
LinApart: optimizing the

univariate partial fraction

decomposition

Levente Fekésházy, Bakar Chargeishvili, Sam Van Thurenhout,
Gábor Somogyi

The structure of the presentation

Motivation

Mathematical background

Implementations

Mathematica

C

Conclusions and outlook

Possible generalizations

Summary

2 / 20

Motivation

Univariate partial fraction decomposition is a standard tool in

any calculation, especially during integration.

During our research, in order to compute phase space integrals

relevant to a NNLO subtraction scheme we had to sequentially

integrate over di�erent variables. Before every integration we

had to partial fraction our expressions to bring the terms to a

form, where we can express the integrals as a multiple

polylogarithm.

Unfortunately, the complexity of the terms and of the whole

expression reached a point, where the standard publicly

available tools could not provide results or at least not in the

desired time frame.

3 / 20

Motivation

f (xa, xb; y) =
[
(−4+ y)(1− y + xby)(2− y + xby)(4− y + xby)(1− xa − y + xby)

3

× (−1+ xa − y + xby)(−4− 4xb − y + xby)(−4xb − y + xby)

× (−4xa − 4xb − y + xby)(4xa − 4xb − y + xby)(2+ 2xb − y + xby)
3

× (6+ 2xb − y + xby)(2− 4xa + 2xb − y + xby)(2+ 4xa + 2xb − y + xby)

× (−1+ xa − xay + xaxby)(1+ xa − xay + xaxby)(−2+ 2xa − xay + xaxby)

× (2+ 2xa − xay + xaxby)(−xb + xaxb − xay + xaxby)
3

× (−4+ 2xa + 2xaxb − xay + xaxby)(4+ 2xa + 2xaxb − xay + xaxby)

× (1− 2xa + x2a − y − xay + xby + xaxby)

×
(
2xb − 2xaxb + xay − xby − xaxby + x2b y

)3]−1

4 / 20

Mathematical background

Let us examine a rational function f (x) = x l

Q(x) , where

Q =
∏n

i=1(x − ai)
mi and l < degQ.

The partial fraction decomposition means we have to separate

the poles of said function.

f (x) =
n∑

i=1

mi∑
j=1

cij
(x − ai)j

The task is the calculation of the cij coe�cients.

5 / 20

Mathematical background

A high-schooler would do it by solving a system of equation, in

some computer algebra book the Chinese reminder theorem or

a fast reconstructive algorithms is advised.

But this series is nothing else but a Laurent-expansion! Thus

we can use the residuum theorem!

cij = Res(gij , ai) =
1

(mi − j)!
lim
x→ai

dmi−j

dxmi−j

(
(x − ai)

mi f (x)
)

6 / 20

Mathematical background

Since we remove the pole at ai we can easily take the limit and

getting:

cij =
1

(mi − j)!

dmi−j

dami−j
i

ali

n∏
k=1
k ̸=i

1

(ai − ak)mk
.

Where the derivates can be easily computed using the

generalized chain rule and derivative rule of polynomials.

f (x) =
n∑

i=1

∑
j−1+j0+j1+···+ĵi+···+jn=mi−1(
l

j−1

)
a
l−j−1

i

(x − ai)j0+1

n∏
k=1
k ̸=i

(
mk + jk − 1

jk

)
(−1)jk

(ai − ak)mk+jk

7 / 20

Mathematical background

What is we have an improper fraction, meaning l ≥ degQ? In

this case we can factor the fraction into a proper fraction and

a monomial.

f (x) = x l−(degQ−1) x
degQ−1

Q(x)

Do the partial fractoin decomposition on the proper fraction

term, then drag the monomial inside the sums. Where we are

left with terms of the form g(x) = xp

(x−a)q , which can be

conveniently written as a sum.

g(x) =

p−q∑
i=0

(
p − 1− i

q − 1

)
ap−q−ix i +

p∑
i=p−q+1

(
p

i

)
ai (x − a)p−q−i

8 / 20

Implementations
-Mathematica

Extensive testing has revealed that leveraging the e�ciency of

the built-in di�erentiation routine, outperforms alternative

methods. Thus in the Mathematica implementation we

compute the residuum with

cij =
1

(mi − j)!
lim
x→ai

dmi−j

dxmi−j

(
(x − ai)

mi f (x)
)
.

Our implementation works put of the box and can take every

expression that Apart can. Furthermore, we also included

pre-processing options, which can make the decomposition of

large expression faster.

9 / 20

Implementations
-Mathematica

The question is how much do we gain compared to other

algorithms, like Apart or Maple's parfrac.

To tackle this question, �rst we must de�ne the complexity of
a fraction. After careful consideration we choose the following
attributes:

1. the number of distinct denominators

2. The complexity of each individual denominator. In fact, even

considering only linear denominators of the form x − ai , the
roots ai may be functions of further variables and symbolic

constants.

3. The multiplicity of the denominator factors.

4. The polynomial order of the numerator.

10 / 20

Implementations
-Mathematica

10−3

10−2

10−1

100

101

102

103

Ti
m

e
[s
]

Timing

A[k = 2]
A[k = 1]
A[k = 0]
LA[k = 2]
LA[k = 1]
LA[k = 0]

n
∏

i=1

1

x − P(k)i (y)
, P(k)i (y) =

k
∑

j=1
ai, j y j

0 10 20 30 40 50

10−6

10−3

100

of denominators

R
at

io

k = 0

k = 1

k = 2
LinApart/Apart

104

105

106

107

108

109

1010

M
em

or
y
[b

yt
es
]

