Simulations in Lattice QCD

L attice Practice 2024 at The Cyprus Institute -
Simulations

Jacob Finkenrath
e Basic
o Markov Chain Monte Carlo
e Intermediate
o Hybrid Monte Carlo algorithm
e Advance
o Fermions in simulations and more

this talk is based on Mattia Della Brida's constribution from 2021
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Goal: Evaluation of pathintegral

Compute
| M
<O>= = /D¢e‘S(¢) O(¢) D¢ = H dp; eg. ¢=U 9,9
i=1

e Deterministic integration methods not feasible!
Current lattice QCD simulations can have M = O(1079)

e Monte Carlo: evaluates integral by sampling the integrand at points selected with probability
under the

integration measure
Basic idea

1. Generate sequence of field configurations with probability
1 t
P(d®y = —_=5¢)
@) Z

1. Evaluate

— i
=~ 2,06
N t=1
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Monte Carlo integration

Consider

<f>=/dxf(x) x=(xg,...,xq) D=10,1]¢

D

Compute
— 1
fv =5 2F6)  x0 =)
k=1

where x are random numbers uniformly distributed within [0,1] . This requires a solid random
number generator.

Central limit theorem

I 1 (fx =2
P(fx) = exp [_5 (];Zaf;{z\?] with var(f) = ((f = (f)

with
fn =< = (O)AVN)
e Uncertainty of results are of statistical rather than systematic nature
« Error scales as 1/4/N independently of the dimension d

» Rate of convergence depends on var(f)
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Monte Carlo integration

Y

£ e 2@ £

20 D) o) )

Uniformly sampling is effective
for approximately constant
functions;

here:

var(f) is small

in contrast:

Sampling of more complicated
functions is more difficult

here

Using uniformly distributed
random numbers can easily
require large values of N to reach
a good precision.
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Importance sampling

Consider
(f) = / dx p(x) l@] ={@p with  p(x)>1 and / dx p(x) =1
D p(x) D
with
(x)
g(x) = %
Compute

N

1

gv =77 2 8k X9 =P x)
k=1

with x random vectors distributed according to p(x)

5/47



Importance sampling

Central limit theorem

oo 1 (g = <)? .

with
(f)=8gn x0(@gn) o(gy) =+ VargIN
Choice of p(x) can signicantly affect convergence

e Optimal p(x) but this requires <|f|>
e Only relatively simple distributions p(x) can be directly sampled, e.g. via inverse transform, hit-

and-miss, etc.
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Importance sampling

Effective

A better sampling distribution
\ allows for sampling more
frequently the regions that give
more contribution to the integral

= faster convergence

@) (1)) (3)

However

p(z) f(e) When the sampling distribution
and the function to integrate
have little overlap, we say there
is an overlap problem

= very ineffective sampling
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Importance sampling

Application to lattice field theory:

1
@ = / D$Ps@O@  Ps(@) = e

Sharply peaked around configurations of minimal action

Far too complicated distribution for a direct sampling

We need method based on relative probabilities
o avoids computation of normalization Z
e Convenient, but not necessarily optimal for all O(x)

o may result in some large variances

. S(¢) must be real (and bounded)
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Markov Chain Monte Carlo

A (discrete) Markov chain is a sequence of random variables
C}5(0) _ c;b(l) e qb(t) Ly e e N ¢(N) P(t) € Q «— state space
which probability of extraction is given by a transition probability
T — ¢
(t is referred to as Markov time)
Properties
1. Markovian
T(¢p — ¢') only depends on the current (¢) and future (¢') state
2. Time-homogeneous
T(¢p — ¢') is constant along the chain, i.e. t-independent

3. Probability (density)
/DqS’ T(p—>¢)=1 and T(p — ¢')>=0

4. Ergodic (& irreducible)
T —¢H)>0 v, ¢’ € Q

A chain is completely specified by the starting distribution ~ Py(¢®) and T(¢p — ¢)
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Why Markov chains ?

T is a linear map: T : O — O, where O is the linear space of real functions on €.

