

Higgs boson production in WBF with $\rm H \rightarrow bb$ decay at NNLO

Konstantin Asteriadis | 30.07.2024 FOR2926 Summer Meeting - Regensburg

Higgs-boson production in weak boson fusion (WBF)

- Important production channel of Higgs boson @LHC (second highest cross section @14TeV)
- Probes electro-weak sector
- Very distinct signature

•••

2 Higgs boson production in WBF with ${\rm H} \to {\rm bb}$ decay at NNLO Konstantin Asteriadis

Experimental signature of WBF

- Typical WBF cuts: at least 2 resolved "tag" jets with $p_{\perp,j} > 25 \,\text{GeV}$ and $-4.5 < y_j < 4.5$
 - Separated in rapidity $|y_{j_1} y_{j_2}| > 4.5$ and in different hemispheres $y_{j_1} \times y_{j_2} < 0$
 - Invariant mass $\sqrt{(p_{j_1} + p_{j_2})^2} > 600 \,\mathrm{GeV}$
 - Jets identified using anti-kt jet-algorithm with R = 0.4
- Experimentally measured with 10 20% accuracy \rightarrow few percent with HL-LHC

Higher order QCD correction to WBF

- 2 classes of corrections to the amplitude squared: *factorizable* and *non-factorizable*
- Examples for *factorizable* corrections

• Non-factorizable correction not present at NLO QCD due to colour conservation $\sim Tr(T^a) = 0$

July 30, 2024 FOR2926 Summer Meeting - Regensburg

Non-factorizable corrections to WBF

• Non-factorizable two loop contributions at NNLO are colour suppressed $\sim \frac{1}{N_c^2} \approx \frac{1}{10}$

- Not feasible to compute exact (2-loop, 5-point function with 2 scales) with current loop-technology
- In certain regions of the phase space enhanced by $\pi^2 \approx 10$ (Glauber phase) [Liu, Melnikov, Penin '19]
- First estimates [Dreyer, Karlberg, Tancredi '20; Chen, Figy, Plätzer '21]

- Include contributions at least in enhanced (forward) regions of the phase space [KA, Brønnum-Hansen, Melnikov '23; Long, Melnikov, Quarroz '23, Brønnum-Hansen, Long, Melnikov '23]
- More exotic contributions in case of identical flavours are not only colour suppressed but also suppressed by large momentum transfer in the weak-boson propagators [Bolzoni et al. '11]

Factorizable corrections to WBF and state of the art of QCD analysis

 $(Deep inelastic scattering)^2$

- Standard model with two identical but non-interacting QCD
 - Effectively DIS scattering of two protons
 - DIS well studied \rightarrow possibility to use existing results
 - \rightarrow Factorizable corrections well studied?

- Inclusive known till N³LO [Dreyer, Karlberg '16]
 - Nicely converging, N³LO within residual scale uncertainties
- Fully differential known till NNLO [Cacciari, Dreyer, Karlberg, Salam, Zanderighi '15] [Cruz-Martinez, Glover, Gehrmann, Huss '18]
 - **Fiducial cuts:** NNLO corrections outside of residual NLO scale uncertainties

State of the art of QCD analysis

- Non-trivial jet dynamics in WBF Higgs boson poduction
- All current computations are for stable Higgs boson production \rightarrow Effects of additional jets from Higgs decay?

Realistic final states [KA, Fabrizio Caola, Kirill Melnikov, Raoul Röntsch JHEP 02 (2022) 046]

•

•

- $H \rightarrow b\overline{b}$ and $H \rightarrow WW^* \rightarrow 2l \ 2\nu$
- Highest branching ratios
- Both studied by ATLAS and CMS [e.g. Eur. Phys. J. C 81, 537 (2021); Phys. Lett. B 791, 96 (2019)]
 - Doing this at NNLO QCD naively simple, in practice very complicated
 - non-trivial interplay between partonic jets from production and decay when fiducial cuts are applied
 - up to 21 dimensional phase space integration that is numerically very challenging
- In what follows: focus on $H \rightarrow b\overline{b}$ decay channel

