MAGO2.0 Meeting 29.05.24

MAGO Input/Readout Theory

Tom Krokotsch

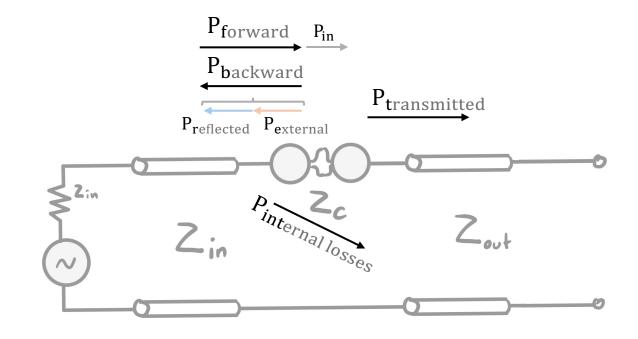
MAGO 2-Port Circuit

On resonance:

$$\frac{Z_{in}}{Z_c} = \frac{Q_{int}}{Q_e} = \frac{P_e}{P_{int}} \equiv \beta_{in}$$

$$\frac{Z_{out}}{Z_c} = \frac{Q_{int}}{Q_{out}} = \frac{P_t}{P_{int}} \equiv \beta_{out}$$

In steady state: $P_{in} = P_e + P_{int} + P_t$



$$\frac{P_b}{P_f} = \left(\frac{1 + \beta_{out} - \beta_{in}}{1 + \beta_{in} + \beta_{out}}\right)^2, \quad \frac{P_t}{P_f} = \frac{4\beta_{in}\beta_{out}}{(1 + \beta_{in} + \beta_{out})^2}, \quad \frac{P_{int}}{P_f} = \frac{4\beta_{in}}{(1 + \beta_{in} + \beta_{out})^2}, \quad \text{Stored energy } U_0 = \frac{4\beta_{in}}{(1 + \beta_{in} + \beta_{out})^2} \frac{Q_{int}}{\omega_0} P_f$$

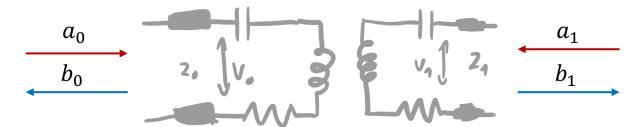
No backwards power, maximal stored energy, maximal transmission for $\beta_{in} = \beta_{out} + 1$ (if β_{out} is fixed)

'critical coupling'
$$\frac{P_b}{P_f}=0$$
 , $\frac{P_t}{P_f}=\frac{\beta_{out}}{1+\beta_{out}}$, $\frac{P_{int}}{P_f}=\frac{1}{1+\beta_{out}}$, Stored energy $U_0=\frac{1}{1+\beta_{out}}\frac{Q_{int}}{\omega_0}P_f$, $Q_L=\frac{1}{1+\beta_{out}}\frac{Q_{int}}{2}$

 $\beta_{in} = 1$ is not really critical coupling anymore!

Taking cavity coupling into account

Consider forward- (a) and backward- (b) travelling power waves



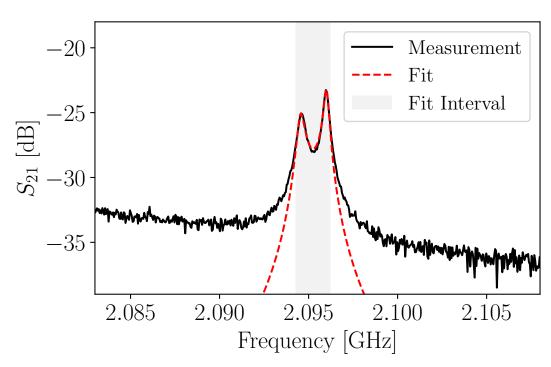
Impedance of single cavity cell: Z_c Coupling impedance $Z_{cpl} = i\omega L_{cpl}$ The power relationships can be obtained from the S matrix

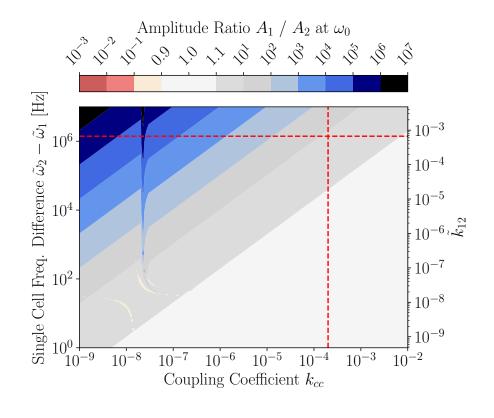
$$\binom{b_0}{b_1} = S\binom{a_0}{a_1}$$

