### Simulations in Lattice QCD

# Lattice Practice 2024 at The Cyprus Institute - Simulations

Jacob Finkenrath

- Basic
  - Markov Chain Monte Carlo
- Intermediate
  - Hybrid Monte Carlo algorithm
- Advance
  - Fermions in simulations and more

this talk is based on Mattia Della Brida's constribution from 2021

## Goal: Evaluation of pathintegral

#### **Compute**

$$<\Box>=\frac{1}{Z}\int D\phi e^{-S(\phi)}\Box(\phi)$$
  $D\phi=\prod_{i=1}^{M}d\phi_{i}$   $e.g.$   $\phi=U,\overline{\psi},\psi$ 

• Deterministic integration methods not feasible!

Current lattice QCD simulations can have  $M = O(10^9)$ 

 Monte Carlo: evaluates integral by sampling the integrand at points selected with probability under the

integration measure

#### Basic idea

1. Generate sequence of field configurations with probability

$$P(\phi^{(t)}) = \frac{1}{Z}e^{-S(\phi^t)}$$

1. Evaluate

$$\overline{O} = \frac{1}{N} \sum_{t=1}^{N} \Box (\phi^{(t)})$$

### Monte Carlo integration

Consider

$$\langle f \rangle = \int_D dx \ f(x)$$
  $x = (x_1, \dots, x_d)$   $D = [0, 1]^d$ 

Compute

$$\overline{f_N} = \frac{1}{N} \sum_{k=1}^{N} f(x^{(k)}) \qquad x^{(k)} = (x_1^{(k)}, \dots x_d^{(k)})$$

where x are random numbers uniformly distributed within [0,1]. This requires a solid random number generator.

#### Central limit theorem

$$P(\overline{f_N}) \stackrel{N \to \infty}{=} \exp \left[ -\frac{1}{2} \frac{(\overline{f_N} - \langle f \rangle)^2}{\operatorname{var}(f)/N} \right] \quad \text{with} \quad \operatorname{var}(f) = \langle (f - \langle f \rangle)^2 \rangle$$

with

$$\overline{f_N} - \langle f \rangle = (O)(1/\sqrt{N})$$

- · Uncertainty of results are of statistical rather than systematic nature
- Error scales as  $1/\sqrt{N}$  independently of the dimension d
- Rate of convergence depends on var(f)

### Monte Carlo integration





Uniformly sampling is effective for approximately constant functions;

#### here:

var(f) is small

#### in contrast:

Sampling of more complicated functions is more difficult

#### here

Using uniformly distributed random numbers can easily require large values of N to reach a good precision.

#### Consider

$$\langle f \rangle = \int_D dx \ p(x) \left[ \frac{f(x)}{p(x)} \right] = \langle g \rangle_p \quad \text{with} \quad p(x) > 1 \quad \text{and} \quad \int_D dx \ p(x) = 1$$

with

$$g(x) = \frac{f(x)}{p(x)}$$

#### **Compute**

$$\overline{g_N} = \frac{1}{N} \sum_{k=1}^N g(x(k))$$
  $x^{(k)} = (x_1^{(k)}, \dots x_d^{(k)})$ 

with x random vectors distributed according to p(x)

#### Central limit theorem

$$P(\bar{g}_N) \stackrel{N \to \infty}{\sim} \exp \left[ -\frac{1}{2} \frac{(\bar{g}_N - \langle f \rangle)^2}{\text{var}(g)/N} \right] \quad \text{with} \quad \text{var}(f) = \langle (g - \langle f \rangle)^2 \rangle_p$$

with

$$\langle f \rangle = \overline{g_N} \pm \sigma(\overline{g_N}) \quad \sigma(\overline{g_N}) = \sqrt{\overline{\text{var}}(\overline{g})/N}$$

Choice of p(x) can signicantly affect convergence

- Optimal p(x) but this requires <|f|>
- Only relatively simple distributions p(x) can be directly sampled, e.g. via inverse transform, hit-and-miss, etc.





#### **Effective**

A better sampling distribution allows for sampling more frequently the regions that give more contribution to the integral

⇒ faster convergence

#### **However**

When the sampling distribution and the function to integrate have little overlap, we say there is an overlap problem

⇒ very ineffective sampling

Application to lattice field theory:

$$\langle \Box \rangle = \int D\phi \, P_S(\phi) \Box(\phi) \qquad P_S(\phi) = \frac{1}{Z} e^{-S(\phi)}$$

- Sharply peaked around configurations of minimal action
- Far too complicated distribution for a direct sampling
- We need method based on relative probabilities
  - avoids computation of normalization Z
- Convenient, but not necessarily optimal for all O(x)
  - may result in some large variances
- $S(\phi)$  must be real (and bounded)

### Markov Chain Monte Carlo

A (discrete) Markov chain is a sequence of random variables

$$\phi^{(0)} \to \phi^{(1)} \to \cdots \to \phi^{(t)} \to \cdots \to \phi^{(N)}$$
  $\phi(t) \in \Omega \leftarrow \text{state space}$ 

which probability of extraction is given by a transition probability

$$T(\phi \rightarrow \phi')$$

(t is referred to as Markov time)

#### **Properties**

1. Markovian

$$T(\phi \to \phi')$$
 only depends on the current  $(\phi)$  and future  $(\phi')$  state

2. Time-homogeneous

$$T(\phi \to \phi')$$
 is constant along the chain, i.e. t-independent

3. Probability (density)

$$\int D\phi' \ T(\phi \to \phi') = 1 \quad \text{and} \quad T(\phi \to \phi') >= 0$$

4. Ergodic (& irreducible)

$$T(\phi \to \phi') > 0 \quad \forall \phi, \phi' \in \Omega$$

A chain is completely specified by the starting distribution  $P_0(\phi^{(0)})$  and  $T(\phi \to \phi')$  9/47

## Why Markov chains?

T is a linear map:  $T: \square \to \square$ , where  $\square$  is the linear space of real functions on  $\Omega$ .

