. GPU COMPUTING
. 3-TOOLS . °

Mathias Wagner, Lattice Practices 2024

\\; \ : \‘\{\. ‘i\‘ ‘r\' ,‘I\' . .
L B RIS WLV by .
AN L g e VY T) A X
AN VNN ISR
AN A " ‘
-‘L"fhnn' ‘. -.j..‘.o
ﬂ hl‘[‘ " 3 O" “ ...
ity ¢ wlse%e"
vy LTI
vy ¥ s 949 ']" oY o
v "”' ,' o ®
o yrrrrtiee
v, Yoy
’ ‘N B
ot s 4 - L4 L.
. _ :: &
y @ » » 2
e s s
"'(,," '.‘n < “ 2 4
““‘ - Tld 4 3
v ’ .
.‘: p *)

OVERVIEW

Extension of GDB, allows debugging of CUDA application
Valgrind like tool to check functional correctness

Timing of Kernel and API calls (Timeline in GUI)

2 NVIDIA,

DEBUGGING

Debugging Correctness: Best Practices

Crashes are "nice" — the stacktrace often points to the bug
Prerequisite: Compile flags
While developing, always use -g -lineinfo
Use =g -G for manual debugging
Specific flags for compilers/languages (e.g. gfortran): -fcheck=bounds
Memory corruption: Out-of-bounds accesses may or may not crash
compute-sanitizer: Automate finding these errrors

Other issues: Manual debugging
cuda-gdb: Command-line debugger, GPU extensions

CUDA_LAUNCH_BLOCKING=1 forces synchronous kernel launches

4 NVIDIA,

compute-sanitizer

compute-sanitizer is a collection of tools
memcheck (default) tool comparable to

Other tools include
racecheck: shared memory data access hazard detector
initcheck: uninitialized device global memory access detector

synccheck: identify whether a CUDA application is correctly using synchronization primitives

Main usage: Auto-detect invalid GPU code and shortcut debugging effort

Directly pinpoint source code line/addresses, access size

Leak-checking for device allocations - forgot to call cudaFree()?
--leak-check full

Filtering and other capabilities. Two commonly useful switches:
--log-file output.log
Separates (potentially verbose) output into separate file

--kernel-regex kns=some_substring

Only checks kernels containing "some_substring"

6

NVIDIA.

https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/
https://www.valgrind.org/docs/manual/mc-manual.html

cuda-gdb

"Symbolic Debugger" — leaverage debug symbols to correlate execution issues with original source code

Interactive/manual tool, with useful shortcuts

Textual, like a shell for debugging — Not the easiest to master, but very powerful, and works everywhere

Basic workflow for segfaults
Crashing app invoked via
./my_app_name my_app_arg another_arg
becomes
cuda-gdb --args ./my_app_name my_app_arg another_arg
Shows you the debugger shell prompt: (cuda-gdb)
Launch program with "run"
Identify the segfault— Done ©

Advanced workflow to step through execution, understand program flow, inspect and modify variables,...

7

NVIDIA.

https://docs.nvidia.com/cuda/cuda-gdb/index.html
https://docs.nvidia.com/cuda/cuda-gdb/index.html

Most commands have abbreviations

cuda-gdb Cheat Sheet

continue = cont, break 2 b, info =2 i, backtrace = bt, ...

cudathread4 2> cuth 4

Use TAB completion to help you remember command names

and apropos to avoid a round-trip to the browser (try: apropos cuda. *api)

Begin progam execution under debugger

Print call stack (e.g. after an exception)

List source code around current location

print <var>

Print contents of <var>, e.g. "print " to print the loop counter i

set var <var>=<value>

Setvalue of <var>to <value>, e.g. "set vari=42"

break
break foo.cpp:
break my_func

Set breakpoint (suspend execution) on: line 10 in current file
... line 10 in file foo.cpp
... function my_funcin anyfile

set cuda api_failures stop

Break on any CUDA API failures (e.g. launch errors)

continue / next / step

Resume execution (after hitting breakpoint) until next: break / line / instruction

info locals

Print all local variables in current scope

info cuda threads

Print current thread configuration

cuda thread 15

Switch focus to thread (here: 15)

8

NVIDIA.

The Most Essential Command

If your app crashes or terminates unexpectedly, the debugger can very often tell you the exact location of the issue
Both in CPU and GPU code

S cuda-gdb --args ./gpu-print
(cuda-gdb) run

[...]

CUDA Exception: Warp Illegal Address
The exception was triggered at PC @xacbc96 (gpu_print.cu:19)

Thread 1 "gpu_print"” received signal CUDA_EXCEPTION_14, Warp Illegal Address.

[Switching focus to CUDA kernel ©, grid 1, block (0,0,0), thread (0,0,0), device ©0,sm 0,warp
0,lane 0]

0x000000000B0acbca® in print_test<<<(2,1,1),(32,1,1)>>> () at gpu_print.cu:19

19 double x = *(double*)nullptr;

(cuda-gdb) # " "

#0 0x0000000000acbca® in print_test<<<(2,1,1),(32,1,1)>>> () at gpu_print.cu:19

Backtrace tries to print all stack frames (i.e. function calls) with line information up to the current location
Equally useful when manually debugging or using breakpoints

Some errors can corrupt the stack, making the backtrace less useful

NVIDIA.

GPU-Specifics

GPU-specifics: Setting the focus

(cuda-gdb)
BlockIdx ThreadIdx To BlockIdx ThreadIdx Count Virtual PC Filename Line
Kernel ©
* (0,0,0) (0,0,0) (6,0,0) (31,0,0) 32 0x0000000000achf90 gpu_print.cu 19
(1,0,0) (06,0,0) (1,0,0) (31,0,0) 32 0x0000000000acbf60 gpu_print.cu 18
(cuda-gdb)
thread (0,0,0)
(cuda-gdb)
[Switching focus to CUDA kernel @, grid 1, block (0,0,0), , device O,sm 0,warp 0,lane
10]
19 printf("blockIdx.x = %d, threadIdx.x = %d, i = %d\n", blockIdx.x, threadIdx.x, i);
Focus can be set to specific blocks, SMs, devices, ... — help cuda

Hardware and software abstractions (e.g. blocks vs. SMs)

Options: Try (cuda-gdb) set cuda<ENTER>for a list
Two commonly-used options: api_failures and launch_blocking

NVIDIA.

NVIDIA NSIGHT SUITE

PERFORMANCE OPTIMIZATION

What exactly is the performance bottleneck?

You might have a feeling where your application spends most of it’s time ...

... but a more analytic approach might be better

... but keep in mind that you might kill some cats in the process

(Profiling creates overhead)

15 <ANVIDIA,

WHAT DOES A PROFILER DO?

Sampling vs. Instrumentation (very simplified)

<

Every ms, take a sample of callstack Instrument function calls, APIls, etc. (automatable)

while (...) { - while (...) {

do_nothing() trace_do_nothing() -> do_nothing()

intense_calculation() trace_intense_calculation() -> intense_calculation()

trace_sleep() -> sleep()

slee

} P() 3

(+) Hot spots show up, low overhead (+) Captures whole program, full call chains
(-) May miss some calls (-) Potentially higher overhead, skew

16 <A NVIDIA.

THE NSIGHT SUITE COMPONENTS

How the pieces fit together

Start here

= Nsight Systems: Coarse-grained, whole-application

G

Nsight Compute: Fine-grained, kernel-level

Recheck overall
workload behavior

Recheck overall
workload behavior

NVTX: Support and structure across tools

Dive into top
CUDA kernels

Dive into graphics
frames

= Main purpose: Performance optimization

v

Finished if
performance
satisfactory

= But at their core, advanced measurement tools

17 <A NVIDIA.