This contains the subset of probability distributions Po . Along a Markov chain

Pni1 (") = (TP)(¢') = / D¢ Pu(p)T (¢ — ¢")
with
P™ e Pg
Equilibrium distribution
Given an ergodic Markov chain with transition probability T, the limit

IimP® = 1imT!P® =11 € Po

f—o0 f—o0

exits, is unique and independent on P © e Pg.
Im particular, IT ,is the unique fixed point of the chain,i.e. (TP) =P < P =11
Remark
This is the consequence that T has a unique eigenvalue 4o = 1 and

Ao > |4 = |A2] = ..., where Tv,, = 4,0, and vy = 11

PO 1T+ Z Ct,n(/ln)nvn 2% 11 + O(e_t/rexp) 7P = 1/In|A;]
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Detailed balance condition

How can we find a T that has the desired distribution I as equilibrium distribution ?
If T is ergodic, a sufficient (but not necessary) condition is detailed balance
N@HT@¢" — ¢) =THT (¢ — ¢")

Proof:

Integrate both sides over ¢ and use / DpT(p — ¢) =1.

This gives the stability or fix point condition
I(¢") = (TTI)(¢")
Since T is ergodic, its fixed point is unique and corresponds to its equilibrium distribution

Remarks

e If T satisfies detailed ballance or stability but is not ergodic, the convergence for large t is not
guaranteed

e We can combine transition probabilities:
T=T1 °T2°...,

with Ti not ergodic but satisfies detailed balance and such that T is ergodic. T will automatically
satisfy the stability condition and converge to PI.
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Metropolis-Hastings algorithm

A simple way to satisfy detailed balance is given by

T(¢p — ¢') = Pc(¢p — ¢)Pa(p — ¢")

. A candidate ¢’ is proposed from ¢ with probability P¢
. ¢’ is accepted as the next step in the chain with probability P,
. If ¢’ is rejected, ¢ is the next element, i.c. it is repeated in the chain

Acceptance probability

We can ensure detailed balance for any choice of Pc by taking

e[ T@OPc@’ — ¢)
Pa@@ = ¢7) = min [1’ (PP = &)

If Pc(p — ¢') = Pc(¢p’ — ¢) (symmetric proposal)

(¢’)]
11(¢)

Other PA are in principle possible but have lower acceptance.

Pa(p — gb) mln[
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Metropolis-Hastings algorithm

Remarks
. only the relative probabilities I1(¢’)/I1(¢) are needed to construct T

= no need for normalization of 11

e We cannot use Markov chains to compute integrals directly, only ratios

_ /D¢ Ti(¢)O($)
J D¢ 11(¢)

In practice there may be challenges in assuring that T is ergodic

(my

-> can lead to improper sampling and biased results

A

A

can we get here? and here?
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Simulating lattice phi4-theory

Action

AN x40 = 90 " 8
5= [ ( )+ e+ Bt

x Lu=0

1M
0|

Accept-reject step

1. Set $(x) = po(x)
2. Propose [A >0, r € [0,1)] ¢'(x) = ¢p(x) + A(r — %)
3. Accept ¢’ or keep ¢ according to

P4 =min[l,e] 8S=5S@") - S¢)

&S only involves ¢'(x), $(x), p(x + )
1. Repeat 2. & 3. for all points x [sweep]

2. Skip k sweeps (thermalization) so that

N+k
P(¢p®) « eS¢  O= — Z O =0O=@ +O0(1/VN)
t=k+1
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Autocorrelations

Subsequent states in a Markov chain are correlated

«@®a®yy = «@a®«@a®y) O =0") ((-)) = avg. indp. chains

The error on time-averges

. . 1 X
@ = (@ - @ = — Y «a®o®) -@*  @® = @)
k=1
can be written as
- 2 intd O
2= O i var@) = @ — @2

N

Integrated autocorrelation time is given by
N-1
. 1 &
e = S 1+2 ) ®
2 & TO©0)

and the autocorrelation function

r@om — <<|:|(t+i) D(i)>> _ <|:|>2
int

. Error scales via N/2t

» for time-homogeneous chains the function only depends on the distance in Markov time
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Autocorrelations