This contains the subset of probability distributions  $P_{\Omega}$ . Along a Markov chain

$$P_{n+1}(\phi') = (TP_n)(\phi') = \int D\phi P_n(\phi) T(\phi \to \phi')$$

with

$$P^{(n)} \in P_{\Omega}$$

#### **Equilibrium distribution**

Given an ergodic Markov chain with transition probability T, the limit

$$\lim_{t\to\infty} P^{(t)} = \lim_{t\to\infty} T^t P^{(0)} = \Pi \in P_{\Omega}$$

exits, is unique and independent on  $P^{(0)} \in P_{\Omega}$ .

Im particular,  $\Pi$ , is the unique fixed point of the chain, i.e.  $(TP) = P \Leftrightarrow P = \Pi$ 

#### Remark

This is the consequence that T has a unique eigenvalue  $\lambda_0 = 1$  and

$$\lambda_0 > |\lambda_1| \ge |\lambda_2| \ge \dots$$
, where  $Tv_n = \lambda_n v_n$  and  $v_0 = \Pi$ 

$$P^{(t)} = \Pi + \sum_{n \in \mathbb{N}} c_{t,n} (\lambda_n)^n v_n \stackrel{t \to \infty}{=} \Pi + O(e^{-t/\tau^{exp}}) \quad \tau^{exp} = 1/\ln|\lambda_1|$$

### Detailed balance condition

How can we find a T that has the desired distribution  $\Pi$  as equilibrium distribution?

If T is ergodic, a sufficient (but not necessary) condition is detailed balance

$$\Pi(\phi')T(\phi' \to \phi) = \Pi(\phi)T(\phi \to \phi')$$

Proof:

Integrate both sides over 
$$\phi$$
 and use  $\int D\phi T(\phi' \to \phi) = 1$ .

This gives the stability or fix point condition

$$\Pi(\phi') = (T\Pi)(\phi')$$

Since T is ergodic, its fixed point is unique and corresponds to its equilibrium distribution

#### **Remarks**

- If T satisfies detailed ballance or stability but is not ergodic, the convergence for large t is not guaranteed
- We can combine transition probabilities:

$$T = T_1 \circ T_2 \circ \ldots,$$

with Ti not ergodic but satisfies detailed balance and such that T is ergodic. T will automatically satisfy the stability condition and converge to PI.

### Metropolis-Hastings algorithm

A simple way to satisfy detailed balance is given by

$$T(\phi \to \phi') = P_C(\phi \to \phi')P_A(\phi \to \phi')$$

- A candidate  $\phi'$  is proposed from  $\phi$  with probability  $P_C$
- $\phi'$  is accepted as the next step in the chain with probability  $P_A$
- If  $\phi'$  is rejected,  $\phi$  is the next element, i.e. it is repeated in the chain

#### Acceptance probability

We can ensure detailed balance for any choice of Pc by taking

$$P_A(\phi \to \phi') = \min \left[ 1, \frac{\Pi(\phi')P_C(\phi' \to \phi)}{\Pi(\phi)P_C(\phi \to \phi')} \right]$$

If  $P_C(\phi \to \phi') = P_C(\phi' \to \phi)$  (symmetric proposal)

$$P_A(\phi \to \phi') = \min \left[1, \frac{\Pi(\phi')}{\Pi(\phi)}\right]$$

Other PA are in principle possible but have lower acceptance.

## Metropolis-Hastings algorithm

#### Remarks

- only the relative probabilities  $\Pi(\phi')/\Pi(\phi)$  are needed to construct T
  - $\Rightarrow$  no need for normalization of  $\Pi$
- We cannot use Markov chains to compute integrals directly, only ratios

$$\langle \Box \rangle = \frac{\int D\phi \ \Pi(\phi)\Box(\phi)}{\int D\phi \ \Pi(\phi)}$$

In practice there may be challenges in assuring that T is ergodic

-> can lead to improper sampling and biased results



## Simulating lattice phi4-theory

Action

$$S = \sum_{x} \left[ \sum_{\mu=0}^{D-1} \frac{1}{2} \left( \frac{\phi(x+\mu) - \phi(x)}{a} \right) + \frac{m_0^2}{2} \phi^2(x) + \frac{g_0}{4!} \phi^4(x) \right]$$

#### Accept-reject step

1. Set 
$$\phi(x) = \phi_0(x)$$

2. Propose 
$$[\Delta > 0, r \in [0, 1)] \phi'(x) = \phi(x) + \Delta(r - \frac{1}{2})$$

3. Accept  $\phi'$  or keep  $\phi$  according to

$$P_A = \min \left[1, e^{-\delta S}\right] \qquad \delta S = S(\phi') - S(\phi)$$

$$\delta S$$
 only involves  $\phi'(x), \phi(x), \phi(x \pm \mu)$ 

- 1. Repeat 2. & 3. for all points x [sweep]
- 2. Skip k sweeps (thermalization) so that

$$P(\phi^{(t)}) \propto e^{-S(\phi^{(t)})} \qquad \Rightarrow \overline{\square} = \frac{1}{N} \sum_{t=k+1}^{N+k} \square(\phi^{(t)}) \qquad \Rightarrow \overline{\square} = \langle \square \rangle + O(1/\sqrt{N})$$