WHETTING YOUR APPETITE

Timeline overview in Nsight Systems GUI

= Timeline View -

» CPU (80)

b CUDA HW (Tesla V100-SXM2-11
* Threads (10)

- |/ [44932] MPI Rank 0 -

MPI

CUDA APT

Profiler overhead
V| [44943] IbmD2Q37 -

8 threads hidden... =

0s

45

Here: Application already ported
to GPU - basic guidelines
followed (coalescing, data
movement, SoA)

1y A\ 1 waming, 14 messages

8s 125 20s =

NVTX
ranges

S7122: CUDA Optimization Tips,
Tricks and Techniques (2017)

GPU
activity

18 <A NVIDIA.

https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s7122-cuda+optimization+tips%2c+tricks+and+techniques
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s7122-cuda+optimization+tips%2c+tricks+and+techniques

A FIRST ()NSIGHT

Maximum achievable speedup: Amdahl‘s law

Amdahl‘s law states overall speedup s given the parallel fraction p of code and nhumber of processes N

Limited by serial fraction, even for N - o
Example for p = 30%

Also valid for per-method speedups

1 - 1
S =
_p4+ P 1
1 Pty p

Using 1 to 4 processes

N=1 | A ——
N=2 A .
N=3 A
N=4 [A——
0 2 4 6 8 10

m Serial part ® Parallel part

12

19

<A NVIDIA.

A FIRST

)NSIGHT

Recording with the GUI

1® mhrywniak@localhost:8200 * || *+| & | E |« Targetis ready More info...

¥ «/ Sample target process

Sampling Period: - 1,000,000 events

The sampling period is the number of 'CPU Instructions Retired' events counted before a CPU instruction peinter (IP) sample is
collected. If configured, call stacks may also be collected. The smaller the sample period, the higher the sampling rate. Lower
sampling periods will increase overhead and significantly increase the size of result file(s).

» W/ Collect call stacks of executing threads
¥ Target application
Mode: Specify process launch options below

Command line with arguments: Edit arguments

/gpfs/fs1/mhrywniak/code/Ibmd2q37/d2q37-vi-acc-mpi -
Waorking directory:
/gpfs/fs1/mhrywniak/code/Ibmd2q37 -

¥ Environment variables

Trace fork before exec

v/ Collect CPU context switch trace
v Collect OS runtime libraries trace
+/ Collect CUDA trace

Collect OpenMP trace

Collect GPU context switch trace
v/ Collect MPI trace

v Collect NVTX trace

Start
Start profiling manually
Start profiling after 10,0 % seconds
Limit profiling to 10,0 % seconds

Hotkey {F12} Start/Stop
(not available in console apps)

@ Manage targets

Recent connections
Make sure your target is on the same subnetwork as this computer.

Target Username
1® mhrywniak@Ilocalhost:3200 mhrywniak

g Create a new connection &

Connect directly

Or use an SSH Tunnel:
ssh -L 8200:compute-
node:22 login-node

Select traces to collect

20

<A NVIDIA.

A FIRST ()NSIGHT

Recording an application timeline

1) We‘ll use the command line

mpirun —-np SNP \
nsys profile --trace=cuda,nvtx,mpi \

—-—output=my report.%g{OMPI COMM WORLD RANK}.gdrep ./myApp

Note: Slurm users, try srun $q{SLURM PROCID}

2) Inspect results: Open the report file in the GUI

Also possible to get details on command line (documentation), nsys stats --help

See also https://docs.nvidia.com/nsight-systems/, "Profiling from the CLI on Linux Devices"

21 <A NVIDIA.

https://docs.nvidia.com/nsight-systems/index.html

USING NSIGHT SYSTEMS

Recording with the CLI

= Use the command line
srun nsys profile --trace=cuda,nvtx,mpi --output=my report.%gq{SLURM_PROCID} ./jacobi -niter 10
= Inspect results: Open the report file in the GUI

= Also possible to get details on command line
= Either add --stats to profile command line, or: nsys stats --help

= Runs set of reports on command line, customizable (sqlite +
= Useful to check validity of profile, identify important kernels

jacobi_metrics_more-nvtx.0.sqlite]...

[.../reports/
Name

Med (ns) Min (ns) Max (ns) StdDev (n

void jacobi_kernel
initialize_boundar;

yotal Time (ns) Instances Avg (ns)

36750359 20 1837518.0 1838466.5 622945 3055044 1245121
22816 2 11408.0 11408.0 7520 15296 5498.

Slide 22

Credit Markus Hrywniak

I NVIDIA

LOOKING AT A SIMPLE EXAMPLE

File View Tools Help

Project Explorer * | | Project 1 X EEIERERLIE[IE

» & Project 1

scale_report.qdrep = Timeline View M @ Qix ' /\ 4 wamings, 15 messages

0s * mMs +50ms +100ms +150ms +200ms +250ms +300ms +350ms +400ms +450ms +500ms -
x 1 X L f 1 h 1 L L h L L 1 L h L X 1 1 i

N

» CPU (96)

» CUDA HW (A100-5XM4-40GB)

0S runtime libraries

CUDA API

Pro

6 threads hidden -

Events View =

Name - || A

Description:

Right-click a timeline row and select "Show in Events View" to see events here

e Y Y N
0S runtime libr
CUDA API
Profiler overned g pin row Ctrl+P
B RS RRcE Taide Show in Events View

Events View makes
information searchable

,Highlight All“ shows all
matches

Can search in description,
includes callstack

NG CALLSTACK SAMPLES

B Q1x

+200ms

= Timeline View v

Os *+ Ms +100ms

» CPU (96)

» CUDA HW (A100-SXM4-40GB)
~ Threads (7)

~ Vv [30604] scale_vector_| ~

0S runtime libraries e

/\ 4 warnings, 15 messages

+500ms |+

CUDA API cudaMallocManaged
Profiler overhead 6 e IOpe... CUDA ...
6 threads hidder - o) .
4
Events View v
1of 14 matches [std::abs
¥ Name ~ Description:

.02 scale_vector_um!std::abs(...)
.03 scale_vector_um!std::abs(...)

_ scale_vector_um!std::absl...)

.05 scale_vector_um!main
.06

.07 scale_vector_um!main

scale_vector_um!std::abs(...)

Sampling point

Call stack at 0.40045s

= or_um!main
libc-2.28.s0!
__libc_start_main
scale_vector_um!_start

Like manual timing, only less work
Nesting, timing

Correlation, filtering

ADDING SOME COLOR

Code annotation with NVTX

= Timeline View v Q 1x | M3 warnings, 17 messages
0s - +100ms +150ms +200fRCREN) +250ms +300ms +350ms +400ms |~

» CPU (96)

¥ CUDA HW (A100-SXM4-40GB) -—

¥ Threads (7)

¥ |¥| [31520] scale_vector_umr - = —- g %
05 runtime libraries | ioctl | | sem___| |s.

rme P ®
malloc [202,197 ms]

Profiler overhead OpenGL] [CUDA profiling initi..] [
& threads hidden... -+ _ _ _
h
4 3
Events View v
Name v 4
A MName Start Description:
0: + [l main 0,0041701s | kernel
o Begins: 0,397388s
(1 » [init 0,09417155 | nds: 0,401767s (+4,379 ms)
Ms [l validate 0,401767s

25

<A NVIDIA.

ADDING NVTX

Simple range-based API

int main(int argc, char** argv){
#include <nvToolsExt3.h> PUSH("main", ©)
PUSH("init", 1)

Copy&paste PUSH/POP macros (or module)

POP
PUSH(name, color) PUSH("kernel", 2)
Sprinkle them strategically through code scale<<<gridDim, blockDim>>>(alpha, a, c, m);

NVTX v3 is header-only cudaDeviceSynchronize();

POP

Not shown: Advanced usage (domains, ...) PUSH("validate", 3)

https://github.com/NVIDIA/NVTX

https://developer.nvidia.com/blog/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx/

https://developer.nvidia.com/blog/customize-cuda-fortran-profiling-nvtx/

26 <A NVIDIA.

https://github.com/NVIDIA/NVTX
https://developer.nvidia.com/blog/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx/
https://developer.nvidia.com/blog/customize-cuda-fortran-profiling-nvtx/

Kernel launch

UM migrations and
page faults

Use Amdahl‘s law as
heuristic

ZOOMING IN

Regions of interest
GPU

activity

UDA HW (A100-SXM4-40G TTEETYEY "7 0 TR TR T roq

* 54.1% Context 1
F 100.0% Kernels

NVTX

* 35.9% Unified memory
¥ 100.0% Memory
52.9% HtoD transfer
37.1% DtoH transfer
~ Threads (7)

0S5 runtime libraries

NVTX

CUDA API

w [v! [31520] scale_vector_um -

| kemel[4301ms] |

TR | ET N 1 e T
BRI TR

QI I I].] P | ||] e ||] wend D
- -r--"-qr 1 |

sem_timedwait | |;.| |:..|
- IR - G
malloc [202,197 ms]
cudaMallocManaged

27 <A NVIDIA.