Spectral decomposition

') = Z e/ 7, = —1/In| 4| [A eignv. of T]

n>0
. 7 only depends on the properties of the Markov chain
= 7P = 1, is the "slowest" mode to decorrelate
. b, o determines the coupling of O to the n-th mode
= it can vary significantly among observables

Estimate of the autocorrelation function
N-t
—E) 1 . —_— . —
r ()= —— O —y@A® -0
(0= i§_1j I X )]

Estimate of the integrated autocorrelation time

Relative error on the autocorrelation function grows exponentially -> we must choose a cutoff W

w
2 @ (0)

t=1

and find a compromise between statistical and systematic error
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Autocorrelations

e Autocorrelations (AC) are unavoidable in
Markov Chain Monte Carlo (MCMC)
e A proper estimate of AC is curical
o no AC -> no error -> no result

Ideal:

e Length of simulation > O(100) * tau_exp
o For thermalization O(10)*tau_exp

Otherwise risks:

e incomplete thermalization:
o wrong sampling and a biased result
o wrong estimation of AC,
underestimation of errors

Estimation of tau’exp

To(t)/To(0)

oW

0.8

0.6

0.4

=
.
=
ES

Qtop +—s—

200100600 %0000 1200 14001600
W

Look for the observable O_slow with the largest AC, i.e. is very sensitive to slow modes

take

i

~T

nt Dslow
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Simulating Lattice QCD

Feynman Pathintegral

o = ZL /DU Dy Dy e~S8lU] o9 Dluly . OU, ¢, ]

= % / DUe 8l dey(D[UY) - O[U, ¥, ]

e pure gauge theory, quenched Simulation, det D =1

Action local : requires O(1) operations for a single link U update

o Heat-bath
o Qverrelaxation

Action non-local: requires O(V) operations for a single link uodate

o Global update

Global update must be coherent otherwise

0S « V. = Py « exp(=6S) ~ 0
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Hybrid Monte Carlo

Add auxiliarry momentas

(X, u) = T, p) € su3)  (m,m) = ) |17x,w)l

X,u,a

Hamiltonian system

@ = % / DUDz e™sWle=@m2 yith / Dre ™2 = 1
_ L / DUDr e~ HImUl with H = l(n ) + S[U]

Z 277

Now, we can use Molecular dynamics to update:
U, u) = Ulx,u)(t)  7(x, 1) — 7(x, u)(t)
using Hamiltons equations
dU(x,t) = (x, U (X, 1)

o(x,m) = —=F(x, 1) F(x, ) = 0xu S[U] [0%.. U, V) = xy ST U(x, u)]

Note that
Py «exp—-H and Pg «exp-S are equivalent for sampling O(U)

Introducing t is legitimate

0H=0 = Py (m(0),U(0)) = Py (c(7), U(T)) 19 /47



Hybrid Monte Carlo

Ideal HMC algorithm
1. Start from a gauge-field U(0)
2. Sample a momentum field P(0) from the Gaussian distribution
Pr=e™M?7
3. Solver Hamilton eqs. for a time t
(7r(0), U(0)) — (7(7), U(7))

4. Repeat 2. and 3. taking U(0)=U(t)
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Hybrid Monte Carlo

Ergodicity:
First step is given by a heat-bath for the momenta's

P,Py = Py
but the step is not ergodic in the total phase-space (only in the momentum part)
Second step is given by the Hamilton evolution

Pup((r,U) — (7', U")) = 8(r' — m(1))6(U’ - U(7))

it follows

PupPy = Py
but is also not ergodic (H=const.)
However, the combination of first and second step is assumed to be ergodic

T = (PmpP;) hasafixed pointand Py is equilibrium distribution

In practice

e Hamilton equations can not be solved
exactly
o use numerical integration
e His not conserved
o bias in equilibrium distribution
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Hybrid Monte Carlo on the computer

HMC algorithm [Duane et al. 87]

1. Start from a gauge-field U(0)

2. Sample a momentum field P(0) from the Gaussian distribution

Pr=e™M?7
3. Solve Hamilton eqs. numerically for a time t
(7", UD) = ((0), U0) — (), U(D)) = (), UY)
4. Accept the configuration U'=U(t) with probability
P4 = min[l,e°"] with 6H =H@@,UD) - H&Y,UD)
If reject start from the initial one U'=U(0)

5. Repeat 2. - 4. taking U(1)=U'" and iterate
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Hybrid Monte Carlo on the computer

e The numerical solution of Hamilton equations is used as a proposal in a Metropolis step
 the accept-reject step guarantees that PH is the equilibrium distribution, even if
0H =0

e For the correctness of the HMC, the numerical integrator must preserve two key properties of
Hamilton dynamics

1. Time-reversibility
Pup((r,U) — (', U")) = Pun((-7r',U") — (-7, U))
Guarantess a symmetric proposal
2. Phase-space measure preservation
Dn(0) DU) = Dn(t)DU(7)

in conjuction with 1. guarantees detailed balance
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Molecular Dynamics integration

Hamiltonian

1
H(p,q) = Epz +S(q) = T(p) + S(q)

Time-evolution operator

d
exp (77 ) FO.0) = F(p(e+),q( +)

(taylor expansion) We can write

d dp o dq OH &  oH @
—_— = _— _ = _ _— = H
exP (Tdt> cxp <Tldt o T dt ar]) cxp (T dq ot~ ap atD exp (vH )

Hamiltonian vector field

HA= la_Hi —_ a_Hil — TA+SA
dp ot  dq ot
It follows
expcH)H=H = 9H=0
and
~ ’ ~ ’ d
T=T— and S =-S"'—
q dp
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Molecular Dynamics integration

Integrable steps

el : f(p.q) — f(p.q+TT'(p))

e™s f(p.9 — f(p-18"(q).q

Measure preserving/Volume preserving

+_ 9e(p,g) [1 rT”(p)]
JeEe™) = ~— = det =1
) (P, q) 0 1
N 0 S | ,
I(p,q) -87(q) 1
. exp(TTS and exp(TSA) are exactly integrable for any 7

e can be combined to built symplectic integrators i.e. time-reversible and measure preserving

Leap Frog
[Irprr (W)]" = <e%S€hT€%S>

which is reversible by construction and volume preserving
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Integration error of symplectic integrators

Using Baker-Campbell-Hausdorff (BCH) formula
1 1
ln(eAeB) =(A+B)+ E[A’B] + E([A’ [A,B]] - [B,[A,B]]) + ...

we find

T

A A 1 A A A A A A
[Irprr (W)]" = (exp[(T +S)h = 52 (IS,[S, TII + 2IT, [S, TIDn + O<h5>]) /h

AU N
= (exp[z«T +8) = 2 (80187 T+ 27018 i) + O(h“))])

= exp(tH) = exp(z(T + S) + O(h?))
Shadow Hamiltonian

The commutator of two Hamiltonian vector fields is a Hamiltonian vector field

Symplectic intergrators exactlu conserve a shadow Hamiltonian
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Shadow Hamiltonian

It holds
[H1,H>2] = H3
and its follows

0H, oH,» 0H, 0H»
Hz =(H1,H2)p = 3p g~ 9q ap

Now to find the shadow Hamiltonian, replace the commutators with Poisson brackets and it follows

Leap Frog

1

AHpppr = 52 [(S,(S,T))p+ AT, (S, T))plh* + O(h*)
1
= —57(8"(@ - 2p°S" (@) + O™
with
S (@ =F> and S"(q)=F'

Remarks:

e BCH only gives an asymtotic expansion for tildeH

 existence of a conserved Hamiltonian tildeH along the trajectory means

sH=HD gY@ -5 = AHD = AHO) = 0(1?) 27/ 47



Generalization of MD integrators

Second minimal norm scheme (OMF2)

~

IOMFz(h) — e/theh/ZTe(l—Z/l)hS eh/ZTe/th

with
AHour> = (¢1 (A)(S, (S, T))p + c2 (AT, (S, T))p)h* + O(h*)
Minimizing ¢? + ¢  gives 1 =0.19
Fourth order integrator (OMF4) with 11 stages
Tours(h) = e™"S --- ¢S AHomrs = O(h*)
Remarks
e Measuring var(AH) in simulations and minimizing it allows for a systematic optimization

