

Co-funded by the European Union

LEnuSTORM ring progress update

PhD: CHOI Ting Wing

24/09/2024

Content

- 1. Review milestones and deliverables
- 2. Introduction to nuSTORM
- 3. LEnuSTORM parameter range
- 4. An updated design of the ring
- 5. Momentum acceptance
- 6. Injection
- 7. Preliminary flux estimation

- Neutrino energy
 - Muon momentum
 - Pion momentum
 - Beamline dimensions
 - Transfer line
 - Straight section
 - Arc section
 - Aperture
 - Muon beam divergence
 - Twiss parameter: the Beta function

Review milestones and deliverables

- **1.** MS 4.1. (9/2024) Evaluation of the LEnuSTORM requirements and parameter range.
- 2. D 4.1. (1/2025) Review of the LEnuSTORM operation scheme.
- 3. MS 4.2. (9/2025) Preliminary racetrack ring lattice design.
- 4. MS 4.3. (12/2025) First estimate of the neutrino flux from LEnuSTORM.

4

- capture, transfer and inject pions, and store muons

Introduction to nuSTORM

$$\mu^{-} \rightarrow e^{-} + \overline{\nu}_{e} + \nu_{\mu}$$
$$\mu^{+} \rightarrow e^{+} + \nu_{e} + \overline{\nu}_{\mu}$$

- Known flux and equal fluxes of electron- and muon-neutrinos.
 - Their energy spectrum can be calculated precisely.
 - To make precise cross-section measurements possible.
- Our job is to maximise the number of useful neutrinos. \rightarrow ring design

LEnuSTORM ring design challenges

• Relativistic beaming

6

We have a low energy pion source.

- →less Relativistic beaming
- \rightarrow A wider decayed muon beam.

→increases design difficulty to hold large amounts of the muons.

LEnuSTORM ring design Opportunities

- 1st Low Energy muon storage ring design
- 1st neutrinos cross section measurement in the MeV range
 - to reduce the systematic error in the ESSnuSB long baseline experiment

 [1]J. A. Formaggio and G. P. Zeller, "From eV to EeV: Neutrino cross sections across energy scales," *Rev. Mod. Phys.*, vol. 84, no. 3, pp. 1307–1341, Sep. 2012,

LEnuSTORM requirements and parameter range (MS.4.1.)

Neutrino energy (detected in LEMMOND)

What energy range should we choose?

9

- Because we want to measure precisely the neutrino interaction cross-sections in the energy range of interest to ESSnuSB, the energy range should overlap with that in the far detector of ESSnuSB.
- It is 200 400 MeV according to WP5+ people/ ESSnuSB CDR

Muon energy

• Simulation detailed please ask WP5 Leon.

UPPSALA

Pion momentum

What pion momentum produces 400 MeV/c muon?

• 400-700 MeV/c

11

 But only 400 and 700 MeV/c pions produce 400 MeV/c muons at a sharp angle below 0.04 rad

Pion momentum

12

400 or 700? 700!

- 1. 700 MeV/c pions have smaller emission angles than the 400 MeV/c pions from our source.
- 2. A benefit of an efficient pion injection using the stochastic injection method.
- the higher momentum implies a longer lifetime, the requirement on the maximum length of the pion transfer is somewhat relaxed = the pions to decay in the straight section.

A. Liu, "Design and simulation of the nuSTORM facility," Apr. 2015, Accessed: Sep. 11, 2023. [Online]. Available: <u>https://scholarworks.iu.edu/dspace/handle/2022/19806</u>

Beamline dimensions

• Pion transfer line

13

- The decay length of a 700 MeV/c pion is 39 m.
- We are aiming to design a transfer line that is less than 20 m long, in order to have a more than 60% chance that the transferred pion decays after the transfer line.

14

Beamline dimensions

• Straight section

• The ratio of pions that decay inside the straight section compared to the initial number of pions at the begining of the transfer line:

$$R_{\pi} = e^{-\frac{L_t}{\tau_{\pi}}} (1 - e^{-\frac{L_s}{\tau_{\pi}}})$$

• To balance performance and cost, Ls = 75 m as a more probable length.

Beamline dimensions

Arc section

- the number of neutrinos that can reach the detector is proportional to the ratio of the length of the straight section to the ring circumference.
- In a two-arcs-racetrack ring design, this ratio is given by

$$R_{\nu} = \frac{L_s}{2L_s + 2L_a} = \frac{1}{2(1 + L_a/L_s)}$$

- the ratio flattens out at around Ls/La > 3.
- We believe that Ls/La ≤ 3 is a cost-efficient value that does not compromise the performance.

Beamline dimensions

• Aperture radius

- Previous studies: 0.3 m
- 0.1 m: too many particles lost for a wide, highly divergence beam
- 0.3 m: dispersion too high in a long dipole (need to be proved)
 - The length of the bending dipole has to be increased to at least 1.2 m to reduce the fringe field effect. The long length will increase the dispersion of the arc, which leads to large beam size and potentially high beam losses.
 - High cost
- 0.2 m: it seems quite a balanced choice so far.

