10. Annual MT Meeting

Contribution ID: 62 Type: not specified

BEETLE –High average power laser-plasma accelerator using a 1 kW Yb-based laser with nonlinear compression

Wednesday 18 September 2024 17:45 (3 minutes)

Laser-plasma acceleration (LPA) is a promising technology for a future compact accelerator. However, current Ti:Sapphire laser technology typically supports few-hertz repetition rates, with scaling to higher rates being challenging. High energy, kHz-level Yb-based laser systems have longer, sub-picosecond pulses. After nonlinear spectral broadening in a multipass cell, these pulses can be compressed to tens of fs duration, becoming a promising LPA driver alternative.

In this poster, we introduce the BEETLE project, recently initiated at DESY, that aims to demonstrate high-energy, high repetition rate electron acceleration. The driver laser pulses, provided by a 5 kHz Yb-based laser system (Trumpf Scientific Lasers), have an energy of 200 mJ and are compressible to \sim 30 fs via spectral broadening. We present an overview, goals and the current status of the project.

Speed talk:

Normal speed talk selection

Primary authors: NECHAEVA, Tatiana (MLS (Laser fuer Plasmabeschleunigung)); EICHNER, Timo (MLS (Laser fuer Plasmabeschleunigung)); JALAS, Soeren (MLS (Laser fuer Plasmabeschleunigung)); WERLE, Christian (MLS (Laser fuer Plasmabeschleunigung)); Dr WINKELMANN, Lutz (MLS (Lasers and Secondary Sources)); PALMER, Guido (MLS (Laser fuer Plasmabeschleunigung)); KIRCHEN, Manuel (MLS (Laser fuer Plasmabeschleunigung)); MAIER, Andreas (MLS (Laser fuer Plasmabeschleunigung))

Presenter: NECHAEVA, Tatiana (MLS (Laser fuer Plasmabeschleunigung))

Session Classification: Poster