[Clark et al. 11]
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Multiple time-scale integration

Multiple actions

1
H(p,q) = =p" +S1(q) + S2(Q) I|F2 || < ||Fy |
2

If Cost(F2) >> Cost(F1) it may be convenient to use different step sizes h

Nested integrators [Sexton, Weingarten 92]
I(h) = e%£<e#§‘e%fe#§‘ ) e
Shadow Hamiltonian
AH = [aF} + BF] + fF1F, + %(och + BE)1h* + O(h*)

Remarks
e Correlation term between F1 and F2 is not suppressed by m
-> efficiency depends on correlation between forces
e in lattice QCD,

[IFcl| > [|Fr.all

and opposite for their cost
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Some RemarRs on MD integration

Gauge group integration
&' U, ) — WU ) 7. p) — T p)

€' UG, ) — U, ) 700, i) — 716, ) — hF (X, )

Measure preservation
e®y=1 SH=HY-H

Reversibility:

A=|U"-U|l @, U)=F - -UW]"-F - Un)]"xU)
with

F(z,U) = (-m,U)
is violated by rounding errors
A «n” with v»>0 Liapunov exponent

A too large h

and MD integration becomes unstable

30/47



RemarRs on MD integration

Acceptance probability

P = (min[1,e 2]y "= erfc(1/c?(5H)/8)

With
0*(8H) = (6H)*) = (SH)* « V™"
To tune the algorithm:
» Select stable integrator
e Minimize cost per trajectory at constant acceptance rate

o Requires stable integrator

. P9 = const. = o2 =const. = h « V1"
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Critical slowing down

Approaching the continuum limit

where z depends on the algorithms

Status

tint

int[1 -

e certain algorithms can be analyzed as QFTs :

e Simulation time is the (D+1)th dimension [Parisi, Wu 81, Zinn-Justin 86]

—Z

e HMC can not be analyzed this way: empirically z=2
 this might be true if topology issue is absent

10000

1000

100 ¢

10

0.07fm

0.05fm
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Topology freezing

e continuum path-integral with periodic bcs.
for Fmunu is a sum over disconnected large || Fl.. (2)]|
topological sectors

e on the lattice the field space "between"

sectors rapidly vanishes as a->0 Q P, Q=1

e Probability of changing sector in simulations

I
ﬁ@Sﬁx“ (NS}
N -—

rapidly deteriorating -0 %
- é
= it increases dramatically v
e Ergodicity in simulations is compromised
and so the results for any observablee
* One possible way, is to open the boundaries field space

in time
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Fermions in simulations

Lattice QCD path-integral

o = % / DU Dy Dy eS8l PPUROIY, 3, 3]

1
=~ / DU e~ deyD[unO[U]
Fermionic observable
OlU, 9,91 — O'[U] = OU, -, L1 U
n dn

Determinant as observable:

_ (det(DIUNT'[UD
" (detD[U))

(my

e Calculation of det(D[U]) requires O(VA3) operations
e Overlap problem -> large statistical fluctuations
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Fermions in simulations

Lattice QCD path-integral

o = % / DU Dy Dy eS8l PPUROIY, 3, 3]

1
=~ / DU e~ deyD[unO[U]
Fermionic observable
OlU, 9,91 — O'[U] = OU, -, L1 U
n dn

Determinant in Metropolis

Pa detD[U]

 for a single link update
det(D[U + SUID[UT™)
requires O(V) operation

for a full sweep follows propotional to VA2

e det D[U] must be real and positiv
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Fermions in simulations

Lattice QCD path-integral

o = % / DU Dy Dy eS8l PPUROIY, 3, 3]

1
=~ / DU e~ deyD[unO[U]
Fermionic observable
OlU, 9,91 — O'[U] = OU, -, L1 U
n dn

Determinant as effective action
ST = —tr In(D[UY) = FeT = —t(D[UT' 9D[UY)

 Difficult and impractical to mae the algorithm efficient (and exact)
e det D[U] must be real and positiv