MINIMIZING PROFILE SIZE

Shorter time, smaller files = quicker progress

Only profile what you need - all profilers have some overhead
Bonus: lower number of events => smaller file size
Add to nsys command line:

--capture-range=nvtx --nvtx-capture=any_ nvtx_marker_name \
--env-var=NSYS_NVTX_ PROFILER_REGISTER_ONLY=0 --kill none

Alternatively: cudaProfilerStart() and -Stop() ——————

“nlnrl- ——m— r—s " = [L |
--capture-range=cudaProfilerApi AR U4 M & il

kernel_and_validate [39.703 ms]

DE

28 <A NVIDIA.

, 1raditional“ top-down or bottom-up stack views

OTHER FEATURES

Symbaol Name

Lots of different traces (MPl, OpenACC, OpenMP, ...) ~ _libc_start_main

Data export (csv, sqlite, ...)
Customizable reports via Python scripts

Full guide:

Top-Down View ¥ | Process [31520] scale_vector_um (7 of 7 threads)

[Filter... | 901 samples are used.

Self, % otal, 9™

« _start 5461 /
< 54,61 /)

» cudaError cudaMallocManaged <float=(flo... - 2242)

b cudaSetDevice 19,31 /]

9/software/Nsight-Systems/2020.5,1-GCCcore-9

report.qdrep

0/software/Nsight-Syste

Minimum

.0 4709010

Minimum Maximum

3 [CUDA Unifi
53119 [CUDA Unified

3.0/target-1linux-

.0/target-linux

HtoD]
DtoH]

x64/reports/cudaap

-x64/reports/gpuker

NVIDIA.

https://docs.nvidia.com/nsight-systems/UserGuide

WHEN TO MOVE ON

Proper tool for the job

Specialized MPI profiling/bottlenecks, load imbalance
Kernel-level profiling -> Nsight Compute
Used later on (get the low-hanging fruit first!)

Use it when you find a hotspot kernel

30 <A NVIDIA.

SUMMARY

How to approach porting your own code

Start with Nsight Systems and record a first profile

Identify roughly some features (use call stacks, code knowledge), add NVTX
Add and customize traces as needed
Use capture ranges

Iteratively eliminate ,,blank“ spots - is the GPU active?

Switch to more specialized profilers as needed

35 <A NVIDIA.

DRILLING DOWN ON A KERNEL

Analysis with Nsight Compute

Analyze the selected kernel with NVIDIA Nsight Compute

R'I gh t-c l'ICk menu '| n NS'I gh t Syste ms , 100.0% collide(double*, double const*, par_t const*, int) Copy Current Time

get command line

Undo Zoom (11)

Run command line

ncu —--page details —--import-source true =-set full \
-k collide -s 3 -¢ 1 -f -o my report ./lbmD2Q37

Important switches for metrics collection, pre-selected sets
Fully customizable, ncu --help. Check --list-metrics and —--query-metrics
Here: profile with CLI, use GUI for analysis and load report file

Alternatively, interactive analysis of application through GUI. APl Stream can be very useful.

36 <A NVIDIA.

Nsight Compute GUI

First steps in kernel analysis - Understanding the initial limiter

* GPU "Speed of Light Throughput"
e SOL = theoretical peak
» "Breakdown" tables

* DRAM: Cycles Active
* Tooltips

* Rules point to next steps

NVIDIA Nsight Compute - m} x

Eile Connection Debug Profile Tools Window Help

=3 Connect e © G S T Baselines ¥ < > Metric Details
spmv_v100_21 cu-rep
Page: | Details ~ | Result: 0- 545-main_41_gpu v | W ~| | Add Baseline |*| | Apply Rules Occupancy Calculator Copy as Image |~
Result Time Cycles Regs GPU SM Frequency CC Process ® 0 0 e
. Current 545 - main_41_gpu (63443, 1, 1)x(128,1,1) 7,75 msecond 10.176.310 80 0-Tesla V100-SXM2-16GB 1,31 cycle/nsecond 7.0 [19559] spmv
@ The report contains imported source files.
* GPU Speed Of Light Throughput All - O

High-level overview of the throughput for compute and memeory resources of the GPU. For each unit, the throughput reports the achieved percentage of utilization with respect to the theoretical
maximum. Breakdowns show the throughput for each individual sub-metric of Compute and Memory to clearly identify the highest contributor. High-level overview of the utilization for compute and
memory resources of the GPU presented as a roofline chart.

Compute (SM) Throughput [%] 3,11 Duration [msecond] 7,75
Memory Throughput [%] 92,37 Elapsed Cycles [cycle] 10.176.310
L1/TEX Cache Throughput [%] 32,76 SM Active Cycles [cycle] 10.160.469,39
L2 Cache Throughput [%] 31,70 SM Frequency [cycle/nsecond] 131
DRAM Throughput [%] 92,37 DRAM Frequency [cycle/usecond] 878,26

The kernel is utilizing greater than 80.0% of the available compute or memory performance of the device. To further improve performance, work will likely need to be

© High Throughput shifted from the most utilized to another unit. Start by analyzing workloads in the » Memory Workload Analysis section.

The ratio of peak float (fp32) to double (fp64) performance on this device is 2:1. The kernel achieved 0% of this device's fp32 peak performance and close to 1% of

o DRI its fp64 peak performance.

GPU Throughput

Compute (SM) [%] -

0,0 100 200 30,0 40,0 50,0 60,0 700 20,0 90,0 100,0
Speed Of Light (SOL) [%]

Compute Throughput Breakdown Memory Throughput Breakdown

SM: Mio2rf Writeback Active [%] 31 DRAM: Cycles Active [%] 92,37

SM: Inst Executed Pipe Lsu [%] 2,74 DRAM: Dram Sect{ dram__cycles_active.avg.pet_of_peak_sustained_elapsed

SM: Issue Active [%] 184 L12:D Sectors Fill { ¥ of cycles where DRAM was active

SM: Inst Executed [%] 1.84 L1: Data Pipe Lsu | gram: Device (main) memory, where the GPUs global and local memory resides.
SM: Mio Inst Issued [%] 1,38 L1: Lsu Writeback ATtve 7T T

SM: Pipe Fp64 Cycles Active [%] 0,84 L2: T Sectors [%] 24,56

SM: Pipe Shared Cycles Active [%] 0,84 L2: Lts2xbar Cycles Active [%] 23,90

SM: Pipe Alu Cycles Active [%] 0,78 L2: Xbar?lts Cycles Active [%] 21,23

SM: Pipe Fma Cycles Active [%] 0,67 L2: T Tag Requests [%] 20,96

ChA: Inet € tad Dina Chyy Drad On Ao (5] nEd L1 M ¥hordlitay Daad Contare 151 1098

37

SAnVigide 37

KERNEL-LEVEL PROFILING

Performance limiter categories
~60 % SOL

g
Compute

00 100 200 300 40.0 50.0 600 700 80.0
Speed OF Light [%]

Four possible combinations of high/low...

...memory utilization

1

...compute utilization

Latency

BOU nd Memory -

Good? Bad?

- Depends on problem and its implementation

Compute and M

Memory Bound

Memory

38 <A NVIDIA.