Muon beam divergence

17

- A real muon beam has a wide divergence.
 - We cannot get all muons.
 - It has to have a cut-off angle.
- A simulation to decide a cut-off angle for the beamline design
 - For each one, a pencil 400 MeV/c muon beam at one angle.
 - Several runs have been done for different angles.
 - Muons travel 50 m space
 - Record the neutrino count at the detector.

Muon beam divergence

• Select a cut-off angle, say 50% at 0.04.

Twiss parameter: the beta function

- In order to capture as many muons as possible:
- 1. Assume an aperture.
- 2. Design a beamline with as low beta values as possible.

Because of $\sigma_x^2(s) = \epsilon \beta(s)$, the smaller the beta, the higher emittance and thus number of muons. That gives β_{max} and β_{min} .

3. At horizontal focusing quadrupole: $\sigma_{x,\max}^2 = \epsilon \beta_{max}$. Subsitute aperture radius into maximum beam spread, $\sigma_{x,max}$, find the emittance value, ϵ . 4. At horizontal defocusing quadrupole: $\sigma_{x',\max}^2 = \frac{\epsilon}{\beta_{min}}$. Sub ϵ from the previous step to find out the minimum divergence, see if it is larger than 0.04 rad, the cut-off muon divergence.

Example:

1.
$$\frac{\phi}{2} = 0.2 \text{ m.}$$
 2. $\beta_{max} = 4.5 \text{ m}, \beta_{min} = 1 \text{ m}$
3. $\epsilon = \frac{0.2^2}{4.5} = 8.9 \text{ mmrad}$ (Acceptance)
4. $\sigma_{x',max} = \sqrt{\frac{8.9 \times 10^{-3}}{1}} = 0.09 \text{ rad.} > 0.04 \text{ rad.}$ This beamline is okay!

Summarise the numbers

- Neutrino energy range: 200-400 MeV
- Muon

20

- reference energy: 400 MeV/c
- cut-off divergence for beamline design: 0.04 rad.
- Pion reference energy: 700 MeV/c
- Length of pion transfer line: < 20 m
 - Length of straight: 75 m
- Length of arc: <Ls/3 ~ 25 m
- Aperture radius: 0.2 m

A new ring design

A new ring design (capture-as-many-muons-as-possible design)

- Arc fodo cell
 - Total length: 2.5 m
 - Q: 0.25 m;
 - B: 0.6 m;
 - D: 0.2 m
 - Magnetic strength (1.5 T)
 - K1_{f, arc}= 5.45 m⁻²
 - K1_{d,arc}= -4.56 m⁻²
 - phase advances: 120/77 degree
 - Beta: 0.5 4.5 m
 - Max dispersion: 0.8 m

• Full arc

• 15 m

• Straight fodo cell

- Same length as arc
- Match to the same beginning/end beta and alpha as the arc cell
- Phase advances: 70/80
- Magnetic strength
 - $K1_{f, s} = 4.20 \text{ m}^{-2}$
 - K1_{f, s}= -4.48 m⁻²

• Full ring

- 15 m/arc
- 75m/straight
- 180 m in total

Full ring

- Tune: 16.58/16.36
- Chromaticity: -19.94/-19.50

Half of the ring

Full ring

Tracking (w/o chromaticity correction, 50 turns, paraxial approximation)

Aperture	€ [mmrad]	δ	Survival rate after 50 turns, %	
0.3	2	0.1	51] (F
0.3	3	0.1	40	
0.2	3	0.1	20	
0.1	3	0.1	0	

Fermi lab condition!)

Injection

If stochastic injection:

- 15m arc
 - 0.09 -0.276 rad (16°)
 - 20 cm drift

• 20m arc

Preliminary flux estimation

30

Table 1: The ratio (right column) of the particle (pion/muon/neutrino) left because of the item on the left column estimation of a number of neutrinos coming out from the production straight (last row).

Reason of the loss	ratio left	
Horn focusing	0.167 (POT)	
Transfer line momentum and	1	
Injection	0.5	
Muons from pion decay:	momentum acceptance cut	1
	emittance	0.1
	decay probability	0.5
Maana anning ling the singu	one straight-to-ring circumference ratio	0.4
Muons survivai in the ring:	chromaticity	0.5
Muon to neutrino: decay em	0.035	
Total	2.34e-5 (POT)	

• But it seems a real horn will turn out the ratio 1e-2. (instead of 1 in the table)

Preliminary flux estimation

31

Table 2: Estimation of a number of neutrinos coming out from the production straight.

	Number
number of proton per subpulse	2.2e14
number of proton in a second	2.2e14 * 14
number of neutrino per type in a subpulse reaching the LEMMOND	2.2e14 * 2.34e-5 = 5.14e9
number of neutrino per type in a second reaching the LEMMOND	2.2e14 * 14 * 2.4e-5 = 7.20e10

Outlook

- Chromaticity correction
 - Sextupole only?
 - FFA?
- Particle tracking
 - With and without decay
- Injection
- D4.1