$WBF + H \rightarrow b\overline{b} decay$

- Narrow width approximation \rightarrow factorization of on-shell Higgs production and on-shell Higgs decay
- Several effects break factorization of production and decay process. For example

Jet-clustering breaks factorization

 $\pmb{B\text{-}tagging}$ breaks factorization

- Impact of decay on NNLO corrections is non-trivial \rightarrow effects might not be captured by a simple reweighing
- We don't expect this effects to be very large but it is important to quantify their size
- Finally: cuts on b-jets may change fiducial WBF region

Physical setup

- Only *factorizable* contributions
- 13 TeV center-of-mass energy / NNPDF31-nnlo-as-118
- Scale choice [Cacciari, Dreyer, Karlberg, Salam, Zanderighi '15; Cruz-Martinez, Glover, Gehrmann, Huss '18]

$$u_0 = \sqrt{\frac{m_h}{2}\sqrt{\frac{m_H^2}{4} + p_{\perp,H}^2}}$$

- Cuts on b-jets; loosely following latest ATLAS measurement [Eur. Phys. J. C 81, 537 (2021)]
 - 2 resolved b-jets
 - $p_{\perp,jb} > 65 \text{ GeV}$
 - $|y_{jb}| < 2.5$
- Production process is flavour "blind"
 - At higher orders 1% of the cross section contains production b-jets in the final state
 - ... and in only 6% of the events b-jets are clustered with production jets

$\mathsf{WBF} + \mathsf{H} \to \mathsf{bb}$

First step: Study QCD corrections to the production process but decay process is kept at LO QCD

[KA, Fabrizio Caola, Kirill Melnikov, Raoul Röntsch JHEP 02 (2022) 046] Second step: Also include QCD corrections to the decay process

[KA, Arnd Behring, Kirill Melnikov, Ivan Novikov, Raoul Röntsch 2407.09363]

First step: WBF @NNLO + H \rightarrow bb @LO

[KA, Fabrizio Caola, Kirill Melnikov, Raoul Röntsch JHEP 02 (2022) 046]

• Sizable fiducial cross section, O(100 000) events with HL-LHC

$$\sigma_{\rm LO}^{b\bar{b}} = 75.9^{-5.6}_{+6.5} \text{ fb} \,, \quad \sigma_{\rm NLO}^{b\bar{b}} = 70.9^{+0.2}_{-1.2} \text{ fb} \,, \quad \sigma_{\rm NNLO}^{b\bar{b}} = 69.4^{+0.5}_{-0.2} \text{ fb}$$

• Comparison to stable Higgs results

- *Noteworthy features:* smaller residual scale uncertainty and better perturbative convergence compared to stable Higgs production
- Overall: effect of $H \rightarrow bb$ decay of same order as NNLO corrections themselves!

Results: fiducial cross section

• Simple reason: pt cuts on b-jets ($p_{\perp,j_b} > 65 \,\text{GeV}$) preferentially selects events with high Higgs transverse momentum

- NLO corrections are rather flat \rightarrow moderate effect
- For pt > 130 GeV NNLO corrections are smaller and within residual scale uncertainty band
- Check: Stable Higgs production with additional pt cut $p_{\perp,H} > 150 \,\text{GeV}$

$$\frac{\sigma_{\rm NNLO}^{H}}{\sigma_{\rm LO}^{H}} = 0.89 \qquad \boxed{\text{Higgs pt cut}} \qquad \frac{\sigma_{\rm NNLO}^{H}}{\sigma_{\rm LO}^{H}} = 0.91 \qquad \boxed{\text{including decay}} \qquad \frac{\sigma_{\rm NNLO}^{b\bar{b}}}{\sigma_{\rm LO}^{b\bar{b}}} = 0.914(2)$$

14 Higgs boson production in WBF with $H \rightarrow bb$ decay at NNLO Konstantin Asteriadis

Results: differential cross sections

- Shapes of NLO distributions **not affected** by NNLO corrections
- Simple reweighting possible as long as NNLO/NLO K-factor is computed with a proper cut on the pt of the stable Higgs boson