Motivating Example: Matrix Transpose
No FLOPs

.0 1 2 3 4

CPU VERSION: 0 GPU VERSION:

. 1
void trinspose(2 __global__ void transpose(
Integer* a_trans, Integer* a_trans,
Integer= a, 4 Integer* a,
Integer n) Integer n)

for (Integer row = ©; row < n; ++row) Integer row =

for (Integer col = ©; col < n; blockIdx.y*blockDim.y+threadIdx.y;

++col) Integer col =

blockIdx.x*blockDim.x+threadIdx.x;
a_trans[col][row] = a[row][col];

} if (row < n & col < n)
a_trans[col]l[row] = a[row][col];

®

Row-major

ordering

39 <ANVIDIA. I

Using Nsight Compute

* Source Counters

Source metrics, including branch efficiency and sampled warp stall reasons. Warp Stall Sampling metrics are periodically sampled over the kernel runtime. They
indicate when warps were stalled and couldn't be scheduled. See the documentation for a description of all stall reasons. Only focus on stalls if the schedulers fail to
issue every cycle.

Branch Instructions [inst] 4194304 Branch Efficiency [%)] 0
Branch Instructions Ratio [%] 0.07 Avg. Divergent Branches V]
This kernel has uncoalesced global accesses resulting in a total of 50331648 excessive sectors (60% of the @

total 83886080 sectors). Check the L2 Theoretical Sectors Global Excessive table for the primary source

| 1 d A
l Global locati The & CUDA Programming Guide had additional information on reducing uncoalesced device memory
aACCEeSSes.
L2 Theoretical Sectors Global Excessive
Location Value Value (%)

transpose.cu:31 (0x14d5474514c0 in transpose(l... & |
transpose.cu:31 (0x14d547451450 in transpose(l... #

sz o] 0
v} 0

Warp Stall Sampling (All Samples)

Location Value

oncposocusa.. | 1/ 1

transpose.cu:31 .. # 110.516

Most Instructions Executed

Value (%) Location
transpose.cu:33 (0x14d54...
@S transpose.cu:31 (0x14d54...

Value
2.097.162|
2.097.152|

Value (%)

W W W W[y

& a b &

transpose.cu:17 .. # 7.94‘ E' transpose.cu:31 (0x14d54 .. 2.097.152]
transpose.cu:18 ... # 5.509] 2| | transpose.cu:31 (0x14d54... 2.097.152
transpose.cu:31 ... # 4.163] 1| | transpose.cu:31 (0x14d54... 2.097.152

Source: | transpose.cu ~

View: | Source and SASS ~ | | @ IFmd .

||vn$¢e¢eg

= |38~

G2 | Navigate By: Warp Stall Sampling (All Samples)

Redo Resolve

@

Source:

,yuncoalesced global excesses [...] 60% of the total“

[

Source

13

__global void tramspose(Integer const a_trans, const Integers const a,

i

const Integer col_block = blockId.x;
const Integer row_block = blockIdx.y;
const Integer black_col = threadids.x;
const Integer black row = threadidx.y;
const Integer col = col block#BLOCK SIZE+black_col;

const Integer row = rom_black*BLOCK_STZE+block_tow;

//1000: declare shared memory for tile
[/ __shared__ ... a_tile ...

if (row < n & col < n)

//TODO: load tile of a into shared memory

J/T000: call __syncthreads() to ensure all shared memory writes are c

//T0D0: read from a_tile with correct index:

//a_trans[(cel_blocksBLOCK_SIZE+block_rem) = n # (rew_blocksBLOCK_SIZ

a_transfcol#n+ron] = alrowsn+coll;

35 int main()

Instructions p Stall Sampling
(All Samples)

Executed

3.33%

3.33%
3.33%
6.67%
6.67%
3.33%
3.33%

16.67%

3.33%

8.88%

8.85%

8.86%

2508 |

Lo |

8.95%

0.96% |

8.73%

5u.11%

Address*
Space

Inline Functions

Rules -

File

Source Markers

LinefAddress Marker

~ transpose.cu (3)

Incoalesced Global Accesses A 75.00% of this line's global accesses are excessive.

i
Total Sample Count: 119637
80.18% Long Scoreboard (95921)
14.68% Lg Throttle (17563)
1.34% Wait (1599)

1.25% Not Selected (1497)
1.21% Math Pipe Throttle (1453)
0.50% Selected (602)

0.44% Dispatch Stall (524)
0.38% Mio Throttle (454)

0.01% Mo Instructions (17)
0.01% Imc Miss (7)

40

i

<ANVIDIA.

Global, Local, L1, L2?

Understanding the memory hierarchy

Memory Chart

. [] 100%
4,19 M Inst e :
- o
5 k3
2.10 M Req 0.00 B E
g
0.00 B *?
0.00 Inst e ’ h
0.00 Req 512.00 MB
L2 Cache
=
2.00 GB 1.56 GB £
0.00 Inst 0.00 Req : o
527.11 MB i
=
fa]
bons 511.73 MB
0.00 Inst i
40%
0.00 Req one 3
o
>
0.00 B -
o
0.00 Inst Load Global 0.00 B
Store Shared i o
0.00 R
0.00 Inst . = —
. Shared Memo
Memory
0.00 Req ”

41 <SANVIDIA. I

Memory Transactions and Coalescing

» Access to global memory triggers transactions (Device Mem Access)

* Memory access granularity = 32 bytes = 1 sector

* Cacheline = 128 bytes =4 consecutive sectors
* Example: 4 byte per thread = 4B * 32 threads (1 warp) = 128B 4B 4B 4B 4B 4B 4B 4B 4B

32B (sector)

328 32B 32B 32B
sector sector sector sector

v
Cache Line

» Data goes from global device memory through L2 cache

* Granularity*: Sector for L2, Cache line for L1

*The full picture:

$32089: Understanding and
Optimizing Memory-Bound
Kernels with Nsight Compute

42 <ANVIDIA. I

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32089/
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32089/
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32089/

Memory Transactions and Coalescing

Coalescing details

» Coalescing: Adjacent accesses can share transactions
* Transactions must be “Naturally Aligned”: First address % size == 0

» All bytes in a transaction are transferred. Use them!

For example, if a 32-byte memory transaction is generated for each thread's 4-
byte access, throughput is divided by 8.

#bytes requested

degree of coalescing =
#bytes transferred

32B (sector)

NN —

328
sector

4BI

32B 32B
sector sector

Cache Line

32B
sector

43 <ANVIDIA. I

Accessing Global Memory

optimal access pattern (4byte words) — fully coalesced

int x_val = x[threadIdx.x]; o
All addresses fall within 4 sectors

Bus utilization: 100%

Sector 2 Sector 3

Cache Line

44 <ANVIDIA. I

Accessing Global Memory

worst case access pattern (4byte words) — fully uncoalesced

// stride 32

int x_val = x[32*threadIdx.x];

// ,random“ (pointer chasing, lists,
int x_val = x[lookup[threadIdx.x]];

ry/ianoon
AN

U (000 E0E
L

|I=E’I Iiiil Ill:ll |I=EII IIHHI IHHII IHHHI IHHHI

40 41 42 43 44

72 73 74 75 76

104 105 106 107 108

109

tree,
13 14
13 14
45 46
77 78

110

15

15

47

79

111

All addresses fall in 32 different sectors

Bus utilization: 12.5%

45 <ANVIDIA. I

Accessing Global Memory

shifted access

int x_val = x[threadIdx.x+1]; o
All addresses fall within 5 sectors

Bus utilization: 80% = 128B/160B

Ao EFEEEEEEEEEEE EE LT -

46 <ANVIDIA. I

Accessing Global Memory

common access pattern: stride 3

int x_val = x[3*threadIdx.x]; o
All addresses fall within 12 sectors (4 byte words)

Bus utilization: 33%

struct {float x,y,z;} a; ... a[tid].x

-> use structure-of-arrays (SoA): a.x[tid]
float a[M][N]; ... a[tid][42]
- multi-dimensional arrays: pay attention to coalescing

(row-major, column-major?)