Memory usage

A[k = 2]
A[k = 1]
A[k = 0]
LA[k = 2]
LA[k = 1]
LA[k = 0]

n
∏

i=1

1

x − P(k)i (y)
, P(k)i (y) =

k
∑

j=1
ai, j y j

0 10 20 30 40 50

10−4

10−2

100

of denominators

R
at

io

k = 0

k = 1

k = 2
LinApart/Apart

11 / 20

Implementations
-Mathematica

10−3

10−2

10−1

100

101

102

103

Ti
m

e
[s
]

Timing

A[m= 4]
A[m= 3]
A[m= 2]
LA[m= 4]
LA[m= 3]
LA[m= 2]

1
(x − an)m

n−1
∏

i=1

1
x − ai

0 5 10 15 20 25

10−6

10−3

100

of denominators

R
at

io

m= 2
m= 3
m= 4

LinApart/Apart

104

105

106

107

108

109

1010

M
em

or
y
[b

yt
es
]

Memory usage

A[m= 4]
A[m= 3]
A[m= 2]
LA[m= 4]
LA[m= 3]
LA[m= 2]

1
(x − an)m

n−1
∏

i=1

1
x − ai

0 5 10 15 20 25

10−4

10−2

100

of denominators

R
at

io

m= 2
m= 3
m= 4

LinApart/Apart

12 / 20

Implementations
-Mathematica

10−3

10−2

10−1

100

101

102

103

Ti
m

e
[s
]

Timing

A[l = 4]
A[l = 3]
A[l = 2]
LA[l = 4]
LA[l = 3]
LA[l = 2]

n−l
∏

i=1

1
x − ai

n
∏

j=n−l+1

1

(x − a j)2

0 5 10 15 20 25

10−6

10−3

100

of denominators

R
at

io

l = 2

l = 3

l = 4
LinApart/Apart

104

105

106

107

108

109

1010

M
em

or
y
[b

yt
es
]

Memory usage

A[l = 4]
A[l = 3]
A[l = 2]
LA[l = 4]
LA[l = 3]
LA[l = 2]

n−l
∏

i=1

1
x − ai

n
∏

j=n−l+1

1

(x − a j)2

0 5 10 15 20 25

10−4

10−2

100

of denominators

R
at

io

l = 2

l = 3

l = 4
LinApart/Apart

13 / 20

Implementations
-Mathematica

s

f (xa, xb; y) =
[
(−4+ y)(1− y + xby)(2− y + xby)(4− y + xby)(1− xa − y + xby)

3

× (−1+ xa − y + xby)(−4− 4xb − y + xby)(−4xb − y + xby)

× (−4xa − 4xb − y + xby)(4xa − 4xb − y + xby)(2+ 2xb − y + xby)
3

× (6+ 2xb − y + xby)(2− 4xa + 2xb − y + xby)(2+ 4xa + 2xb − y + xby)

× (−1+ xa − xay + xaxby)(1+ xa − xay + xaxby)(−2+ 2xa − xay + xaxby)

× (2+ 2xa − xay + xaxby)(−xb + xaxb − xay + xaxby)
3

× (−4+ 2xa + 2xaxb − xay + xaxby)(4+ 2xa + 2xaxb − xay + xaxby)

× (1− 2xa + x2a − y − xay + xby + xaxby)

×
(
2xb − 2xaxb + xay − xby − xaxby + x2b y

)3]−1

14 / 20

Implementations
-C

Not every language has a built-in fast symbolic derivative

function. In these cases we must use

x l

Q(x)
=

n∑
i=1

∑
j−1+j0+j1+···+ĵi+···+jn=mi−1(
l

j−1

)
a
l−j−1

i

(x − ai)j0+1

n∏
k=1
k ̸=i

(
mk + jk − 1

jk

)
(−1)jk

(ai − ak)mk+jk

paired with

xp

(x − a)q
=

p−q∑
i=0

(
p − 1− i

q − 1

)
ap−q−ix i +

p∑
i=p−q+1

(
p

i

)
ai (x − a)p−q−i

15 / 20

Implementations
-C

This implementation is ought be used as the last step of a

partial fraction decomposition routine. It need the

multiplicities, the power of the numerator and the roots as

input.

It can be connected to any symbolic computer algebra

program (Wolfram Mathematica, FORM, SymPy etc.).

We connected it to Mathematica with LibraryLink, but the

native Mathematica implementation outperformed it.

16 / 20

Conclusion and outlook
-Possible generalizations

This univariate partial fraction decomposition with linear
denominators is a very speci�c problem. One can immediately
think of two possible generalization:
1. higher order polynomials in the denominator,

2. application to the multivariable case.

The former can be tackled with some help of higher functions

like Factor in Mathematica and the Vieta's formulas.

For the latter there are already existing algorithms, which do

exactly the same (Leinartas's algorithm, Gröbner basis

method).

Of course one can use univariate partial fractioning iteratively,

but then the well-known spurious singularities are going to

arise.

17 / 20

Conclusion and outlook
-Summary

The univariate partial fraction decomposition is vital to QFT

calculations. Unfortunately, increasing the order of

approximation the complexity of the expression increase

rapidly. In some cases the publicly available native function of

popular symbolic algebra programs are insu�cient.

We presented new implementations of the Laurent-expansion

method, with which we were able to decrease the time and

memory usage of this operation to a level, where even

complicated functions' decomposition take mere second and

consume just Mbs.

We also presented a closed formula, which only involves sums

and product, thus is programmable in any language of choice.

18 / 20

Conclusion and outlook
-Summary

The source code and example can be obtained at

https://github.com/fekeshazy/LinApart, while the

documentation is published on arXiv

(https://arxiv.org/abs/2405.20130).

19 / 20

https://github.com/fekeshazy/LinApart
https://arxiv.org/abs/2405.20130

Conclusion and outlook
-Summary

Thank you for your attention!

20 / 20

	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:

