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Introduction

At HL-LHC: Statistical /systematic uncertainties ~ 1%
= Theory needs to keep up!
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Table: [Baglio et al., 2022]
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PDF scale dependence

Scale evolution of PDFs is set by the DGLAP equation (cribov and Lipatov, 1972],

[Altarelli and Parisi, 1977], [Dokshitzer, 1977]
dfi(x,p?) _ [tdy X 5
dinp? /X AN

with Pj; the QCD splitting functions. These are perturbative quantities
and can be computed as the anomalous dimensions of the leading-twist
operators that define the PDFs

d[Oi]
dlnp?

(1)

i

0
=0)), v =a + a2 +

1
i = —/ dx xNP,-j(x)
0

Sam Van Thurenhout Meeting of FOR 2926



Operator renormalization

The leading-twist operators of interest are

N a aa
Oéﬂ)l an(X) = S[Flum Dy DZ% iaN RN IMNN]

Ol () =8 [UuDyy - Dyt |
O s o () = S [9X*9 Dy - Dy |
with
DI = 0,0% + g f** A}
Fioy = OuA; — Ou AT, + gf P ALAS
In practice the operators are contracted with N copies of a lightlike vector

A. The anomalous dimensions are now computed from the
renormalization of the off-shell matrix elements of these operators.
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Construction of the alien operators

When doing so, it is well-known that mixing with non-gauge-invariant
(alien) operators needs to be taken into account (pion and Taylor, 1972,
Kluberg-Stern and Zuber, 1975a, Kluberg-Stern and Zuber, 1975b, Joglekar and Lee, 1976, Joglekar, 1977a, Joglekar, 1977b].

The corresponding operators involve
@ ghost fields
o the field equations of motion (EOM)

The EOM operators can be reconstructed using generalized gauge
Sym metry [Falcioni and Herzog, 2022]

a a a A pa
Al — AL+ WAL+ 0 AL
We write the perturbative expansion of the operator as

N N),I NI il
OI(EO)M = O(EO)M +OI(EO)M +OI(EO) JrO(Eo)lvl + ..
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Construction of the alien operators

=n(N) (D F* + g AT) (9" 2A%),

N),I
OLom
Ol =g (D-F + gd AT%) S C(IA) (A,
i+j=N—-3
Ol — g2 (D F* 4 g bAT™w) S Cored(9AP) (0 A7) (9% AY),
i+j+k=N—4

O(N)”V _ g3 (D =0 _i_gsEATa,(/}) Z C,jff"e(a"Ab)(8fAC)(8"Ad)(6’Ae)

EOM 7 &s
i+j+k+I=N—-5

At leading order, the EOM coupling 7 is simply a function of N. The
one-loop value of this quantity was computed in
[Dixon and Taylor, 1974, Hamberg and van Neerven, 1992] to be
Ca
N)=———"F""—.
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Construction of the alien operators

The higher-order couplings however are non-trivial functions of both colour
and the indices i,j,.... We have

b b

G = fky,

( a 1 anc 2 a Ci 3
2
Cjblcde (f‘ f' f')abcde EJ )I dabcde Elk)l

The k couplings are chosen to inherit the behaviour of the colour structure
they multiply, e.g. xjj = —kji. The ghost operators can now be derived
from the EOM ones by promoting the generalized gauge transformation

A
A% = AL+ LA + 0T A
to a generalized BRST (gBRST) transformation

A
AL 5 A%+ O AL+ O LA
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Construction of the alien operators

O,(;N) _ O‘(:N),I + OS;N)’” + O‘(:N),III + O(N) IV
O = —y(N)(9e?) (D" c),
OEN)’” —gs Z Cabc(aca) a/Ab)(aﬁ—l c)

i+j=N-3

O = g2 3 EEm (a0 AP AN ),
i+j+k=N—-4

OV = —g3 3T Cabete(0e)(0 AV (@A) (04 AT (0 c?)
i+j+k+I=N-5

The colour decomposition of the ghost couplings is similar to the EOM
ones
C"-_egbc _ fabc

- Nij»
(1) + dabcdn( )Jr gabed (3)

~abcd abcd
e = (F )™ gy ik T g Mg

1 2 2b
Clj:l?lcde _ (f f f)abcdenl(Jk)l + d4a-dee77((]k7) + daebcd ’(Jk/)'
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|dentities between alien couplings

@ As the ghost operators were constructed directly from the EOM ones
using gBRST, the 1 couplings are connected to the x ones.

@ An equivalent approach to generate the ghost operators would be to
start from anti-gBRST, for which w?(x) in the generalized gauge
transformation should be replaced by the anti-ghost field ¢?(x)

a a a A pa
AZ s A2 4 AL+ 5 RAD

— the functional form of the resulting operators is different from
those derived from gBRST
= non-trivial identities for the n-couplings!

@ These identities allow one to restrict the function space of the
couplings and hence constrain their generic N-dependence.

@ During this talk: Focus on couplings coming with a string of f's
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Class Il couplings

Ol =& (D-FP+ g0 AT) S CP(0AY) (D A°),

i+j=N-3
O = —ge 37 G392 A )
i+j=N-3
Kij + Kji =0, [anti-symmetry of f]
i+j+1
ni = 2k + n(N)( JI ) [gBRST]
nij + Z S+J ( . )n(i—s)(j—i-S) =0 [anti-gBRST]
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Class Il couplings

Note that the anti-gBRST relation is an example of a conjugation relation,
in the sense that a second application of the sum leads to

i rtj i t+ ) R s+j+t
Z(fl)m( . )n(i—r)(jth):*Z( H’( )Z( 1) ﬂ“( e )U(«‘—tfs)(j+t+s)

t=0 J t=0

and hence

t+j s+j+t
nj = Z ( > Z( < j+t )U(i—t—s)(j+t+s)-

t=0

@ Already encountered in the computation of the anomalous dimensions
of leading-twist operators in non-forward kinematics, see
e.g. [Moch and Van Thurenhout, 2021, Van Thurenhout, 2024]

o Great predictive power!

@ Valuable information about the function space
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Class Il couplings

Kij + Kji = 0, [anti-symmetry of f]

i+j+1
?MZZW+MNK )

I_ [gBRST]

s+ .
nij + Z 1)+ ( . J) N(i—s)(j+s) = 0 [anti-gBRST]

Combining anti-symmetry with gBRST we have

i+j+1 i+j+1
<i>+<j

which gives an idea about the function space of 7.

nij + nji = n(N)
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Class Il couplings

Using the RHS of the previous equation as an Ansatz for n; gives

s+ , i+j+1
nij +Z S+J< J) Ni-s)G+s) = (—1Y a1 — C2< Jj )

for even values of N. Hence, only the trivial solution ¢; = ¢ = 0 obeys
the anti-gBRST relation. The RHS however suggests the inclusion of a
new structure: (—1). With

: i+j+1 i+j+1
77U:C1(_1)j+c2< JI >+C3< JJ >

we find
’ (s+j i+j+1 .
mij + Z(—1)5+J< i )n(;_s)(j+s) = (a + o) [( . ) + (—1)’}
s=0
and hence ¢; = —o.
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Class Il couplings

Assuming that xj; lives in the same function space as 7);;, the full set of
relations fixes both couplings up to 1 free parameter

oy =nm {20 (M) - cay| —2e (T
ey =) {c | (T - ()] - S0 20y

The unknown ¢ can be determined by the computation of 1 fixed-N matrix
element computation. E.g. for N = 6 we have k39 = 1/24 which sets
c=-3/8

—C )[( 1),_3<I+12> </vi_2>

i = _n(éV) {(_1)1 +3("+J;_+ 1) - 3<i Tij; 1”

The solution above exactly agrees with the known solution

[Hamberg and van Neerven, 1992, Falcioni and Herzog, 2022].
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Class Il couplings

OI(EI\(g)I\,/{” :gSZ (D . Fa‘f‘gsEATaw) Z C;de(aiAb)(BjAc)(akAd),

i+j+k=N—4
O((:N),III _ _g52 Z jlitu(ac )(aiAS)(ajAt)(ak—I—lCU)
i+j+k=N—4
:(J? + "‘9,(1}1) =0, [anti-symmetry of f]
f]k) + ”(1) + “S«J) =0, [Jacobi identity]
j+k+1
77,5',) = 2I€i(j+k+1)< j > + 2[ Kijk ) ¢+ ngq,)] [¢BRST]
m+n—+ k -tk ( ) .
77Uk = ZZ e (=1)™™" T2 m)(i—m) (k) [anti-gBRST]
m=0 n=0
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Class Il couplings

The combination of the Jacobi identity with gBRST leads to

1 1 1 Jt+tk+1
nfjk) + 77;((,-1-) + 77};(,-) = 2’€i(j+k+1)< | > + 2/‘6k(i+j+1)<
i+k+1
+ 2Kj(itk+1) B :

)

i~|—j+1>

— relates the class Ill coupling 77,%) to the class Il coupling xj;, at one
order lower in perturbation theory!

= use it to determine the function space of the all-\V expression of 7],5-}()
— leads to 18-dimensional function space

o () DO (),
0 L NP TG R G A N TG

N—2\/i+k+1 . . L
A P + independent permutations of i, j and k .
J
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Class Il couplings

1 . . .
We assume n,(jk) to live in the same function space. Hence in total we have

36 free parameters. Using the relations described above we are able to fix
34 of these. The final 2 free parameters are then fixed using /4;511%) =0 and
/a(llz)l = 13/336, which follow from the explicit operator renormalization for

N =6 and N = 8 respectively. Our final result for m,(ﬁ() then becomes
[new!]

(1)_77(N) it i+j+1 itk i+k+1
Rk = 4 2(-1) ; +(-1) K

J

I
N-1 j4 k41 » N -2 N-—2
+5(j+1> +( ‘ )3( 1y 10( ,- )*4(,41)
i+ +1
+(I+j.+)
J

o N-—-2 N-—2
_1 i+j+1 5 _ 9 .
LTS k+1
Sam Van Thurenhout

2(71)i+k+1
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Class Il couplings

We have checked that the above expression agrees with explicitly
computed values, following from the renormalization of the operators, up
to N = 20. Substituting this expression into the gBRST relation allows
one to also reconstruct the full N-dependence of 77,8'}() [new!]

) _ _nN) ) o i (T +1 ik (it k1
Mg =~ 55 1 2(-1) L) .
+2(_1)j+k+1<1+k_+1>+<:+k_+1> (_1),-+k+4</\_/—2>
J j+1

() (00

() o
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Class IV couplings

O(EAOI)MIV _ gs3 (D = gsEATaw) Z C;f/cde(aiAb)(ajAc)(6kAd)(8IAe)’
i+jrk+I=N—5
OEN),IV _ _gs3 Z C;j-,ffde(Bfa)(BiAb)(ajA‘)(akAd)(B’+1ce)
i+jrkt+I=N—5

ﬁ)/ + "51/11 =0, [anti-symmetry]

(1) (1) (1 _ ;
S + g T e = 05 [Jacobi]

) (1) (1) 1 _ .

it T Bjite T B T Fgg = 05 [double Jacobi]

20— o ) I+k+1 (O

i = 295y + ”(/+k+1)ji]( K +2[x§ Uk/ + Ring + Rl "‘/kg]’ [gBRST]

il k(s \
1+ 5+ 53+ /)] s tsptsgtl (1) .
W 2,:0 2,: z,:o s1!sp!ls3l /! =D N—s3)(j—2)(i—51)(s1 +sp+53-+1) [anti-gBRST]

Combining the double Jacobi identity with the gBRST one allows one to
1 . (1 )

write 7, in terms of K
one order lower in perturbat|on theory!

appearing already in the class Il operators at

A0 @) ) ) () o) k+i+1 ) ) k+i+1
Mg Mjike T Migi + Mg = 20850140y + (k+l+1)ji]( P + 25101y F E (e |

) i+j+1 o) i+j+1
+ 2[“:k(,+j+1> + (,+;+1)k/]< j + 2['“;4(,+J+1) + Gyl ; :
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Class IV couplings

Again this tells us something about the function space for n(k), Taking

into account all the independent permutations of the |nd|ces i,k,jand /
this space is now 264-dimensional. Assuming that the functional form of

MON

K ikl is similar to the one of n(k), then implies that in total we now have
528 parameters to fix. However after implementing all of the above
relations, only 8 remain in the end!
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Application: Alien Feynman rules

With the couplings known, one can derive the Feynman rules of the alien
operators

@ The Feynman rules for the gauge-invariant quark and gluon operators,
up to the four-loop level, can be found e.g. in [Faicioni and Herzog, 2022,
Gehrmann et al., 2023, Floratos et al., 1977, Floratos et al., 1979, Mertig and van Neerven, 1996,
Kumano and Miyama, 1997, Hayashigaki et al., 1997, Bierenbaum et al., 2009, Klein, 2009, Blimlein, 2001,
Velizhanin, 2012, Velizhanin, 2020, Moch et al., 2017, Moch et al., 2022, Falcioni et al., 2023b, Falcioni et al., 2023a,
Falcioni et al., 2024, Moch et al., 2024, Gehrmann et al., 2024, Kniehl and Velizhanin, 2023] and references
therein. The generalization to arbitrary orders in perturbation theory
can be found in [Somogyi and Van Thurenhout, 2024] 1

@ The alien rules were computed up to two loops in
[Hamberg and van Neerven, 1992],[Matiounine et al., 1998],[Bliimlein et al., 2022], and an eXtenSiOn to

the three-loop level was recently presented in [cehrmann et 2l 2023]

!Note that the latter also presents the corresponding rules for the operators with
total derivatives, relevant for non-zero momentum flow through the operator vertex.
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Application: Alien Feynman rules

Glkiprp) 95 Gy (01 pap2) GG o paps ) g2 Gy o, s p 1 s
OEOOE00 Y TO0TE0E | OB00000 S BE00000Y +  COO00E00 Y,/ BOBOT0N | BEEE00 XY TOBT0N0 +
ZN e Pty pLpcl o P10y PLp L P lnc PLpel Py Uiy

e 3 ‘
3. pLcs Pa s pPaadacy P Pr€3 pas 0.y 5T

GE192%3% %S

1+ ()" yy
pvpoT (P1, P2, P3, P4, Ps) = —————i FELE2XFXBY Y45

2
—8upluBoAr D Ry(A-p) (A ps) + ApAcArl(pr +2p2) Ay
i+j=N—3

(@ pgn] Y ARG ) (A Y (A ps) + (54
i+j+k=N—4

~(1 i j
— (A p)ALA AL, Y nf,-k),(A-pz)’(A-psy(AAm)k(A-ps)’}
i+j+k+I=N—5
1+ (Y oy
o T RSN AL AL B[Py + 2p5)0 B
) i j k 2
—(B-ps)gar] D R (A p) (AP (B p3)" + [PTAL
ij+k=N—4

, _ .
—pu(B pIALA AN, 3T RD(A ) (A pY (B ) (A ,,5)'}
i+jrk+I=N—5

+ permutations
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Application: Alien Feynman rules

@ Ghost vertices:

(a) Agreement with [Genrmann et 21, 2023 for 0- and 1-gluon vertices and (f ),
dy parts of the 2-gluon vertex

(b) diz part of 2-gluon vertex new!

(c) 3-gluon vertex new!

@ Alien gluon vertices:

(a) Agreement with [siimiein et al, 2022, Gehrmann et al, 2023] for 2- and 3-gluon
vertices; agreement with [Genrmann et al., 2023 for (f f), da parts of the
4-gluon vertex

(b) diz part of 4-gluon vertex new!

(c) 5-gluon vertex new!

@ Alien quark vertices:

(a) Agreement with [Gehrmann et al., 2023 for O-, 1- and 2-gluon vertices
(b) 3- and 4-gluon vertices new!
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Conclusions and outlook

@ One way to reconstruct the functional form of the alien operators is
based on the use of generalized gauge symmetry, which is then
promoted to a generalized (anti)-BRST symmetry

@ One then finds classes of EOM and ghost operators, the couplings of
which obey interesting consistency relations

@ These relations allow one to build up the function space of the
couplings and constrain their all-N dependence

@ Next steps:

(a) Publication of the paper
(b) Generalization to higher orders
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Thank you for your attention!

