Top-Germany Meeting

March 03, 2006

<u>Top Physics at Munich University</u> <u>DØ Experiment</u> <u>ATLAS Experiment</u> <u>Current Work and Plans for the Future</u>

Ludwig-Maximilians-Universität München

Frank Fiedler Munich University

The Munich Group

LMU

The LMU Group: **Otmar Biebel (Professor)** Frank Fiedler (C1 "assistant professor") Postdoc: Philipp Schieferdecker PhD students: any of us: Marion Erlebach [firstname].[lastname]@physik.uni-muenchen.de Alexander Grohsjean Petra Haefner Raphael Mameghani

Current work:

- Measurement of the top quark mass with the Matrix Element method at DØ, studies towards LHC
- Studies of dilepton events and backgrounds at ATLAS
- Studies of all-jets events and backgrounds at ATLAS

Matrix Element method:

- Designed to minimize the statistical error of measurements
- Used for top quark mass in lepton+jets channel:
 -> at DØ Run I, DØ Run II, similar method at CDF Run II
- Even at Tevatron Run II, systematics are now dominant for m_{top}
 - -> but often statistical information helps to reduce systematics
 - -> e.g.: extend method for "in situ" calibration of jet energy scale
- Many more possibilities with LHC statistics
 - -> hope to discuss here what could / should be done
 - -> in terms of systematics,
 - -> for detector calibration, +...
- Adapt method for more channels (dilepton channel, other top quark properties, other physics processes?)
 - -> work underway

The Matrix Element Method

- Determine a top mass dependent probability for each event
- Probability P_{tt} is proportional to differential cross-section:

P_{bkg} accordingly -> obtain total event probability

Top Quark Mass Result

DØ preliminary results

Fit the top quark mass and the overall calorimeter energy scale ("JES")

Uncertainty already (320 pb⁻¹) dominated by systematics:

- statistical uncertainty
- systematic uncertainty detector calibration (overall jet energy scale physics modelling
- But have improved the situation wrt Run I measurement:

Uncertainty already (320 pb⁻¹) dominated by systematics:

- statistical uncertainty
 systematic uncertainty
- systematic uncertainty detector calibration (overall jet energy scale physics modelling
- But have improved the situation wrt Run I measurement: Jet energy scale uncertainty now automatically scales with statistics

Uncertainty already (320 pb⁻¹) dominated by systematics:

- statistical uncertainty
- systematic uncertainty detector calibration (overall jet energy scale (b jet energy scale physics modelling
- Further reduction of experimental error possible: simultaneous measurement of b jet energy scale

Uncertainties

Questions to discuss:

- How to best use ttbar events to calibrate LHC detectors
 - during startup phase
 - for precision measurements
- How to evaluate (and reduce?) physics modelling errors: modelling of ttbar events modelling of background events PDF uncertainties which top mass do we measure?

These questions are no longer far away!

LHC Startup Phase

Equally important in the meantime:

- Understand ATLAS physics environment
 - signal/background event characteristics
 - -> event selection
 - detector calibration
 - software
- Current studies:
 - dilepton events
 - all-hadronic events -> QCD background modelling jet algorithms event shape variables
- Work has started, but (as before):
 Could profit enormously from coordination among groups!

Conclusions

• Let us coordinate and work together:

 The LMU Group: Otmar Biebel (Professor)
 Frank Fiedler (C1 "assistant professor")
 Postdoc: Philipp Schieferdecker
 PhD students: Marion Erlebach
 Alexander Grohsjean
 Petra Haefner
 Raphael Mameghani