47 <ANVIDIA. I

Accessing Global Memory

another “worst case” access pattern?

// same for all threads — e.g. loop index Single address, single sector
int x_val = x[i];

Bus utilization: 12.5%

E E E 104 105 106 107 108 109 110 111 112 | | | | | | | | | | | | | | |

48 <ANVIDIA. I

Matrix Transpose

Access pattern

N cols

Stride-1 column access (thread
view) is actually stride-N in
linear memory

— N ﬁ_ N —

Matrix Transpose

Using shared memory

Block row is loaded, fully coalesced read

Global Memory Shared Memory

50 <ANVIDIA. I

Matrix Transpose

Using shared memory

N cols

M

<= =) Block row is loaded, fully coalesced read

Indexing: Location of block is reflected on
the diagonal

N rowsI

//

Global Memory Shared Memory

51 <ANVIDIA. I

Matrix Transpose

Using shared memory

N cols
—_—
M

<= =) Block row is loaded, fully coalesced read
L]
] Indexing: Location of block is reflected on
= the diagonal

N rows]| = Block column of shared is written to row
= of matrix

/ Transposes the block M 2> M’
Coalesced write
Global Memory Shared Memory

52 <4 NVIDIA. I

Analysis with Nsight Compute

* Add baseline for comparison

* Recommended: Always add --import-source
true ifpossible

* Check the , Breakdown” tables and how they change
* Look at the other sections, warp state statistics

* Tooltips on mouseover over metrics/names/...

B The report contains imported source files.

First steps
Result Size Time Cycles GPU SM Frequency Proce:
. Current 875 - transpo: » | | 7 |¥| (256, 256, 1)x(32,32,1) 2.69ms 2.944.226 O - NVIDIA A100-SXM4-40GB 1.09 Ghz [1707C

Summary Details Source Context Comments Raw Session [J Compare _| | 3% Tools B
Add Baseline '
g

w GPU Speed Of Light Throughput
High-level overview of the throughput for compute and memory resources of the GPU. For each unit, the throughputrepo e achieved percer
with respect to the theoretical maximum. Breakdowns show the throughput for each individual sub-metric of Compute and Memory to clearly ide
contributor. High-level overview of the utilization for compute and memory resources of the GPU presented as a roofline chart.

Compute (SM) Throughput [%] 5.15 Duration [ms]
Memory Throughput [%] 60.41 Elapsed Cycles [cycle]
L1TEX Cache Throughput [%] 43,15 SM Active Cycles [cycle]
SM Frequency [Ghz]
DRAM Throughput [%] 26.10 DRAM Frequency [Ghz]
GPU Throughput

Compute (SM) [%] -

0,0 10,0 20,0 30,0 40,0 50,0 60,0 70,0 80,0
Speed Of Light (SOL) [%]
Compute Throughput Breakdown Memory Throughput Breakdown
SM: Mio Pg Read Cycles Active [%] 5.15 L2: XbarZlts Cycles Active [%]
SM: Issue Active [%] 4.95 L2: T Tag Requests [%]

53

<ANVIDIA.

Kernel-level Profiling

Performance limiter categories

Compute (SM) [%] -

00 100 200 300 400 500 600 700 800 900 1000
Speed Of Light (SOL) [%]

* Four possible combinations of high/low...
* ...memory utilization
* ...compute utilization

* Good? Bad?

— Depends on problem and its implementation

Compute
Bound

Latency
Bound

Compute and
Memory Bound

~60 % SOL

. I
_——

1
s [

SM

Memory

Slidesa4 <AnvIDIA. I

¢ Check the Source Counters
section (also on CLI)

* Links will take you to
Source/SASS view

Analysis with Nsight Compute

Iterating and comparing

w Source Counters

o

Source metrics, including branch efficiency and sampled warp stall reasons. Warp Stall Sampling metrics are periodically sampled over the kernel runtime. They indicate when warps were
stalled and couldn't be scheduled. See the documentation for a description of all stall reasons. Only focus on stalls if the schedulers fail to issue every cycle.

Branch Instructions [inst] 4194304 Branch Efficiency [%]
Branch Instructions Ratio [%] 0.07 Avg. Divergent Branches

This kernel has uncoalesced global accesses resulting in a total of 50331648 excessive sectors (60% of the total B3BB860B0 sectors).
l~ u I d Global A Check the L2 Theoretical Sectors Global Excessive table for the primary source locations. The & CUDA Programming Guide had

additiomal information on reducing uncoalesced device memory accesses.

L2 Theoretical Sectors Global Excessive

Location

Value

transpose.cu:31 (0x14d5474514¢0 in transpose(long long... # |

transpose.cu:31 (0x14d547451450 in transpose(long long... £

Warp Stall Sampling (All Samples)

Most Instructions Executed

Location Value Value (%) Location Value
transpose.cu:33 (0x14d5... & | 167.816] [NEE transpose.cu:33 (0x14d54... F | 2.097.152]
transpose.cu:31 (0x14d5... # [EE) transpose.cu:31(0x14d54... & | 2.097.152]
transpose.cu:17 (0x14d5... £ ?.94@ 9 transpose.cu:31 (0x14d54.. & | 2.097.152]
transpose.cu:18 (0x14d5... # 5.505' 2| | transpose.cu:31 {0x14d54... & | 2.097.152]
transpose.cu:31 (0x14d5... & 4164 1| | transpose.cu:31 (0x14d54... & | 2.097.152]

@

Value (%)

50.331.645 (i)
0 0

Value (%)

b b b

55 <A NVIDIA. I

Roofline Analysis

How well is the hardware utilized?

Floating Point Operations Roofline

Transpose does zero floating

//
point computations... more o
interesting example (here: on 1”” -’:'
V100)

10

Counting flops and transferred
bytes - Al, x-axis

Measuring achieved
performance ->FLOP/s, y-axis

Rooflines from device peak oty
bandwidth / compute

Performance [ALOP/s]
10.000.000.000)

{1

01

0,001
0,001 0,01 0,1 1 10 100
Arithmetic Intensity [FLOP/byte]

GTC session:
$32062: Performance Tuning CUDA Applications with the Roofline Model

Roofline Hackathon:
https: //www.youtube.com/watch?v=ZXZ2SrM3pmE&t=2382s

56 <ANVIDIA. I

https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32062/
https://www.youtube.com/watch?v=ZXZ2SrM3pmE&t=2382s

Branch Divergence

GPUs use the Single Instruction Multiple Threads (SIMT) execution
functionally transparent to the programmer
but has performance implications

warp

group of synchronously* executing threads
(*since Volta:)

neighbor threads (mostly x dimension)
basic unit of scheduling

Slidesy7 NVIDIA.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Branch Divergence
Within Warp

/1 W
if (condition) { e —————————
// do stuff
/- YWAWW
} else { —_
// do other stuff
//
} |
. VW

divergence within warp = performance penalty
if(threadIdx.x % 2 == 0)

all threads running

“else” threads masked

m “if” threads masked

all threads running

58 ZANVIDIA. I

Branch Divergence

/o WRY WY

if (condition) { o s o o o o oo o o o e o o

// do stuff
/] ...

} else { ——————————— -

// do other stuff W
/] ...

) o o o o o o o o o o o o

o VY WY

divergence between warps = no penalty

if(

Idx.x % 2 ==0) ...

IIIIIII

Conclusion

To achieve coalesced global memory access:
Usually: Fix your access pattern
Try to use shared memory (but first, check cache behavior)
Look for different way of storage or better algorithm

Avoid divergent branches

Use the tools!

Slidegd0

NVIDIA.

GLOBAL, LOCAL, L1, L2?

