
| Inverted | $sin^2\theta_{12}cos^2\theta_{13}$ | $sin^2\theta_{13}$                 |

#### F = Flux after MSW transition, $F^0 = Initial flux$

p = Survival probability due to MSW transition



# Collective effects

- Active area of research
- Its effect on neutrino flavour conversion is yet to be understood
- It was showed that modifications of the spectrum would get smeared out if time-integrated spectrum is taken
- Corrections are expected to be small

Recent studies (including analysis of T2HK and DUNE) does not consider collective effects

#### Results



True ordering can be measured for both 3 and 3+1

#### Results



Difficult to disntinguish between 3 and 3+1

## Futur Plans

- Better understand oscillation of supernova neutrinos
- Perform statistical analysis in terms of  $\chi^2$
- Look for physics problems which can be studied
- Estimate realitic efficincies and resolution (??)