In this case:
$$\mathbf{S} = \frac{1}{(Z_c + Z_1)(Z_c + Z_0) - Z_{cpl}^2} \begin{pmatrix} (Z_c + Z_1)(Z_c - Z_0) - Z_{cpl}^2 & 2\sqrt{Z_0Z_1} \ Z_{cpl} & 2\sqrt{Z_0Z_1} \ Z_{cpl} & (Z_c - Z_1)(Z_c + Z_0) - Z_{cpl}^2 \end{pmatrix}$$

If $Z_0 = Z_1$ is chosen, the most transferred power is the value which maximizes S_{21} : $Z_{0,1} = \sqrt{Z_c^2 - Z_{cpl}^2} \approx R_c$ on resonance $<=>\beta_{0,1}=1$ as expected

Fit to real data





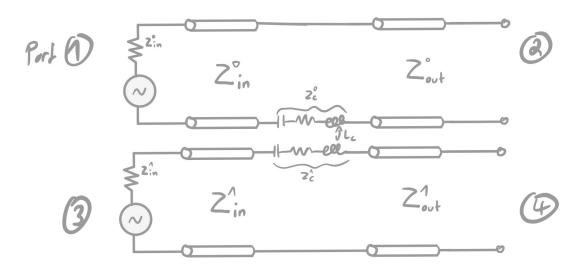
The S_{21} parameter from last slide fit to our RF measurement.

The parameters for the fit curve are $\omega_1 = 2.09457$ GHz, $\omega_1 = 2.09597$ GHz, $k_{cc} = 2 \cdot 10^{-4}$, $Q_1 = 5 \cdot 10^3$ $Q_2 = 8 \cdot 10^3$

These values are robust against the precise choice of the remaining resistances.

E.g. for
$$R=R_1=R_2$$
 any resistances of $k\Omega$ to $G\Omega$ with $\frac{\sqrt{Z_{in}Z_{out}}}{R}=0.013$ reproduce the above fit.

Four port system



$$S_{\text{cavity}} = \frac{1}{Z_{\text{tot}}^{2} - Z_{\text{cpl}}^{2}} \cdot \tag{5.1}$$

$$\begin{bmatrix} Z_{\text{tot}}(Z_{\text{c}} - Z_{\text{in}} + Z_{\text{out}}) & 2Z_{\text{tot}}\sqrt{Z_{\text{in}}}Z_{\text{out}} & 2Z_{\text{cpl}}Z_{\text{in}} & -2Z_{\text{cpl}}\sqrt{Z_{\text{in}}}Z_{\text{out}} \\ 2Z_{\text{tot}}\sqrt{Z_{\text{in}}}Z_{\text{out}} & Z_{\text{tot}}(Z_{\text{c}} + Z_{\text{in}} - Z_{\text{out}}) & -2Z_{\text{cpl}}\sqrt{Z_{\text{in}}}Z_{\text{out}} & 2Z_{\text{cpl}}Z_{\text{out}} \\ 2Z_{\text{cpl}}Z_{\text{in}} & -2Z_{\text{cpl}}\sqrt{Z_{\text{in}}}Z_{\text{out}} & Z_{\text{tot}}(Z_{\text{c}} - Z_{\text{in}} + Z_{\text{out}}) & 2Z_{\text{tot}}\sqrt{Z_{\text{in}}}Z_{\text{out}} \\ -2Z_{\text{cpl}}\sqrt{Z_{\text{in}}}Z_{\text{out}} & 2Z_{\text{cpl}}Z_{\text{out}} & 2Z_{\text{tot}}\sqrt{Z_{\text{in}}}Z_{\text{out}} & Z_{\text{tot}}(Z_{\text{c}} + Z_{\text{in}} - Z_{\text{out}}) \end{bmatrix} - Z_{\text{cpl}}^{2} \mathbb{1}$$

Also want to take magic Tees, and reflections at unused ends into account. To find total S matrix, need to consider transfer matrices T.