Understanding the memory hierarchy

2.10 M Req

Memory Chart

— “‘
all > -
. | Ll
2.10 M Req
— n‘ —
all > -
. | Ll
0.00 Req 512.00 MB
2.00 GB
0.00 Inst 0.00 Req
< Texture ot
0.00 B
0.00 Inst - e
> | Surface
0.00 Req
P 0.00 Inst Load Global 0.00B
o Store Shared i
0.00 Req
. 0.00 Inst ITEL
< Memory
0.00 Req

0.00B

0.00B

1.56 GB

527.11 MB

511.73 MB

0.00 B

0.00 B

5

=
e
&
=
o
w
=~

Devica Mamory

Peer Mamory

% Pealk

100%

80%

60%

40%

20%

0%

65

<A NVIDIA.

MEMORY TRANSACTIONS AND COALESCING

Access to global memory triggers transactions (Device Mem Access)

Memory access granularity = 32 bytes = 1 sector
Cache line = 128 bytes = 4 consecutive sectors

Example: 4 byte per thread - 4B * 32 threads (1 warp) = 128B

Here: 8 byte datatype

#bytes requested
degree of coalescing =

#bytes transferred

328
sector

32B
sector

328
sector

328
sector

)

Cache
Line

The full picture:
$32089: Understanding and

Optimizing Memory-Bound

Kernels with Nsight Compute

66

<A NVIDIA.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://gtc21.event.nvidia.com/media/Requests%2C%20Wavefronts%2C%20Sectors%20Metrics%3A%20Understanding%20and%20Optimizing%20Memory-Bound%20Kernels%20with%20Nsight%20Compute%20%5BS32089%5D/1_kpfz1e76
https://gtc21.event.nvidia.com/media/Requests%2C%20Wavefronts%2C%20Sectors%20Metrics%3A%20Understanding%20and%20Optimizing%20Memory-Bound%20Kernels%20with%20Nsight%20Compute%20%5BS32089%5D/1_kpfz1e76
https://gtc21.event.nvidia.com/media/Requests%2C%20Wavefronts%2C%20Sectors%20Metrics%3A%20Understanding%20and%20Optimizing%20Memory-Bound%20Kernels%20with%20Nsight%20Compute%20%5BS32089%5D/1_kpfz1e76

ANALYSIS WITH NSIGHT COMPUTE

lterating and comparing

Add basel]ne for Comparison Page: | Details ¥ | Launch: |0 - 118 - transpose s ? AppIyBuIes

. Current 118.. Time: 1,05 msecond Cycles: 1.149.322 Regs: 20 GPU: A100-SXM4-40GB SM Frequency: 1,09 cycle/nsecond Cf

CheCk the ,,Breakdown 173 tableS and hOW they Change . 118... Time: 2,66 msecond Cycles: 2.898.470 Regs: 16 GPU: A100-SXM4-40GB SM Frequency: 1,09 cycle/nsecond Cf

© The report contains imported source files.
Look at the other sections, warp state statistics ~ GPUSpeed Of Light 1

High-level overview of the utilization for compute and memory resources of the GPU. For each unit, the Speed Of Light (SOL) reports the achieved ¢
theoretical maximum. High-level overview of the utilization for compute and memory resources of the GPU presented as a roofline chart.

Tooltips on mouseover over metrics/names/... SoL M [%] 15,63 (+198,56¥) | puration [msccond]
SOL Memory [%] 68,57 (+14,92%) | Elapsed Cycles [cycle]
SOL L1/TEX Cache [¥] 63,76 (+57,18%) | M Active Cycles [cycle]
SOL L2 Cache [%] 51,27 (-15,91%) | SM Frequency [cycle/nsecond]
SOL DRAM [%] 64,89 (+145,21%) | DRAM Frequency [cycle/nsecond]

GPU Utilization
SM [9%] F

0,0 10,0 20,0 30,0 40,0 30,0 60,0 70,0
Speed Of Light [%]

68 <A NVIDIA.

ANALYSIS WITH NSIGHT COMPUTE

lterating and comparing

= Source Counters ! Al - D

Source metrics, induding branch efficiency and sampled warp stall reasons. Sampling Data metrics are periedically sampled over the kernel runtime. They indicate when warps were stalled
and couldn't be scheduled. See the decumentation for a description of all stall reasons. Only focus on stalls if the schedulers fail to issue every cyde.

Branch Instructions [inst] 4,194,384 | Branch Efficiency [¥] @
Branch Instructions Ratic [X) @,87 | Avg. Divergent Branches]

Check the Source Counters Sampling Data (All)
section (also on CLI) e Value Value (%)
transpose.cu;33 (Oxl4beeadb03ed in transpose) # [163.458] [54)
transpose.cu:15 (0x14beeadb03c) in transpose) # 111.189]
Lin kS Wi ll take you to transpose.cu:17 (0x14beeadb0210 in transpose) 7.684]
. transpose.cu:18 (Oxl4beeadb0240 in transpose) & 5.4’ ﬂ
Source/SASS view transpose.cu:15 (Ox14beeadb0350 in transpose) & 3.43f]]

Sampling Data (Not Issued)
Location Value Value (%)
transpase.cu:33 (0xl4becadb03el in transpose) F [159.279| | 56)
ranspose.cu:15 (0x14 in tran # [105.609] —— 3
transpose cu:17 (0x1abeeadb0210 in transpose) # 7.388]
transpose.cu:18 (0x14beeadb0240 in transpase) F 4.048] 8
transpose.cu:15 (0x14beeadb0350 in transpose) & 2.97f] |
Most Instructions Executed

Location Value Value (%)
transpose.cu:15 (Ox14beeadb0200 in transpose) # [2.097.152]
transpose.cu:17 (0x14beeadb0210 in transpose) # [2.087.152]
transpose.cu:17 (Ox14beeadb0220 in transpose) # [2.097.152)
Tan LU w14 in_tran 1 [2.097.152]
transpose.cu:18 (0x14beeadb0240 in transpose) # [2.097.152]

Recommendations

[Warning] Uncoalesced global access, expected 16777216 sectors, got 67108864 (4.00x) at PC Oxl4beeadb03cl at /p/home/jusers/

4. Uncoalesced Global Accesses hrywniakl/juwels/CUDA-Course/4-FPerformance_Optimization/exercises/tasks/transpose.cu:15

69 <A NVIDIA.

ANALYSIS WITH NSIGHT COMPUTE

lterating and comparing

Page: | Source ¥ | Launch: 0- 118 - transpose v ? v | Add Baseline |¥| | Apply Rules Copy as Image |~

. Current 118 - transpose (256, 256, 1)%(32, 32, 1) Time: 2,66 msecond Cycles: 2.898.470 Regs: 16 GPU: A100-SXM4-40GB SM Frequency: 1,09 cycle/nsecond C©C: 8.0 Process: [7523] transpose

View: | Source and SASS ¥

Source:| transpose.cu ¥ Find Navigation: | L2 Sectors Glabal | v|A|F(12]12]L Source: transpose ¥ Find Navigation: | Instructions Executed | v|Aa|T(12]18]|L
Live Sampling Sampling Data Instruc:* Live Sampling Sampling Data Instruct *