Second step: WBF @NNLO + H \rightarrow bb @NNLO

[KA, Arnd Behring, Kirill Melnikov, Ivan Novikov, Raoul Röntsch 2407.09363]

- Include QCD corrections to the decay process (used implementation includes massive b-quarks) [Bernreuther, Chen, Si '2018; Behring, Bizoń '19]
- Same physical setup and still no flavour tagging in the production process

Second step: WBF @NNLO + H \rightarrow bb @NNLO

[KA, Arnd Behring, Kirill Melnikov, Ivan Novikov, Raoul Röntsch 2407.09363]

- Include QCD corrections to the decay process (used implementation includes massive b-quarks) [Bernreuther, Chen, Si '2018; Behring, Bizoń '19]
- Same physical setup and still no flavour tagging in the production process

Results: fiducial cross section

• Corrections to the decay width at $\mu = m_H$

$$\Gamma_{\rm LO}^{b\bar{b}} = 1.926 \text{ MeV}, \qquad \Gamma_{\rm NLO}^{b\bar{b}} = 2.327 \text{ MeV}, \qquad \Gamma_{\rm NNLO}^{b\bar{b}} = 2.432 \text{ MeV}$$

$$21 \% \qquad 5 \% \qquad 5 \%$$

• We keep the branching ratio fix and only expand differential shape of the decay process

$$d\sigma = Br_{H \to b\bar{b}} d\sigma_{WBF} \frac{d\Gamma_{H \to b\bar{b}}}{\Gamma_{H \to b\bar{b}}} \stackrel{\text{expand shape}}{\bullet}$$
kept fix @NNLO

• Corrections to the fiducial cross section (again with $\mu = m_H$ in the decay process)

$$\sigma_{\rm LO}^{b\bar{b}} = 75.6^{-5.6}_{+6.5} \text{ fb}, \qquad \sigma_{\rm NLO}^{b\bar{b}} = 52.4^{+1.5}_{-2.6} \text{ fb}, \qquad \sigma_{\rm NNLO}^{b\bar{b}} = 44.6^{+0.9}_{-0.6} \text{ fb}$$

$$30\%$$

$$15\%$$

 $\begin{array}{l} \mbox{Compared to result} \\ \mbox{with \mathbf{H}} \to \mbox{bb} @ \mbox{LO}: \\ \\ \sigma^{b\bar{b}@\mbox{LO}}_{\rm LO} = 75.9^{-5.6}_{+6.5} ~ \mbox{fb} \, , \\ \\ \sigma^{b\bar{b}@\mbox{LO}}_{\rm NLO} = 70.9^{+0.2}_{-1.2} ~ \mbox{fb} \, , \\ \\ \sigma^{b\bar{b}@\mbox{LO}}_{\rm NNLO} = 69.4^{+0.5}_{-0.2} ~ \mbox{fb} \end{array}$

The reason for the large corrections are fiducial cuts on b-jets

•

Results: fiducial cross section

Same results in differential cross sections

- Shapes of NLO distributions **not affected** by NNLO corrections
- Simple reweighting possible as long as NNLO/NLO K-factor is computed with a proper cut on the pt of the stable Higgs boson
- No overlap of residual scale uncertainty bands (no scale variation in the decay process)

Same results in differential cross sections

• Perturbative expansion of H \rightarrow bb observed to converge somewhat faster for $\mu = m_H/2$ [Behring, Bizoń '19]

• ... but with WBF, scale variation in the decay similar to production ~ 5 - 10 %

Conclusion and Outlook

- Non-trivial interplay from jets in production and decay processes
- WBF + H \rightarrow bb @ LO
 - Changes in higher order corrections due to cuts on b-jets are comparable to NNLO corrections
 - Smaller residual scale uncertainty / better perturbative convergence
- WBF + H \rightarrow bb @ NNLO
 - Non-trivial transverse momentum distributions of b-jets
- With current fiducial cuts no perturbative control of this process
- ... but lowering the ptb cut substantially might not be possible due to experimental constraints
- To formally complete computation we need to tag b-jets in the WBF production process