### **Autocorrelations**

Subsequent states in a Markov chain are correlated

$$\langle\langle\Box^{(k)}\Box^{(l)}\rangle\rangle\neq\langle\langle\Box^{(k)}\rangle\rangle\langle\langle\Box^{(l)}\rangle\rangle \qquad \Box\equiv\Box(\phi^{(k)}) \qquad \langle\langle\cdot\rangle\rangle\equiv\text{avg. indp. chains}$$

The error on time-averges

$$\sigma^{2}(\overline{\square}) = \langle \langle (\overline{\square} - \langle \square \rangle)^{2} \rangle \rangle = \frac{1}{N^{2}} \sum_{k,l=1}^{N} \langle \langle \square^{(k)} \square^{(l)} \rangle \rangle - \langle \square \rangle^{2} \qquad [\langle \langle \square^{(k)} \rangle \rangle = \langle \square \rangle]$$

can be written as

$$\sigma^{2}(\overline{\square}) = \frac{2\tau^{int,\square} \text{var}(\square)}{N} \quad \text{with} \quad \text{var}(\square) = \langle \square^{2} \rangle - \langle \square \rangle^{2}$$

Integrated autocorrelation time is given by

$$\tau^{int,\square} = \frac{1}{2} \left[ 1 + 2 \sum_{t=1}^{N-1} \frac{\Gamma^{(\square)}(t)}{\Gamma^{(\square)}(0)} \right]$$

and the autocorrelation function

$$\Gamma^{(\square(t))} = \langle \langle \square^{(t+i)} \square^{(i)} \rangle \rangle - \langle \square \rangle^2$$

- Error scales via  $N/2\tau^{int}$
- for time-homogeneous chains the function only depends on the distance in Markov time

### **Autocorrelations**

#### **Spectral decomposition**

$$\Gamma^{(\square)}(t) = \sum_{n>0} b_{n,\square} e^{-t/\tau_n} \qquad \tau_n = -1/\ln|\lambda_n| \qquad [\lambda \text{ eignv. of } T]$$

•  $\tau_n$  only depends on the properties of the Markov chain

 $\Rightarrow \tau^{exp} = \tau_1$  is the "slowest" mode to decorrelate

 $b_{n,\square}$  determines the coupling of O to the n-th mode

⇒ it can vary significantly among observables

#### Estimate of the autocorrelation function

$$\overline{\Gamma}^{(\square)}(t) = \frac{1}{N-t} \sum_{i=1}^{N-t} \left[ (\square^{(i+t)} - \overline{\square})(\square^{(i)} - \overline{\square}) \right]$$

#### Estimate of the integrated autocorrelation time

Relative error on the autocorrelation function grows exponentially -> we must choose a cutoff W

$$\tau^{int,\square,W} = \frac{1}{2} \left[ 1 + 2 \sum_{t=1}^{W} \frac{\Gamma^{(\square)}(t)}{\Gamma^{(\square)}(0)} \right]$$

and find a compromise between statistical and systematic error

### **Autocorrelations**

- Autocorrelations (AC) are unavoidable in Markov Chain Monte Carlo (MCMC)
- A proper estimate of AC is curical
  - o no AC -> no error -> no result

#### Ideal:

- Length of simulation > O(100) \* tau\_exp
  - For thermalization O(10)\*tau\_exp

#### Otherwise risks:

- incomplete thermalization:
  - wrong sampling and a biased result
  - wrong estimation of AC, underestimation of errors



#### Estimation of tau^exp

Look for the observable O\_slow with the largest AC, i.e. is very sensitive to slow modes

take 
$$\tau^{\exp} \sim \tau^{int,\Box^{\text{slow}}}$$

## Simulating Lattice QCD

#### Feynman Pathintegral

$$\langle \Box \rangle = \frac{1}{Z} \int DU \ D\overline{\psi} \ D\psi \ e^{-Sg[U]} e^{-\overline{\psi} D[u]\psi} \cdot \Box [U, \overline{\psi}, \psi]$$
$$= \frac{1}{Z} \int DU e^{-Sg[U]} \det(D[U]) \cdot \Box [U, \overline{\psi}, \psi]$$

- pure gauge theory, quenched Simulation, det D = 1
- Action local: requires O(1) operations for a single link U update
  - Heat-bath
  - Overrelaxation
- Action non-local: requires O(V) operations for a single link uodate
  - Global update
- Global update must be **coherent** otherwise

$$\delta S \propto V \Rightarrow P_A \propto \exp(-\delta S) \sim 0$$

## **Hybrid Monte Carlo**

#### Add auxiliarry momentas

$$\pi(x,\mu) = T^a \pi^a(x,\mu) \in su(3)$$
  $(\pi,\pi) = \sum_{x,\mu,a} |\pi^a(x,\mu)|^2$ 

#### Hamiltonian system

$$\langle \Box \rangle = \frac{1}{Z} \int DUD\pi \, e^{-S[U]} \, e^{-(\pi,\pi)/2} \quad \text{with} \quad \int D\pi e^{-(\pi,\pi)/2} = 1$$
$$= \frac{1}{Z} \int DUD\pi \, e^{-H[\pi,U]} \quad \text{with} \quad H = \frac{1}{2}(\pi,\pi) + S[U]$$

Now, we can use Molecular dynamics to update:

$$U(x,\mu) \to U(x,\mu)(t)$$
  $\pi(x,\mu) \to \pi(x,\mu)(t)$ 

using Hamiltons equations

$$\partial_t U(x,t) = \pi(x,\mu)U(x,\mu)$$

$$\partial_t \pi(x,\mu) = -F(x,\mu) \qquad F(x,\mu)^a = \partial_{x,\mu} S[U] \qquad [\partial^a_{x,\mu} U(y,\nu) = \delta_{xy} \delta_{\mu\nu} T^a U(x,\mu)]$$

Note that

$$P_H \propto exp-H$$
 and  $P_S \propto exp-S$  are equivalent for sampling  $\square(U)$ 

Introducing t is legitimate

$$\partial_t H = 0 \quad \Rightarrow P_H(\pi(0), U(0)) = P_H(\pi(\tau), U(\tau))$$

## **Hybrid Monte Carlo**

#### **Ideal HMC algorithm**

- 1. Start from a gauge-field U(0)
- 2. Sample a momentum field P(0) from the Gaussian distribution

$$P_{\pi} = e^{(\pi,\pi)/2}/Z$$

3. Solver Hamilton eqs. for a time t

$$(\pi(0), U(0)) \to (\pi(\tau), U(\tau))$$

4. Repeat 2. and 3. taking U(0)=U(t)



### **Hybrid Monte Carlo**

#### **Ergodicity:**

First step is given by a heat-bath for the momenta's

$$P_{\pi}P_{H} = P_{H}$$

but the step is not ergodic in the total phase-space (only in the momentum part)

Second step is given by the Hamilton evolution

$$P_{MD}((\pi, U) \rightarrow (\pi', U')) = \delta(\pi' - \pi(\tau))\delta(U' - U(\tau))$$

it follows

$$P_{MD}P_{H} = P_{H}$$

but is also not ergodic (H=const.)

However, the combination of first and second step is assumed to be ergodic

$$T = (P_{MD}P_{\pi})$$
 has a fixed point and  $P_H$  is equilibrium distribution

#### In practice

- Hamilton equations can not be solved exactly
  - use numerical integration
- · H is not conserved
  - bias in equilibrium distribution



## Hybrid Monte Carlo on the computer

#### HMC algorithm [Duane et al. 87]

- 1. Start from a gauge-field U(0)
- 2. Sample a momentum field P(0) from the Gaussian distribution

$$P_{\pi} = e^{(\pi,\pi)/2}/Z$$

3. Solve Hamilton eqs. numerically for a time t

$$(\pi^{(i)}, U^{(i)}) = (\pi(0), U(0)) \rightarrow (\pi(\tau), U(\tau)) = (\pi^{(f)}, U^{(f)})$$

4. Accept the configuration U'=U(t) with probability

$$P_A = \min[1, e^{\delta H}]$$
 with  $\delta H = H(\pi^{(f)}, U^{(f)}) - H(\pi^{(i)}, U^{(i)})$ 

If reject start from the initial one U'=U(0)

5. Repeat 2. - 4. taking U(i)=U' and iterate

### Hybrid Monte Carlo on the computer

- The numerical solution of Hamilton equations is used as a proposal in a Metropolis step
- the accept-reject step guarantees that PH is the equilibrium distribution, even if

$$\delta H \neq 0$$

- For the correctness of the HMC, the numerical integrator must preserve two **key properties** of Hamilton dynamics
  - 1. Time-reversibility

$$P_{MD}((\pi, U) \to (\pi', U')) = P_{MD}((-\pi', U') \to (-\pi, U))$$

Guarantess a symmetric proposal

2. Phase-space measure preservation

$$D\pi(0) DU(0) = D\pi(\tau)DU(\tau)$$

in conjuction with 1. guarantees detailed balance

## Molecular Dynamics integration

Hamiltonian

$$H(p,q) = \frac{1}{2}p^2 + S(q) = T(p) + S(q)$$

Time-evolution operator

$$\exp\left(\tau \frac{d}{dt}\right) f(p(t), q(t)) = f(p(t+\tau), q(t+\tau))$$

(taylor expansion) We can write

$$\exp\left(\tau\frac{d}{dt}\right) = \exp\left(\tau\left[\frac{dp}{dt}\frac{\partial}{\partial t} + \frac{dq}{dt}\frac{\partial}{\partial t}\right]\right) = \exp\left(\tau\left[-\frac{\partial H}{\partial q}\frac{\partial}{\partial t} + \frac{\partial H}{\partial p}\frac{\partial}{\partial t}\right]\right) \equiv \exp\left(\tau\hat{H}\right)$$

Hamiltonian vector field

$$\hat{H} = \left[ \frac{\partial H}{\partial p} \frac{\partial}{\partial t} - \frac{\partial H}{\partial q} \frac{\partial}{\partial t} \right] = \hat{T} + \hat{S}$$

It follows

$$\exp(\tau \hat{H})H = H \implies \partial_t H = 0$$

and

$$\hat{T} = T' \frac{\partial}{\partial q}$$
 and  $\hat{S} = -S' \frac{\partial}{\partial p}$ 

## Molecular Dynamics integration

#### Integrable steps

$$e^{\tau \hat{T}}: f(p,q) \to f(p,q+\tau T'(p))$$
 $e^{\tau \hat{S}}: f(p,q) \to f(p-\tau S'(q),q)$ 

#### Measure preserving/Volume preserving

$$J(e^{\tau T}) = \frac{\partial e^{\tau T}(p, q)}{\partial (p, q)} = \det \begin{bmatrix} 1 & \tau T''(p) \\ 0 & 1 \end{bmatrix} = 1$$

$$J(e^{\tau \hat{S}}) = \frac{\partial e^{\tau \hat{S}}(p,q)}{\partial (p,q)} = \det \begin{bmatrix} 1 & 0 \\ -\tau S''(q) & 1 \end{bmatrix} = 1$$

- $\exp(\tau T)$  and  $\exp(\tau S)$  are exactly integrable for any  $\tau$
- can be combined to built symplectic integrators i.e. time-reversible and measure preserving

#### **Leap Frog**

$$[I_{LPFR} (h)]^n = \left(e^{\frac{h}{2}\hat{S}}\hat{e}^{h\hat{T}}\hat{e}^{\frac{h}{2}\hat{S}}\right)^n$$

which is reversible by construction and volume preserving

## Integration error of symplectic integrators

Using Baker-Campbell-Hausdorff (BCH) formula

$$\ln(e^A e^B) = (A+B) + \frac{1}{2}[A,B] + \frac{1}{12}([A,[A,B]] - [B,[A,B]]) + \dots$$

we find

$$[I_{LPFR}(h)]^{n} = \left(\exp[(\hat{T} + \hat{S})h - \frac{1}{24}([\hat{S}, [\hat{S}, \hat{T}]] + 2[\hat{T}, [\hat{S}, \hat{T}]])h^{3} + O(h^{5})]\right)^{\tau}/h$$

$$= \left(\exp[\tau((\hat{T} + \hat{S}) - \frac{1}{24}([\hat{S}, [\hat{S}, \hat{T}]] + 2[\hat{T}, [\hat{S}, \hat{T}]])h^{2} + O(h^{4}))]\right)$$

$$\equiv \exp(\tau H) = \exp(\tau(\hat{T} + \hat{S}) + O(h^{2}))$$

#### **Shadow Hamiltonian**

The commutator of two Hamiltonian vector fields is a Hamiltonian vector field

$$\widetilde{H} = \frac{\partial \widetilde{H}}{\partial p} \frac{\partial}{\partial q} - \frac{\partial \widetilde{H}}{\partial q} \frac{\partial}{\partial p}$$

Symplectic intergrators exactlu conserve a shadow Hamiltonian

### **Shadow Hamiltonian**

It holds

$$[\hat{H_1}, \hat{H_2}] = \hat{H_3}$$

and its follows

$$H_3 = (H_1, H_2)_p = \frac{\partial H_1}{\partial p} \frac{\partial H_2}{\partial q} - \frac{\partial H_1}{\partial q} \frac{\partial H_2}{\partial p}$$

Now to find the shadow Hamiltonian, replace the commutators with Poisson brackets and it follows

#### **Leap Frog**

$$\Delta H_{LPFR} = \frac{1}{24} [(S, (S, T))_p + 2(T, (S, T))_p] h^2 + O(h^4)$$
$$= -\frac{1}{24} (S'^2(q) - 2p^2 S''(q)) h^2 + O(h^4)$$

with

$$S'^2(q) = F^2$$
 and  $S''(q) = F'$ 

#### Remarks:

- BCH only gives an asymtotic expansion for tildeH
- existence of a conserved Hamiltonian tildeH along the trajectory means

$$\delta H = (H^{(f)} - H^{(f)}) - (H^{(i)} - H^{(i)}) = (\Delta H^{(f)} - \Delta H^{(i)}) = O(h^2)$$

### Generalization of MD integrators

Second minimal norm scheme (OMF2)

$$I_{OMF2}(h) = e^{\lambda h \hat{S} \cdot \hat{e}^{h/2T} \cdot \hat{e}^{(1-2\lambda)h \hat{S}} \cdot \hat{e}^{h/2T} \cdot \hat{e}^{\lambda h \hat{S}}$$

with

$$\Delta H_{OMF2} = (c_1(\lambda)(S, (S, T))_p + c_2(\lambda)(T, (S, T))_p)h^2 + O(h^4)$$
Minimizing  $c_1^2 + c_2^2$  gives  $\lambda \approx 0.19$ 

Fourth order integrator (OMF4) with 11 stages

$$I_{OMF4}(h) = e^{r_0 hS} \cdot \cdots \cdot e^{r_0 hS} \cdot \Delta H_{OMF4} = O(h^4)$$

#### **Remarks**

• Measuring  $var(\Delta H)$  in simulations and minimizing it allows for a systematic optimization [Clark et al. 11]

### Multiple time-scale integration

#### **Multiple actions**

$$H(p,q) = \frac{1}{2}p^2 + S_1(q) + S_2(q) \qquad ||F_2|| \ll ||F_1||$$

If Cost(F2) >> Cost(F1) it may be convenient to use different step sizes h

Nested integrators [Sexton, Weingarten 92]

$$I(h) = e^{\frac{h}{2}\hat{S}_{2}^{h}} \left( e^{\frac{h}{2m}\hat{S}_{1}^{h}} e^{\frac{h}{m}T} \hat{e}^{\frac{h}{2m}\hat{S}_{1}^{h}} \right)^{m} e^{\frac{h}{2}\hat{S}_{2}^{h}}$$

#### **Shadow Hamiltonian**

$$\Delta H = \left[\alpha F_2^2 + \beta F_2' + \beta F_1 F_2 + \frac{1}{m^2} (\alpha F_1^2 + \beta F_1')\right] h^2 + O(h^4)$$

#### **Remarks**

- Correlation term between F1 and F2 is not suppressed by m
  - -> efficiency depends on correlation between forces
- in lattice QCD,

$$||F_G|| \gg ||F_{F,1}||$$

and opposite for their cost

### Some Remarks on MD integration

Gauge group integration

$$e^{hT}$$
:  $U(x,\mu) \to e^{h\pi(x,\mu)}U(x,\mu) \quad \pi(x,\mu) \to \pi(x,\mu)$ 

$$e^{h\hat{S}}: U(x,\mu) \to U(x,\mu) \quad \pi(x,\mu) \to \pi(x,\mu) - hF(x,\mu)$$

Measure preservation

$$\langle e^{-\delta H} \rangle = 1$$
  $\delta H = H^{(f)} - H^{(i)}$ 

Reversibility:

$$\Delta = ||U' - U|| \quad (\pi', U') = F \cdot [I(h)]^n \cdot F \cdot [I(h)]^n(\pi, U)$$

with

$$F(\pi, U) = (-\pi, U)$$

is violated by rounding errors

$$\Delta \propto h^{\nu}$$
 with  $\nu > 0$  Liapunov exponent

A too large h

$$\nu \propto h$$

and MD integration becomes unstable

### Remarks on MD integration

#### **Acceptance probability**

$$P^{acc} = \langle \min[1, e^{-\delta H}] \rangle \stackrel{V \to \infty}{=} \operatorname{erfc}(\sqrt{\sigma^2(\delta H)/8})$$

With

$$\sigma^2(\delta H) = \langle (\delta H)^2 \rangle - \langle \delta H \rangle^2 \propto V h^{2n}$$

To tune the algorithm:

- Select stable integrator
- Minimize cost per trajectory at constant acceptance rate
  - Requires stable integrator

• 
$$P^{acc} = const. \Rightarrow \sigma^2 = const. \Rightarrow h \propto V^{-1/2n}$$

## Critical slowing down

Approaching the continuum limit

$$\tau^{int,\square} \propto a^{-z}$$

where z depends on the algorithms

#### **Status**

- certain algorithms can be analyzed as QFTs:
- Simulation time is the (D+1)th dimension [Parisi, Wu 81, Zinn-Justin 86]
- HMC can not be analyzed this way: empirically z=2
- this might be true if topology issue is absent



### Topology freezing

- continuum path-integral with periodic bcs. for Fmunu is a sum over disconnected topological sectors
- on the lattice the field space "between" sectors rapidly vanishes as a->0
- Probability of changing sector in simulations rapidly deteriorating
  - $\Rightarrow \tau^{int,Q}$  increases dramatically
- Ergodicity in simulations is compromised and so the results for any observablee
- One possible way, is to open the boundaries in time

• ...



### Fermions in simulations

Lattice QCD path-integral

$$\langle \Box \rangle = \frac{1}{Z} \int DU \ D\overline{\psi} \ D\psi \ e^{-Sg[U]} e^{-\overline{\psi}\overline{D}[U]\psi} \Box [U, \overline{\psi}, \psi]$$
$$= \frac{1}{Z} \int DU \ e^{-Sg[U]} \det(D[U]) \Box [U]$$

Fermionic observable

$$\Box[U,\overline{\psi},\psi] \to \Box'[U] = \Box[U,\frac{\partial}{\partial \eta},\frac{\partial}{\partial \overline{\eta}}]e^{\overline{\eta}D^{-1}[U]\eta}$$

Determinant as observable:

$$\langle \Box \rangle = \frac{\langle \det(D[U]) \Box'[U] \rangle}{\langle \det D[U] \rangle}$$

- Calculation of det(D[U]) requires O(V^3) operations
- Overlap problem -> large statistical fluctuations

### Fermions in simulations

Lattice QCD path-integral

$$\langle \Box \rangle = \frac{1}{Z} \int DU \ D\overline{\psi} \ D\psi \ e^{-Sg[U]} e^{-\overline{\psi}D[U]\psi} \Box [U, \overline{\psi}, \psi]$$
$$= \frac{1}{Z} \int DU \ e^{-Sg[U]} \det(D[U]) \Box [U]$$

Fermionic observable

$$\square[U,\overline{\psi},\psi] \to \square'[U] = \square[U,\frac{\partial}{\partial \eta},\frac{\partial}{\partial \overline{\eta}}]e^{\overline{\eta}D^{-1}[U]\eta}$$

Determinant in Metropolis

$$P_A \propto e^{-Sg[U']-Sg[U]} \frac{\det D[U']}{\det D[U]}$$

• for a single link update

$$\det(D[U+\delta U]D[U]^{-1})$$

requires O(V) operation

for a full sweep follows propotional to V^2

• det D[U] must be real and positiv

### Fermions in simulations

Lattice QCD path-integral

$$\langle \Box \rangle = \frac{1}{Z} \int DU \ D\overline{\psi} \ D\psi \ e^{-Sg[U]} e^{-\overline{\psi}D[U]\psi} \Box [U, \overline{\psi}, \psi]$$
$$= \frac{1}{Z} \int DU \ e^{-Sg[U]} \det(D[U]) \Box [U]$$

Fermionic observable

$$\Box[U,\overline{\psi},\psi] \to \Box'[U] = \Box[U,\frac{\partial}{\partial \eta},\frac{\partial}{\partial \overline{\eta}}]e^{\overline{\eta}D^{-1}[U]\eta}$$

Determinant as effective action

$$S^{eff} = -\text{tr} \ln(D[U])$$
  $\Rightarrow$   $F^{eff} = -\text{tr}(D[U]^{-1} \partial D[U])$ 

- Difficult and impractical to mae the algorithm efficient (and exact)
- det D[U] must be real and positiv