Source Registers Data (All) (Not Issued) Exec # Address Source Registers Data (All) (Not Issued) Execi
13 _ global__ void transpose(Integer* const a_trans, const Ii 0 0 11 eeB@libe eadbe2a@ ISETP.GE.AND.EX P1, PT, R3, c[@x@] 216 27 2.097
14 { 0 0 12 e@Reldbe eadbdzba ISETP.LT.USZ.AND P@, PT, R4, c[8xi 541 BSE
15 const Integer col block = blockIdx.x; 438 208 4194 13 epeelibe eadbe2ce ISETP.LT.AND.EX P@, PT, RS, c[@xe] 550 65 2.097
16 const Integer row_block = blockIdx.y; 187 42 2.097 14 @@B@l4be eadbB2d@ @!P8 EXIT 792 111 2.097
17 const Integer block_col = threadIdx.x; 7.?11 ?.38* 4,194 15 88eeldbe eadbB2ed IMAD R9, R5, c[@x@][ex17e], RZ EI 306 25 2.097
15 const Tnteger block row = threadTdx.y; s72q 503 4194 15 ogoo1sbe cadbo2fo uLDC 62 U2, c[exa][ex115] 9 33 o 2097
19 const Integer col = col block®BLOCK_SIZE+block_col; 2.805' 1.69'\| 2.097 b 17 epe@libe eadbbiee IMAD.WIDE.U32 RG, R4, c[8x@][@x17¢ 50 0 2.097
20 const Integer row = row_block®™BLOCK_SIZE+block_row; 2.980| 2.330| 2.097 18 @@8@ldbe eadb@3le IMAD R9, R4, c[@x@][Bx174], R9 635 35 2.097
21 0 0 19 @pBelibe eadbe3ze LEA RB, P8, R6, c[@x8][Bx168], ©x: :I 660 52 2.097
22 //T0DO: declare shared memory for tile 0 0 26 @eeel4be eadbe33a TADD3 R7, R7, Rd, RZ 124 BE
23 //_shared_ ... a_tile ... 0 0 21 @BeRldbe cadba3an LEA.HL.X R9, R6, c[exe][exiec], &1 [9 807| 752097
24 0 0 22 @@e@ldbe eadb3se LDG.E.64 R6, [R8.64] E 3.4371] 2.9771@
25 if (row < n &% col < n) 2.342) 333 10.4@ 23 epeelabe eadbedse IMAD R3, R3, c[exe][ex17@], RZ 49 OE
26 { 0 0 24 @eBel4be eadbe3i7a IMAD.WIDE.U32 R4, R2, c[@x@][@x17¢ 214 20 2.097
27 : load tile of a inte shared memory 0 0 25 @e8a14be eadb330 IMAD R3, R2, c[@x@][@x174], R3 e87] 88 2.097
28 call _ syncthreads() to ensure all shared | 0 0 26 @88@1l4be eadb839@ LEA R2, P8, R4, c[@xB][Bx166], ©x: 515 71 2.097
29 //TODD: read from a_tile with correct index: 0 0 27 epeelibe eadbB3al IMAD.IADD R3, RS, @xl, R3 43 0 2.097
30 //a_trans[(col_block*BLOCK_SIZE+block row) * n + (0 a 25 @epel4be eadbdsba LEA.HI.X R3, R4, c[@x@][ex164], R: |—6| 301 53 2.097
31 s_trans[col*ntrow] = a[row*n+col]; I:_E 29 @@e@ldbe eadbdice STG.E.64 [R2.64], RE (5) [111189 [105609 2.097
32 } 0 0 3¢ @0edldbe eadb@3de EXIT 34 0 2.097
33} @] 163.492]| 159.279| 2,097 31 @@eeldbe cadboied BRA @x14besadboied 0 163.458]| 159.279]

34 0 0 32 @eeeldbe eadbeifa NOP 0 0

70 <A NVIDIA.

ROOFLINE ANALYSIS

How well is the hardware utilized?

Transpose does zero floating Fioating Point Operations Roofine o
point computations... more -
interesting example (here: on - | | ———

V100) .

[FLOP/s]

Counting flops and transferred
bytes - Al, x-axis

(1 = 10.000.000.000)

Performance

Measuring achieved
performance ->FLOP/s, y-axis

0,001
0,001 0,01 01 1 10 100

Rooflines from device peak Arithmetic ntensity [FLOP/bye]
bandwidth / compute

GTC session:
S32062: Performance Tuning CUDA Applications with the Roofline Model

Roofline Hackathon:
https://www.youtube.com/watch?v=ZXZ2SrM3pmE&t=2382s

71 <A NVIDIA.

https://gtc21.event.nvidia.com/media/Performance%20Tuning%20CUDA%20Applications%20with%20the%20Roofline%20Model%20%5BS32062%5D/1_un2hyh2l
https://www.youtube.com/watch?v=ZXZ2SrM3pmE&t=2382s

MORE DETAILS

CUDA BASICS

Blocks of threads, warps

Single Instruction Multiple Threads (SIMT) model
CUDA hierarchy: Grid -> Blocks -> Threads
One warp = 32 threads.

Why does it matter ?
Many optimizations based on behavior at the warp level

73

<A NVIDIA.

CUDA BASICS

Mapping threads

Thread blocks can be 1D, 2D, 3D
Only for convenience. HW “looks” at threads in 1D

Consecutive 32 threads belong to the same warp

/ 80 Threads: \

40 threads in X
2 rows of threads in Y

40
A

74 < NVIDIA.

Thread blocks can be 1D, 2D, 3D

CUDA BASICS

Mapping threads

Only for convenience. HW “looks” at threads in 1D

Consecutive 32 threads belong to the same warp

-

o

80 Threads:
40 threads in X
2 rows of threads in Y

40
A

[

~

-

)

-

3 warps (96 threads)
16 inactive threads in 3™ warp

40
A

~N

I e

~

/

75

<A NVIDIA.

CUDA BASICS

Control Flow

Different warps can execute different code
No impact on performance
Each warp maintains its own Program Counter

Different code path inside the same warp ?
Threads that don’t participate are masked out,
but the whole warp executes both sides of the branch

76

<A NVIDIA.

CONTROL FLOW

0 Threadldx.x 39
Instructions, time
—
0
A' Warp 1 -
1f (threadIldx.y==0) 31
B, 0
else Warp 2 ..
C ; 31
D; 0
Warp 3 -

31

77 <A NVIDIA.

CONTROL FLOW

0 Threadldx.x 39
Instructions, time

‘?"' Warp 1
1f (threadIdx.y==0)

B; 0
else Warp 2 ..

C ; 31
D; 0

Warp 3 -
31

78 <A NVIDIA.

CONTROL FLOW

0 Threadldx.x 39

Instructions, time
0
-lA., Warp 1 y “
1f (threadIldx.y==0) 31
' 0

B;
el]lse Warp 2 ..
C,' 31
D; 0

Warp 3 -
31

79 <A NVIDIA.

CONTROL FLOW

0 Threadldx.x 39

Instructions, time
0

-lA., Warp 1 y “ “
1f (threadIldx.y==0) 31
' 0

B;
el]lse Warp 2 ..
C,' 31
D; 0

Warp 3 -
31

80 <A NVIDIA.

CONTROL FLOW

0 Threadldx.x 39
Instructions, time
0
-lA., Warp 1 y “ “
1f (threadIldx.y==0) 31
B, 0

else Warp 2 -
C,' 31

D; 0
Warp 3 -
31

81 <A NVIDIA.

CONTROL FLOW

0 Threadldx.x 39

Instructions, time
0
-fA., Warp 1 y “ “
1f (threadIldx.y==0) 31
2 0]

B;
C,' 31 e eeeeeeereeeeanenens 5
. 0
D; Warp 3 -
31

82 <A NVIDIA.

CONTROL FLOW

0 Threadldx.x 39

Aj

1f (threadIldx.y==0)
B;

else
C;

D; 0

Instructions, time

83 <A NVIDIA.

CONTROL FLOW

0 Threadldx.x 39

Aj

1f (threadIldx.y==0)
B;

else
C;

D; 0

Instructions, time

84 < NVIDIA.

CONTROL FLOW

0 Threadldx.x 39

Aj

1f (threadIldx.y==0)
B;

else
C;

D;

Instructions, time

85 <A NVIDIA.

CONTROL FLOW

0 Threadldx.x 39

Aj

1f (threadIldx.y==0)
B;

else
C;

D;

Instructions, time

86 <A NVIDIA.

CONTROL FLOW

0 Threadldx.x 39

Aj

1f (threadIldx.y==0)
B;

else
C;

D;

Instructions, time

87 <A NVIDIA.

CONTROL FLOW

Takeaways
Minimize thread divergence inside a warp

Divergence between warps is fine

Maximize “useful” cycles for each thread

88 <A NVIDIA.