2Part of this work has been supported by grant K143451 of the National Research,
Development and Innovation Fund in Hungary.
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Appendices and references

@ Colour structures
@ Solving conjugation relations

© References
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Colour structures

fabc are the QCD structure constants. The other colour structures are in

turn defined as
(f f)abcd — fabefcde
(f f f-)abcde — fabm Fmen f-nde

dabcd f[T (TA TA T, TA) + symmetric permutations],

dfﬁer dabmn fmee i:edn7
abcd abcd 1 abcd
A2 = difed — 2 Cadf>,

dabcde _ dzbcmfmde
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Solving conjugation relations

@ To take full advantage of the anti-gBRST conjugation relations, one
needs to be able to evaluate them analytically

@ Use principles of symbolic summation!

o Creative telescoping (zeiberger, 1901]: evaluate the sum of interest by
rewriting it as a recursion relation using Gosper’s algorithm [cosper, 1978]

@ The closed-form expression of the sum then corresponds to the linear
combination of the solutions of the recursion that has the same initial
values as the sum.

— FOF S|ng|e sums: Slgma [Schneider, 2004, Schneider, 2007]
— For multiple sums: EvaluateMultiSums [schneider, 2013, Schneider, 2014]

Sam Van Thurenhout Meeting of FOR 2926



Classical telescoping and Gosper's algorithm

The telescoping algorithm is a well-known method for evaluating finite
sums. Suppose we want to evaluate the following sum

N
> fk)
k=a
with a, N € N and a < N. Now, if we can find a function g(N) such that
f(k) = Dg(k) = g(k +1) — g(k)
then
N N
> f(k) Zg k+1) =) g(k)
k=a = k=a
Zg(N+ 1) — g(a).

Here, A represents the finite difference operator. The telescoping function
g(N) can be found by application of Gosper's algorithm [cosper, 1975).
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Classical telescoping and Gosper's algorithm

Suppose
g(N)
g(N—-1)
is a rational function in N. The algorithm consists of three main steps.
Assume we want to calculate the telescoping function for some sequence

{an}
an = Ab(N).

It is assumed that {ay} is a hypergeometric sequence, that is

an
L — g(N)
an

with g(N) a rational function of N. The steps of Gosper’s algorithm can
then be summarized as follows
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Classical telescoping and Gosper's algorithm

@ Determine three functions f(x), g(x) and h(x) such that

f(x+1) g(x)
)= "F09 hlx+ 1)

and
ged[g(x), h(x +n)] =1 (n € No).

@ Solve the so-called Gosper equation,

f(x) = g(x)y(x +1) — h(x)y(x),
for the polynomial y(x).
© If such a polynomial solution does not exist, it means that the sum in

question does not have a hypergeometric closed form. Otherwise, the
telescoping function is determined by

t(x) = %iiy(x) with b(N) = t(N)a(N)

More details can e.g. be found in [Kauers and Paule, 2011]
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Creative telescoping

Classical telescoping works when dealing with sequences that depend on
one variable only. When we want to determine a closed form for a
summation of a sequence depending on two variables, we can use the
creative telescoping algorithm by Zeilberger (zeiberger, 10011, The idea is similar
to that of classical telescoping. Suppose we want to evaluate

b
> F(N, k) = S(N).
k=a
The way to go about this is by attempting to find d functions
co(N),...,cq(N) and a function g(N, k) such that
g(N,k+1)—g(N,k) = co(N)F(N, k) + ... + ca(N)F(N + d, k).

Summing both sides, and applying classical telescoping to the left-hand
side then gives

b b
g(N,b+1)—g(N,a) = co(N) Y F(N, k) + ... + ca(N) D _ F(N +d, k).

k=a k=a
7
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Creative telescoping

This leads to an inhomogeneous recursion relation for the original sum of
the form

g(N) = co(N)S(N) + ... + cg(N)S(N + d).
Typically, one starts this procedure at d = 0, which is equivalent to
classical telescoping. The value of d is then increased stepwise until a
solution is found. The creative telescoping algorithm can be applied when
the sequence under consideration is holonomic. A sequence {ay} is said to
be holonomic if there exist polynomials po(x), ..., pr(x) such that the
following recursion relation is obeyed [Kauers and Paule, 2011]

po(N)an + p1(N)ans1 + -+ + pr(N)anir =0 (N €N, p(N) # 0).

For example, the harmonic numbers {S;1(N)} form a holonomic sequence
as they obey

(N +1)Si(N) — (2N +3)Si(N + 1) + (N +2)S1(N +2) = 0.

More details on the summation algorithms reviewed here can e.g. be found
in the exce”ent bOOkS [Graham et al., 1989, Petkovéek et al., 1996].
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