### Fermions in simulations

Pseudo-fermions [Weingarten, Petcher 81]

$$\det(D)^2 = \det(Q^2) \propto \int D\phi^{\dagger} D\phi e^{-\phi^{\dagger} Q^{-2} \phi} \qquad [Q = \gamma_5 D = Q^{\dagger}]$$

- $\det Q^2$  is expressed in terms of a bosonic Gaussian integral with pseudo-fermions interacting non-locally
- $\det(Q)^* = \det(Q^\dagger) = \det Q \in \mathbb{R}$  but for Wilson quarks not necessarily positiv
- positivity of the fermion kernel is needed for the convergence of the integral
- two degenerate quarks guarantee positivity and allow for an easy pseudo-fermion generation
- more difficult for single quarks

## HMC with pseudo-fermions

#### Heat-bath

$$P_{\eta}[\eta] \propto \int D\eta^{\dagger} D\eta \ e^{-\eta^{\dagger}\eta} \quad \Rightarrow \quad \phi = Q\eta \quad \Rightarrow P_{\phi}[\phi]$$

- At the beginning of a trajectory, we generate pseudo-fermions from Gaussian fields
- Averaging results over many trajectories effectively samples the contribution from the pseudofermion integral

#### Hamiltonian

$$H = \frac{1}{2}(\pi, \pi) + S$$
  $S = S_G + S_{pf}$   $S_{pf} = (Q^{-1}\phi, Q^{-1}\phi)$ 

#### **Dynamics**

$$\partial_t U(x,\mu) = \pi(x,\mu)U(x,\mu)$$
  $\partial_t \pi(x,\mu) = -F(x,\mu)$   $F^a(x,\mu) = \partial^a_{x,\mu}S$ 

Pseudo-fermions are held fixed during the Hamiltonian evolution

#### **Fermionic forces**

$$F_{pf}^{a}_{x,\mu} = \partial^{a}_{x,\mu}(\psi,\psi) = -2\operatorname{Re}(\chi,(\partial^{a}_{x,\mu}Q)\psi)$$

with

$$\psi = Q^{-1}\phi$$
 and  $\chi = Q^{-1}\psi$ 

## Challenges of simulating fermions

#### Solving the Dirac equation

• Computing Spf and Fpf requires solving linear systems:

$$D\chi = \eta \quad \Rightarrow \quad \chi = D^{-1}\eta$$

• D is a sparse matrix:

$$D\chi$$
 requires O(V) operations

iterative solvers are an effictive method to solve these stsmts

- Computational cost of conventional solvers rapidly grows with (a mq)^{-1}, system is quickly ill conditioned
- Multi-grid solvers are pratically solving this issues
  - lead to a speed up of O(10) O(100)

Usually main computational challenge



## Challenges of simulating fermions

#### **Fermionic forces**

- Single pseudofermion HMC is not competitive
- Consider

$$F_{pf} = (\phi, \partial Q^{-2}\phi)$$
 vs.  $F_F^{eff} = -2\partial trln(Q)$ 

Fpf is a stochastic estimate of Feff at the start of the trajectory

$$\langle F_{\it pf} 
angle = F_F^{\it eff}$$

Fpf has very large fluctuations

1. 
$$||F_{pf}|| \gg ||F^{eff}_{F}||$$

2. 
$$var(||F_{pf}||) \gg var(F^{eff}_{F})$$

• Reall the shadow Hamiltonian

$$\Delta H_{OMF2} = (c_1 ||F||^2 + c_2 \pi^2 \partial^2 S) h^2 + O(h^4)$$
large  $var(||F_{pf}||) \implies \text{large } var(\Delta H) \implies \text{low } P_A \implies \text{small } h$ 

 $\circ \;\;$  large foces also trigger intabilities more easily -> limits the step size h

## Even-odd reduction/preconditioning

If D only connects nearest-neighboring sites the fermionic problem can be effectively reduced to half the lattice

#### **Checkerboard decomposition**

Even or odd point

#### Schur decomposition

$$D = egin{bmatrix} D_{ee} & D_{eo} \ D_{oe} & D_{oo} \end{bmatrix}$$
  $\det D = \det D \det D \det D_{oo}$   $\det D_{oo}$   $\det D = D_{ee} - D_{eo} D^{-1} \otimes D_{oe}$ 

#### **Even-odd action**

$$S_{pf} \to S_{pfe} + S_{det} = (Q^{-1} \phi_e, Q^{-1} \phi_e) - 2 \operatorname{tr} \ln(Q_{00})$$

- Spfe involves pseudo-fermions residing only on the even sites of the lattice, helps in speed and reducing fluctuations
- Sdet and corresponding force can be evaluated exactly, i.e., without introducing pseudofermions

## Hasenbusch mass-preconditioning

Frequency splitting [Hasenbusch 01, Hasenbusch, Jansen 03]

$$\det(Q^2) = \det(Q^2 + \mu^2) \prod_{k=0}^{n-1} \det\left(\frac{Q^2 + \mu_k^2}{Q^2 + \mu_{k+1}^2}\right) \qquad 0 = \mu_0 < \dots < \mu_n$$

#### **Actions and forces**

$$S_{pf,n} = (\phi_n, (Q^2 + \mu_n^2)^{-1} \phi_n)$$

$$S_{pf,k} = (\phi_k, (Q^2 + \mu_{k+1}^2)(Q^2 + \mu_k^2)^{-1} \phi_k) \qquad k = 0, \dots, n-1$$

$$(F_{pf,k})^a(x,\mu) = -2(\mu_{k+1}^2 - \mu_k^2) \operatorname{Re}(\chi_k, (\partial_{x,\mu}^a Q) \psi_k)$$

