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Unfolding with data fitting

The probability density function (PDF) P (x′) of a reconstructed
characteristic x′ of an event obtained from a detector with finite
resolution and limited acceptance can be represented as

P (x′) =
∫
Ω
p(x)A(x)R(x, x′) dx, (1)

where p(x) is the true PDF, A(x) is the acceptance of the
setup, i.e. the probability of recording an event with a
characteristic x, and R(x, x′) is the experimental resolution, i.e.
the probability of obtaining x′ instead of x after the
reconstruction of the event. The integration in (1) is carried out
over the domain Ω of the variable x.
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Unfolding with data fitting

To solve unfolding problem or find p(x) from (1). Let us
represent p(x) as:

p(x) = a0 +

i=m∑
i=1

aiK(
x− xi

λ
) (2)

where ai are positive parameters, K(x−xi

λ
) are kernel with

position of center of kernel xi and scale parameter λ.
Kernels are widely used in non-parametric regression

analysis.
Examples of kernels:
3
4λ (1−

(x−xi)2

λ2 )1{|x−xi|≤λ} – Epanechnikov Kernel;
35
32λ (1−

(x−xi)2

λ2 )31{|x−xi|≤λ} – Triweight Kernel;
1
λπ

( λ2

λ2+(x−xi)2
) – Cauchy Kernel;

1
λ
√
2π
e−

(x−xi)
2

2λ2 – Gaussian Kernel.
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Unfolding with data fitting

Let us substitute (2) to basic equation (1):

P (x′) = a0

∫
Ω
A(x)R(x, x′) dx+

i=m∑
i=1

ai

∫
Ω
K(

x− xi
λ

)A(x)R(x, x′) dx.

Elements of equation∫
ΩA(x)R(x, x′) dx,

∫
ΩK(x−xi

λ
)A(x)R(x, x′) dx can be

calculated in advance using Monte-Carlo.
After that we have liner fit problem and find estimators âi and
unfolded distribution:

p(x) = â0 +

i=m∑
i=1

âiK(
x− xi

λ
) (3)
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Unfolding with data fitting

The method described above is now illustrated with an example
proposed by Blobel. We take a true distribution

φ(x) ∝
3∑

i=1

Ai

C2
i

(x−Bi)2 + C2
i

(4)

with the same parameters as in a previous study, where x is
defined on the interval [0, 2].

A1 A2 A3 B1 B2 B3 C1 C2 C3

1 10 5 0.4 0.8 1.5 2 0.2 0.2
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Unfolding with data fitting

An experimentally measured distribution is defined as

P (x) =

∫ 2

0
p(x′)A(x′)R(x, x′)dx′ (5)

where the acceptance function A(x) is

A(x) = 1−
(x− 1)2

2
(6)

and

R(x, x′) =
1

√
2πσ

exp(−
(x− x′ + 0.05x′2)2

2σ2
) (7)

is the detector resolution function with σ = 0.1.
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Unfolding with data fitting
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Figure: The acceptance function A(x) and resolution function
R(x, x′) for x′ = 0.5, 1.0 and 1.5.
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Unfolding with data fitting
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Figure: The measured distribution P (x) (number of events divided
on bin size). The true distribution p(x) is shown as curve.
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Unfolding with data fitting

λ χ2 n

.25 52.0 11

.30 55.1 9

.35 57.5 9

.40 57.0 7

.45 56.6 7

.50 56.8 7

.55 68.3 4

.60 115. 4
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Figure: Kernels, measured distributions, residuals, Q−Q plots and
unfolded distributions for different bandwidth λ of kernels.
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Unfolding with data fitting
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Figure: Kernels, measured distributions, unfolded distributions, unfolded
distributions(40 bins), unfolded distributions (12 bins).
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Unfolding with data fitting

To investigate the statistical properties of the unfolding procedure, 1000
simulation runs were performed for the same true distribution. The
unfolded distribution was calculated for each measured distribution. The
following quantities were calculated:

Exact value of the components of the true distribution
pi = 5000

∫ xi+1

xi

p(x)dx/(xi+1 − xi) where xi+1 and xi are the bounds
of ith bin.

Average value of the unfolded distribution
¯̂pi =

∑1000
j=1 p̂i(j)/1000, where j is the run number.

Bias for components of the unfolded distribution
Bp̂i = ¯̂pi − pi

Standard deviation si for the unfolded distribution components

si =
√

∑1000
j=1 (p̂i(j) −

¯̂p2i )/1000.

Mean estimated error δ̂ii for the unfolded distribution components
¯̂
δii =

∑1000
j=1 δ̂ii(j)/1000.

Bias for errors in the unfolded distribution components

Bδ̂ii = si −
¯̂
δii.
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Unfolding with data fitting

Mean Square Error: MSEi =
∑1000

j=1 (p̂i(j)− pi)
2/1000, it is

known that MSEi = s2i + (Bpi)
2

Total Mean Square Error:
TMSE =

∑
i MSEi =

∑
i s

2
i +

∑
i(Bpi)

2

∑
i s

2
i – Total Variance (TV)

∑
i(Bpi)

2 – Total Squared Bias (TSB)

TMSE = TV + TSB
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Unfolding with data fitting
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Figure: Unfolded distributions (λ = 0.35) and average unfolded
distribution with average errors (1000 runs), the circle centers (⊙)
denotes the exact values of true distribution componentsNikolai D.Gagunashvili Unfolding with data fitting 13/15



Unfolding with data fitting
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Figure: Average unfolded distribution with average errors (1000
runs) and unfolding results from A. Höcker, V. Kartvelishvili, NIM
A372, 1996 and V. Blobel, CERN 85-02, 1985
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Unfolding with data fitting
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Figure: Total Mean Square Error (⋆), total variance (•), total
squared bias (◦) and ratio of total squared bias to total variance (%)
for 40 bins (a) and for 12 bins (b)
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