

M. Bousonville, S. Karau, P. Hülsmann (MHF)H. Bienert, M. Pröll, M. Lemke (ZM1)S. Vilcins (MDI)

Engineering Day, Hamburg, 20. Juni 2024

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Simple Example of an Acceleration Cavity

Mode Overview of a Pill-Box Cavity for 1.5 GHz up to 3.0 GHz

Mode	f _{res} [GHz]	Q ₀ [1]
TM ₀₁₀	1.500	24150
TE ₁₁₁	2.004	25642
	2.004	25642
TM ₀₁₁	2.289	20144
TM ₁₁₀	2.315	26413
	2.315	26413
TE ₂₁₁	2.540	28050
	2.540	28050
TM ₁₁₁	2.801	19238
	2.801	19238
TE ₀₁₁	2.910	49620

Simple Example of an Acceleration Cavity

Mode Overview of a Pill-Box Cavity for 1.5 GHz up to 3.0 GHz

DESY. | 1.5 GHz Single-Mode-Cavity: Hochfrequenz-Technik | Simon Karau, Date 2024-06-20

Simple Example of an Acceleration Cavity

Mode Overview of a Pill-Box Cavity for 1.5 GHz up to 3.0 GHz: 2 Modes which are presented as examples

Mode	f _{res} [GHz]	Q ₀ [1]
TM ₀₁₀	1.500	24150
TE ₁₁₁	2.004	25642
	2.004	25642
TM_{011}	2.289	20144
TM ₁₁₀	2.315	26413
	2.315	26413
TE ₂₁₁	2.540	28050
	2.540	28050
TM ₁₁₁	2.801	19238
	2.801	19238
TE ₀₁₁	2.910	49620

E-Field Pattern of exemplary Modes TM₀₁₀ & TM₁₁₀ of a <u>Pill-Box Cavity</u> for 1.5 GHz

E-Field of TM₁₁₀

E-Field Pattern of exemplary Modes TM₀₁₀ & TM₁₁₀ of a <u>Choke Mode Cavity</u> for 1.5 GHz

DESY. | 1.5 GHz Single-Mode-Cavity: Hochfrequenz-Technik | Simon Karau, Date 2024-06-20

Structure and Principle of Operation

Cylindrically Radial-Line ending with a Damper on a Cavity

- All TM-Modes (and most TE-Modes) will excite the Radial-Line
- Only not critical TE_{0ng} can not excite the Radial-Line

All critical Modes are damped, but also acceleration Mode TM_{010} .

Adding a <u>Choke</u> in the Radial-Line to protect TM₀₁₀ Mode

- The **Short** will be transformed by $\lambda/4$ into an **Open**.
- Serial junction added impedance $Z_{choke} = \infty$ and Z_{damper}

 $Z_{\text{junction}} = Z_{\text{choke}} + Z_{\text{damper}} = \infty$ (**Open**) and has a infinitely impedance independent of the damper.

• Distance of $\lambda/4$ transforms the **Open** into a **Short** with $Z_{wall} = 0$. Acceleration Mode is only slightly reduced by additional metal loss.

Sketch from T. Shintake, "The Choke Mode Cavity", 1992.

Structure and Principle of Operation

Cylindrically <u>Radial-Line</u> ending with a Damper on a Cavity

- All TM-Modes (and most TE-Modes) will excite the Radial-Line
- Only not critical TE_{0nq} can not excite the Radial-Line

All critical Modes are damped, but also acceleration Mode TM_{010} .

Adding a <u>Choke</u> in the Radial-Line to protect TM_{010} Mode

- The **Short** will be transformed by $\lambda/4$ into an **Open**.
- Serial junction added impedance $Z_{choke} = \infty$ and Z_{damper}

 $Z_{\text{junction}} = Z_{\text{choke}} + Z_{\text{damper}} = \infty$ (Open) and has a infinitely impedance independent of the damper.

• Distance of $\lambda/4$ transforms the **Open** into a **Short** with $Z_{wall} = 0$. Acceleration Mode is only slightly reduced by additional metal loss.

Sketch from *T. Shintake, "The Choke Mode Cavity", 1992* and an added Smith Chart visualization of the Choke

Design of the Cavity-Body

Selection of the Damping Material

- Adapted idea of single Ring of Siliziumcarbid (SiC) from T. Inagaki et al., "High-gradient C-Band Linac for a Compact X-Ray Free-Electron Laser Facility", 2014.
- Material parameters for RF-Simulations:
 - $\varepsilon_r = 20$
 - $tan \delta_E = 0.25$

Real paras. vary along Fabrication, Frequency & Temperature.