- A proper tuning of mu can lead to a significant improvement
- smaller  $var(||F_{pf}||) \Rightarrow smaller var(\Delta H) \Rightarrow larger P_A \Rightarrow larger h$
- for QCD, at the physical point,
- $\mu_1 \sim m_q; \quad \mu_{k+1} \sim 10\mu_k$

**Typically** 

$$||F_{pf,k+1}|| \gg ||F_{pf,k}||$$
 while opposite for their cost

Multiple time-step integration can be useful

### Rational HMC

Single-quark determinante [Kennedy et al. 98, Clark, Kennedy 03]

$$\det(Q) \to \det(\sqrt{\overline{Q}^2}) = \det(W) \det R^{-1} \qquad W = |Q|R$$

where

$$R = r_b R^{n,\epsilon} (r_b^{-2} Q^2) \qquad \epsilon = (r_a/r_b)^2 \qquad \lambda(|Q|) \in [r_a, r_b]$$

#### **Rational approximation**

$$R^{n,\varepsilon}(x) = A \frac{(x+a_1)\cdots(x+a_{2n-1})}{(x+a_2)\cdots(x+a_{2n})} \approx \frac{1}{\sqrt{x}} \qquad a_1 > \dots > a_{2n} > 0$$

- Zolotarev rational function of degree (n,n)
- Guarantees smallest possible

$$\delta = \max_{\varepsilon \le x \le 1} |1 - \sqrt{x} R^{n,\varepsilon}(x)|$$

Frequency splitting (e.g. n=10)

$$\det(R^{-1}) \propto \det(P^{-1}_{1,4})\det(P^{-1}_{5,7})\det(P^{-1}_{8,10})$$

with

$$P_{k,l} = \prod_{j=k}^{l} \frac{Q^2 + \nu_j^2}{Q^2 + \mu_j^2} = 1 + \sum_{j=k}^{l} \frac{\rho_j}{Q^2 + \mu_j^2} \quad \mu_1 > \dots > \mu_n$$

### Rational HMC

#### **Actions and forces**

$$S_{pf,k,l} = (\phi_{k,l}, P_{k,l} \phi_{k,l}) \qquad (F_{pf,k,l})^a(x,\mu) = \partial^a_{x,\mu} S_{pf,k,l}$$

#### Remarks

- ,We have to ensure \; $\det(Q) > 0$ , this is ensured by measure the spectral range  $[r_a, r_b]$  of  $Q^2$  If that fails, sign flip need to be included as reweighting factor (on some CLS ensembles thats the case [Mohler, Schaefer 19])
- Choose a large enough n to have a good approximation of R
- For Wilson quarks the RHMC is typically used for heavy quarks, (charm and strange)
- det(W) can be included in the accept-reject step or in the observable as a reweighting factor. It can be estimated stochastically

$$\langle \Box 
angle_{|Q|} = rac{\langle \Box W 
angle_{R^{-1}}}{\langle W 
angle_{R^{-1}}} \qquad W = \langle e^{-\eta^{\dagger}[(1+Z)^{-1/2}-1]\eta} 
angle_{P}$$

### Costs

Approaching the continuum limit at constant physics, the cost to obtain a set of statistical independent configurations scales like

$$C \propto V a^{-4}$$
  $V^{1/8} a^{-1/2}$   $a^{-z} \propto V^{9/8} a^{4.5+z}$ 

where the first term comes from the solver, the second from the integrator and the third from the autocorrelation

• OBC: z=2, PBC z=5

On a GPU machine with 4A100 this leads to

- O(1000) trajectories
- A physical volume of L=5.5 fm and a=0.05 fm
- Nf=2+1+1 twisted mass fermions at physical masses

 $C \approx 0.5$  Mi node hours

# More techniques

- Pure-gauge algorithms
- Domain Decomposition
- Force gradient integrators
- Reweighting techniquesSimulating chiral fermions
- Multi-level sampling

### References

This talk is based on Mattia Della Brida's Lattice Practice Contribution of 2021

#### Other references:

M. Lüscher, Computational Strategies in Lattice QCD, in Les Houches Summer School: Session 93: Modern perspectives in lattice QCD: Quantum field theory and high performance computing, pp. 331–399, 2, 2010, 1002.4232.

- A. D. Kennedy, Algorithms for dynamical fermions, hep-lat/0607038.
- S. Schaefer, Simulations with the hybrid Monte Carlo algorithm: Implementation and data analysis, in Les Houches Summer School: Session 93: Modern perspectives in lattice QCD: Quantum eld theory and high performance computing, pp. 401–422, 8, 2009.
- S. Schaefer, Simulation Algorithms, Lattice Practices 2018
- S. Schaefer, Status and challenges of simulations with dynamical fermions, PoS LATTICE2012 (2012) 001, [1211.5069].
- S. Duane, A. D. Kennedy, B. J. Pendleton and D. Roweth, Hybrid Monte Carlo, Phys. Lett. B 195 (1987) 216–222.
- A. Barp, F.-X. Briol, A. D. Kennedy and M. Girolami, Geometry and Dynamics for Markov Chain Monte Carlo, 1705.0289

ALPHA collaboration, U. Wolff, Monte Carlo errors with less errors, ComputPhys. Commun. 156 (2004) 143–153, [hep-lat/0306017].

ALPHA collaboration, S. Schaefer, R. Sommer and F. Virotta, Critical slowingdown and error analysis in lattice QCD simulations, Nucl. Phys. B 845 (2011) 93–119, [1009.5228].