HIDING LATENCY

LATENCY

GPUs cover latencies by having a lot of work in flight

. The warp issues
|:| The warp waits (latency)

warp 0 . I I I I I I
warp 1 . I I I I I
warp 2 . HEEN

I wapo [T T T T T T T T W TTTTTT]
I
I
warp 3 - HEEE
I
I
I

warp 1 . | |
warp 2 . |
warp 3 -

Fully covered late
I
I

y Exposed latency, not enough warps
I
I
I
I

warp 4 - | |
warp 5 . |
warp 6 .
warp 7 .
warp 8 .
warp 9 .

Vv V Vv V
ENNEEEEE NN " SEEEEE EEEEES

No warp issues 90 <INVIDIA.

"

SM RESOURCES

Each thread block needs:
Registers (#registers/thread x #threads)
Shared memory (0 ~ 96 KB)

Volta limits per SM:

256KB Registers

96KB Shared memory

2048 threads max (64 warps
32 thread blocks max

Can schedule any resident warp without context switch

FP64

FP64

FPB4

FP64

FP64

FP64

FP64

FP64

LD/ LD/
ST ST

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT FP32 FP32
INT INT FP32 FP32
INT INT FP32 FP32

INT INT FP32 FP32 TENSOR

INT INT FP32 FP32 GORE

INT FP32 FP32
INT FP32 FP32

INT FP32 FP32

LD/ LD/ LD/ LD/
ST ST ST ST

T
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT FP32 FP32
INT INT FP32 FP32
INT INT FP32 FP32

INT FP32 FP32 TENSOR

INT FP32 FP32 GOSH

INT FP32 FP32
INT FP32 FP32

INT FP32 FP32

LD/ LD/ LD/ LD/ LD/
ST a1l ST [isv st

TENSOR
CORE

TENSOR
CORE

SFU

FP64

FP64

FP64

FP64

FP64

FP64

FP64

P64

LD/ LD/
ST ST

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 threadiclk)

Register File (16,384 x 32-bit)

INT FP32 FP32
INT FP32 FP32
INT FP32 FP32
INT FP32 FP32
INT FP32 FP32 COBE
INT FP32 FP32

INT FP32 FP32

INT FP32 FP32

LD/ LD/ LD/ LD/
ST ST ST ST ST

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT FP32 FP32
INT FP32 FP32
INT FP32 FP32
INT FP32 FP32
INT FP32 FP32 BORK
INT FP32 FP32

INT FP32 FP32

INT FP32 FP32

Lo/ LD/ LD/ LD/ LD/
ST sty sty Esr Nat ier

128KB L1 Data Cache / Shared Memory

Tex

Tex

91

TENSOR TENSOR

CORE

TENSOR TENSOR

CORE

<A NVIDIA.

OCCUPANCY

Achieved number of threads per SM
Maximum number of threads per SM

Occupancy =

(Use the occupancy calculator XLS in CUDA Toolkit)

Higher occupancy can help to hide latency!
SM has more warp candidates to schedule while other warps are waiting for instructions to complete

Achieved occupancy vs theoretical occupancy
Need to run enough thread blocks to fill all the SMs!

92 <A NVIDIA.

LATENCY AT HIGH OCCUPANCY

Many active warps but with high latency instructions

Exposed latency at high occupancy
wapo BT T T TTTTT MM TTTTTTTT]
warp 1 .|||||||
warp 2 B [T [T T T T TTTTTTTT]
warp 3 . HNEEEEEEE EEEEER
warp 4 .l

N

warp 5

warp 6
warp 7
warp 8

warp 9

- W
"
tﬁ|||||ﬁ

No warp issuing

93 < NVIDIA.

INCREASING IN-FLIGHT INSTRUCTIONS

Ways to improve parallelism:

Expose enough parallelism
have O(10 x number of CUDA cores) threads

Improve occupancy
More threads -> more instructions

Improve instruction parallelism (ILP)
More independent instructions per thread

94 < NVIDIA.

ADDITIONAL REFERENCES

GTC ‘21 talk from Nsys team: https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31566

Self-paced lab GTC lab by the Nsight team: https://github.com/NVIDIA/nsight-training

https://developer.nvidia.com/nsight-systems and https://developer.nvidia.com/nsight-compute
+ usage tips, videos on these pages

More explanation on ,Long Scoreboard Stall“ and other warp states:
https://docs.nvidia.com/nsight-compute/ProfilingGuide /index.html#statistical-sampler

Nsight Compute is heavily customizable via Sections/Rules: https://docs.nvidia.com/nsight-
compute/CustomizationGuide/index.html

For really advanced users:
https://docs.nvidia.com/nsight-compute/CustomizationGuide/index.html#report-file-format

https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31566
https://github.com/NVIDIA/nsight-training
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-compute
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html
https://docs.nvidia.com/nsight-compute/CustomizationGuide/index.html
https://docs.nvidia.com/nsight-compute/CustomizationGuide/index.html
https://docs.nvidia.com/nsight-compute/CustomizationGuide/index.html

NVIDIA

	Slide 1: GPU COMPUTING 3 – Tools
	Slide 2: OVERVIEW
	Slide 3: DebugginG
	Slide 4: Debugging Correctness: Best Practices
	Slide 6: compute-sanitizer
	Slide 7: cuda-gdb
	Slide 8: cuda-gdb Cheat Sheet
	Slide 10: The Most Essential Command
	Slide 13: GPU-Specifics
	Slide 14: NVIDIA NSIGHT SUITE
	Slide 15: Performance Optimization
	Slide 16: What does a profiler do?
	Slide 17: The Nsight Suite Components
	Slide 18: Whetting your appetite
	Slide 19: A first (i)nsight
	Slide 20: A first (i)nsight
	Slide 21: a first (i)nsight
	Slide 22: Using nsight Systems
	Slide 23: Looking at a simple example
	Slide 24: Using callstack samples
	Slide 25: Adding some color
	Slide 26: Adding NVTX
	Slide 27: zooming in
	Slide 28: Minimizing profile size
	Slide 29: Other features
	Slide 30: When to move on
	Slide 35: Summary
	Slide 36: Drilling down on a kernel
	Slide 37: Nsight Compute GUI
	Slide 38: kernel-level profiling
	Slide 39: Motivating Example: Matrix Transpose
	Slide 40: Using Nsight Compute
	Slide 41: Global, Local, L1, L2?
	Slide 42: Memory Transactions and Coalescing
	Slide 43: Memory Transactions and Coalescing
	Slide 44: Accessing Global Memory
	Slide 45: Accessing Global Memory
	Slide 46: Accessing Global Memory
	Slide 47: Accessing Global Memory
	Slide 48: Accessing Global Memory
	Slide 49: Matrix Transpose
	Slide 50: Matrix Transpose
	Slide 51: Matrix Transpose
	Slide 52: Matrix Transpose
	Slide 53: Analysis with Nsight Compute
	Slide 54: Kernel-level Profiling
	Slide 55: Analysis with Nsight Compute
	Slide 56: Roofline Analysis
	Slide 57: Branch Divergence
	Slide 58: Branch Divergence
	Slide 59: Branch Divergence
	Slide 60: Conclusion
	Slide 65: Global, local, l1, l2?
	Slide 66: Memory Transactions and Coalescing
	Slide 68: analysis with Nsight compute
	Slide 69: analysis with Nsight compute
	Slide 70: analysis with Nsight compute
	Slide 71: roofline analysis
	Slide 72: MORE DETAILS
	Slide 73: CUDA basics
	Slide 74: CUDA basics
	Slide 75: CUDA basics
	Slide 76: CUDA basics
	Slide 77: Control Flow
	Slide 78: Control Flow
	Slide 79: Control Flow
	Slide 80: Control Flow
	Slide 81: Control Flow
	Slide 82: Control Flow
	Slide 83: Control Flow
	Slide 84: Control Flow
	Slide 85: Control Flow
	Slide 86: Control Flow
	Slide 87: Control Flow
	Slide 88: Control Flow
	Slide 89: HIDING LATENCY
	Slide 90: Latency
	Slide 91: SM Resources
	Slide 92: Occupancy
	Slide 93: Latency At High Occupancy
	Slide 94: Increasing In-Flight instructions
	Slide 95: Additional References
	Slide 96

