
LATTICE PRACTICE HANDS-ON

JACOB FINKENRATH

1. 2D-U(1) Model

To reduce computational costs, we will use a two-dimensional model with U(1) gauge
links

1.1. Gauge action.

SG(U) = −β
∑
x

Re{P01(x)}(1)

= −β
∑
x

Re{U0(x)U1(x+ 0̂U †0(x+ 1̂)U †1(x)}(2)

= −β
∑
x

cos(θ0(x) + θ1(x+ 0̂)− θ0(x+ 1̂)− θ1(x))(3)

by using the relation

(4) Uµ(x) = exp(iθµ(x))

1.2. Fermion action. We consider two degenerated flavours of Wilson-fermions with ac-
tion

(5) SF [U,ψ, ψ] =
∑
f=u,d

ψ
′
f (DW +m0)ψ

′
f

where

(6) DW =

1∑
µ=0

1

2
{γµ(∇∗µ +∇µ)− a∇∗µ∇µ}

and

a∇µψ(x) = U †µ(x)ψ(x+ µ̂)− ψ(x)(7)

a∇∗µψ(x) = ψ(x)− Uµ(x− µ̂)ψ(x− µ̂).(8)

(9)

In two dimension the γ matrices are given by the Pauli matrices, γµ = σµ, with µ = 0, 1.
We use the following representation

(10) σ0 =

[
0 1
1 0

]
and σ1 =

[
0 −i
i 0

]
1

2 JACOB FINKENRATH

The fermion action can be written as

(11) SF [U,ψ, ψ] =
∑
f=u,d

ψ
′
fM(κ)ψ′f

where M = 1− κHhop and κ = 1/(2(m+D)). The hopping matrix Hhop is given by

(12) Hhop =

1∑
µ=0

δx−m̂u,y(1 + γµ)Uµ(x− µ̂) + δx−m̂u,y(1− γµ)U †µ(x)

2. HMC with Fermions

Unless differently specified for the simulations in these exercises you can consider the
lattice parameters: β = 4.0, κ = 0.26 and L/a = 12.

2.1. HMC.

1. Generate a thermalized configuration. (Measure the provided observables to un-
derstand when thermalization is reached.)

2. Implement a check of the reversibility of the HMC. Starting from a set of thermal-
ized configurations for θµ(x), and measure

∆θ = ||θ′ − θ|| = max
x,µ
|θ′µ − θµ(x)|(13)

∆π = ||π′ − π|| = max
x,µ
|π′µ − πµ(x)|(14)

δδH = |H(π′, θ′)−H(π, θ)|(15)

with the trajectory length τ = n · h and

(16) (π′, θ′) = F ◦ [IMD(h)]n ◦ F ◦ [IMD(h)]n(π, θ) F (π, θ) = (−π, θ).

– Observe the behavior of ∆θ, ∆π and δδH, as τ increases at fixed h.
– Check how the solver residuum used for the linear solver of the fermion force

computations effects the reversibility.
3. A proper implementation of the HMC with a sensible choice of algorithmic param-

eters should satisfy (within errors)

(17) 〈e−δH〉 = 1

2.2. MD integration. The code includes an implementation of the OMF 4th order inte-
grator. Based on that:

• Implement the Leap Frog integrator

(18) [ILPFR(h)]n =
(
eh/2ŜehT̂ eh/2Ŝ

)n
For a more efficient implementation the itermediate force steps can be combined:

(19) [ILPFR(h)]2 =
(
eh/2ŜehT̂ ehŜehT̂ eh/2Ŝ

)

LATTICE PRACTICE HANDS-ON 3

2. Study the dependence of δH for the different integrators as a function of h at fixed
trajectory length τ . For that, restart from a single configuration and change the
number of steps. Is there another way to study it ?

3. What integrator is the most cost effective at the given physical parameters ?

2.2.1. Topology freezing. To study topological freezing, the continuum limit of the topolog-
ical charge in pure U(1) gauge theory can be studied. To detect some non-trivial topology
the physical volume should be not too small. Due to that take R = V/β = 40, 80 and
study how the continuum limit is approached by taking β →∞ at fixed R. Plot the Monte
Carlo history of the geometrical definition of the topological charge

(20) Q ≡ 1

2π

∑
x

Im ln (P01(x))

.

2.2.2. Forces. Compare the effect of Hasenbusch mass preconditioning.

2.2.3. Code. The main program can be found in main/schwinger.c and use the provided
Makefile to generate binary. Then the program can be executed via
schwinger input cnfg > output
Examples for input files forQED2 and the pure gauge model can be found in main/infile qed
and main/infile ym. Also the readme give some additional infos. The config file is optional,
if not provided it starts from a cold configuration with θµ(x) = 0.

The size of the lattice is hard coded and needs to be set before the compilation in the
file include/lattice.h. Here, also two global errors, the gauge field gauge[ix][mu] and the
hopping matrix hop[ix][mu] is defined (see modules/geometry/hopping.c for more details).

The points are ordered via the lexicographic index ix = x0 + x1L. The main routine
for the HMC is implemented in modules/update/hmc.c. Check out devel/check/check1.c,
which might be handy for developments.

The compiler flags -DMDINT DBG active additional computations and printout of the
HMC forces. It has to be added to the CFLAGS within the Makefile. The code is a
customized version for Lattice Practices 2021 of the schwinger package written by Stefan
Schaefer for the Lattice Practices 2018 Edition. We thank the author of the code for
shearing this with us, as well as for his useful comments on the exercises.

3. Equivariant flows

You might be interested to compare the autocorrelation of the HMC with a newer
approach, based on a proposal with gauge-equivariant flows. Here we want to refer to the
introduction and the jupyter nodebook provided in arXiv:2101.08176. The second part
is applying the normalizing flows on the 2D-U1 model. The program, which is provided
is based on it, with some additional modifications and added parameters. However, the
current status is that the torch-library is too new, and training of the neural networks is
buggy. I didn’t manage to fix this in time but can give general advice on it.