$$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix} = S \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} \text{ vs} \begin{pmatrix} b_2 \\ a_2 \\ b_4 \\ a_4 \end{pmatrix} = T \begin{pmatrix} a_1 \\ b_1 \\ a_3 \\ b_3 \end{pmatrix}$$

Finding the S matrix of cascaded system:

- First, find T matrix of all components
- multiply them
- Convert the total T matrix into a S matrix

Cascaded Network

S Matrix

Basic approach

$$U_0 = \frac{4 \beta_{in}}{(1 + \beta_{in} + \beta_{out})^2} \frac{Q_{int}}{\omega_0} P_f \le \frac{1}{1 + \beta_{out}} \frac{Q_{int}}{\omega_0} P_f$$
for $\beta_{in} = 1 + \beta_{out}$

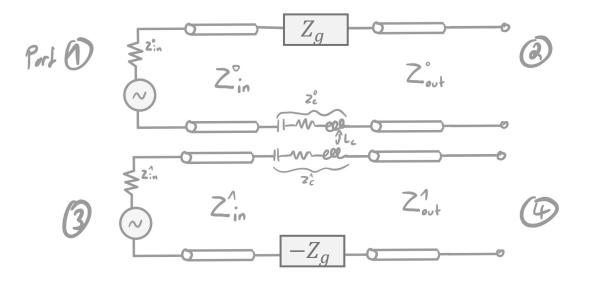
$$U_0 = \frac{4 \beta_{in}}{(1 + \beta_{in})^2} \frac{Q_{int}}{\omega_0} P_f \le \frac{Q_{int}}{\omega_0} P_f$$
as) for $\beta_{in} = 1$ and β_{out}

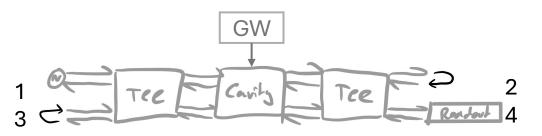
'Sensitivity enhancement (MAGO)'

- → Can couple to both modes **separately!**
- → Pump mode can be driven at ideal efficiency

(assuming negligible power is lost in the reflection and antennas)

Consider GW Signal





Add small anti-symmetric excitation through positive and negative impedance in both circuits

$$(Z_{in} + Z_{out} + Z_c)I_1 = -Z_gI_1 - Z_{cpl}I_2 + U_0$$

$$(Z_{in} + Z_{out} + Z_c)I_2 = +Z_gI_2 - Z_{cpl}I_1 + U_0$$

- → Signal strength is proportional to pump energy
- \rightarrow But at the same frequency as pump mode ($\omega_{GW}=0$)

$$\textbf{Basic approach} \quad \left(\frac{P_{sig}}{P_f}\right)^{1/2} = \frac{2Z_g\sqrt{Z_{in}Z_{out}}}{(Z_c + Z_{cpl} + Z_{in} + Z_{out})(Z_c - Z_{cpl} + Z_{in} + Z_{out})}$$

'Sensitivity enhancement (MAGO)' $\left(\frac{P_{sig}}{P_f}\right)^{1/2} = \frac{2Z_g\sqrt{Z_{in}Z_{out}}}{(Z_c + Z_{cpl} + Z_{in})(Z_c - Z_{cpl} + Z_{out})}$

Ratio:
$$\left(\frac{P_{sig}^{SE}}{P_{sig}^{Basic}}\right)^{1/2} = \frac{(Z_c + Z_{cpl} + Z_{in} + Z_{out})(Z_c - Z_{cpl} + Z_{in} + Z_{out})}{(Z_c + Z_{cpl} + Z_{in})(Z_c - Z_{cpl} + Z_{out})} > 1$$
 and $\left(\frac{P_{sig}^{SE}}{P_{sig}^{Basic}}\right)^{1/2} \approx \frac{1 + \beta_{out}}{1 + \beta_{in}}$ for $\beta_{out} \gg \beta_{in}$

Summary

- The 'sensitivity enhancement' circuit allows coupling to the pump and signal mode separately (i.e. overcoupling the *readout* does not affect the loaded Q of the *pump mode*)
- ⇒ The pump mode can be loaded with the same energy using the same forward power irrespective of the output coupling
- This depends on the quality of the reflection/antennas/magic Tee
- The 'sensitivity enhancement' circuit improves the GW signal power, but not by a lot
- \rightarrow Only significantly if $\beta_{out} \gg \beta_{in}$ when more energy can be stored in the pump mode