Optimization of the TM_{010} Mode of the Cavity

- Rounding of the outer Cavity Edges:
 - Included on Top-Side: Reduces the Losses of the Cavity
 - Missing on Back-Side: Excitation of Radial-Line by all TM-Modes
- Noses are included:
 - At the Transitions of Cavity and Beam-Pipe
 - to increase the effective Shuntimpedance.
- Cavity Parameters:
 - $Q_0 = 19784$
 - $R_{\rm sh,eff} = 1.704 \, {\rm M}\Omega$

Sketch from *T. Inagaki et al., "High-gradient C-Band Linac for a Compact X-Ray Free-Electron Laser Facility", 2014.*

Design of the Cavity-Body

Selection of the Damping Material

- Adapted idea of single Ring of Siliziumcarbid (SiC) from T. Inagaki et al., "High-gradient C-Band Linac for a Compact X-Ray Free-Electron Laser Facility", 2014.
- Material parameters for RF-Simulations:
 - $\varepsilon_r = 20$
 - $tan \delta_E = 0.25$

Real paras. vary along Fabrication, Frequency & Temperature.

Optimization of the $\rm TM_{010}$ Mode of the Cavity

- Rounding of the outer Cavity Edges:
 - Included on Top-Side: Reduces the Losses of the Cavity
 - Missing on Back-Side: Excitation of Radial-Line by all TM-Modes
- Noses are included:
 - At the Transitions of Cavity and Beam-Pipe
 - to increase the effective Shuntimpedance.
- Cavity Parameters:
 - $Q_0 = 19784$
 - $R_{\rm sh,eff} = 1.704 \text{ M}\Omega$

DESY. | 1.5 GHz Single-Mode-Cavity: Hochfrequenz-Technik | Simon Karau, Date 2024-06-20

Mode Overview of Nose-Coned Choke-Mode-Cavity by CST Eigenmode-Solver

Coupler- and Tuner-System of the Nose-Coned Choke-Mode-Cavity

Coupler

- Capacitive Coupler in the Radial-Line
- Coaxial-Line 75Ω (Copper)
- Actively adjustable $K \approx 0.2$ to 5.0

Tuner

- Capacitive Tuner in the Radial-Line (180° to Coupler)
- Coaxial-Line 10Ω (Copper)
- Tunable Resonant-Frequency $\Delta f_{res} \approx \pm 1.0 \text{ MHz}$

DESY. | 1.5 GHz Single-Mode-Cavity: Hochfrequenz-Technik | Simon Karau, Date 2024-06-20

RF-Properties of an One Cell 'Choke-Mode-Cavity' for 1.5 GHz

RF-Power for normal and doubled Gradient with K = 3 at 1.5 GHz

RF-Power for two Examples

- $V_{\rm eff} = 96 \, \rm kV$ (norm Gradient)
- $V_{\rm eff} = 2 \cdot 96 \, \mathrm{kV} = 192 \, \mathrm{kV}$ (doubled Gradient)

Coupler & Tuner positioned for

- $f_{\rm res} = 1.5 \, {\rm GHz}$
- *K* = 3

RF-Properties of an One Cell 'Choke-Mode-Cavity' for 1.5 GHz

Power-Loss Distribution with K = 3 at 1.5 GHz

Surface Power Loss Dens (Metal Loss) logarithm

DESY. | 1.5 GHz Single-Mode-Cavity: Hochfrequenz-Technik | Simon Karau, Date 2024-06-20

Power Loss Dens (Dielectric Loss.) logarithm

RF-Properties of an One Cell 'Choke-Mode-Cavity' for 1.5 GHz

Power-Loss in Copper-Regions and Siliziumcarbid (SiC) with K = 3 at 1.5 GHz

15.1 W

114 W

103 W

Loss per Region

DESY. | 1.5 GHz Single-Mode-Cavity: Hochfrequenz-Technik | Simon Karau, Date 2024-06-20

3.77 W

28.6 W

25.6 W

P_{CouplerIn}

P_{TunerIn}

P_{SiC}

Examples of HOM-Damping Cavities Concepts

F. Marhauser, E. Weihreter "HOM Damped 500 MHz Cavity Design for 3rd Generation SR Sources", 2001

DESY. | 1.5 GHz Single-Mode-Cavity: Hochfrequenz-Technik | Simon Karau, Date 2024-06-20

Blowup in Race Track Microtrons", 1979

E-Field Pattern of exemplary Modes TM₀₁₀ & TM₁₁₀ of a <u>Choke Mode Cavity</u> for 1.5 GHz

DESY. | 1.5 GHz Single-Mode-Cavity: Hochfrequenz-Technik | Simon Karau, Date 2024-06-20

E-Field Pattern of exemplary Modes TM₀₁₀ & TM₁₁₀ of a <u>Choke Mode Cavity</u> for 1.5 GHz

E-Field of TM₁₁₀

DESY. | 1.5 GHz Single-Mode-Cavity: Hochfrequenz-Technik | Simon Karau, Date 2024-06-20