36 /47



Fermions in simulations

Pseudo-fermions [Weingarten, Petcher 81]
det(D)? = det(Q?) - / D¢TD¢e‘¢TQ_2¢ [Q=ysD = Q]

e det Q/2 is expressed in terms of a bosonic Gaussian integral with pseudo-fermions interacting
non-locally

. det(Q)* = det(Q") = detQ € R
but for Wilson quarks not necessarily positiv
 positivity of the fermion kernel is needed for the convergence of the integral
e two degenerate quarks guarantee positivity and allow for an easy pseudo-fermion generation

e more difficult for single quarks
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HMC with pseudo-fermions

Heat-bath
Pln] - / Dy'Dpe™” = $=Qy = P4l

e At the beginning of a trajectory, we generate pseudo-fermions from Gaussian fields
e Averaging results over many trajectories effectively samples the contribution from the pseudo-
fermion integral

Hamiltonian
1
H=_(r.m+S S=Sc+Sy  Su= (Q7'¢,Q7'9)

Dynamics
o U(x, 1) = w(x, U(X, 1) dm(x,u) = =F(x,u)  FUx,u) = %S
Pseudo-fermions are held fixed during the Hamiltonian evolution
Fermionic forces
Fof®su = %3, ) = —2Re(x, (0%.4Q)p)
with

p=Q7'¢ and x=Q7'Y
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Challenges of simulating fermions

Solving the Dirac equation Mlyal = Mgy
400 ———— e
e Computing Spf and Fpf requires solving ¢ isec] | .
linear systems: EO+BiCGstab .
300} ‘ .
—_ — _1 . I ]
Dy=n = x=D7ng -
. . I - SAP+GCR
e Dis asparse matrix: 200 _
I i .
Dy requires O(V) operations i . ]
100 - e .
iterative solvers are an effictive method to I s = DFL+SAP+GCR |
solve these stsmts . P . e
oo b e b e L
, , % 50 100 150 200 250
e Computational cost of conventional solvers (am,g)!

rapidly grows with (a mq)*{-1}, system is
quickly ill conditioned

e Multi-grid solvers are pratically solving this
issues

o lead to a speed up of O(10) - O(100)

Usually main computational challenge
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Challenges of simulating fermions

Fermionic forces
* Single pseudofermion HMC is not competitive
e Consider
For = ($,0072¢)  vs. F&7 = 20tin(Q)

Fpf is a stochastic estimate of Feff at the start of the trajectory

(Fp) = F

[¢]

Fpf has very large fluctuations
1. 1Eosl| > [|F /75|

2. var(||Fer|]) » var(F <)

o

Reall the shadow Hamiltonian
AHour2 = (¢ ||F||? + cam®8*S)h? + O(h*)
large var(||Fpr||) = large var(AH) = lowP, = smallh

o large foces also trigger intabilities more easily -> limits the step size h
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Even-odd reduction/preconditioning

If D only connects nearest-neighboring sites the fermionic problem can be effectively reduced to half
the lattice

Checkerboard decomposition
Even or odd point

Schur decomposition

Dee Deo ~ ~
D = [D D ] detD = detD detDoo D = Dee — ljeol)_1 00Doe

Even-odd action

~1 ~1
Spf — Spfe + Sdet = (Q ¢e, Q ¢e) — 2tr ln(Qoo)
» Spfe involves pseudo-fermions residing only on the even sites of the lattice, helps in speed and

reducing fluctuations
e Sdet and corresponding force can be evaluated exactly, i.e., without introducing pseudofermions
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Hasenbusch mass-preconditioning

Frequency splitting [Hasenbusch 01, Hasenbusch, Jansen 03]

n—1 Q2 +/"i
det(Q?) = det(Q? + u?) Hdet — 0=p0< ... <Un
k=0 Q + U k+1

Actions and forces
Sern = (P, (Q% + U™ $1)
Sork = (P (Q% + Wk )(Q* + ) pr)  k=0,...,n-1
(For )%, 1) = =2(u%k 1 = pRe(Xk , (0%..Q)pr)

A proper tuning of mu can lead to a significant improvement

. smaller  var(||Fps||) = smaller var(AH) = larger P, = larger

for QCD, at the physical point,
. M1~ Mgs M1 ~ 10u
Typically
||Fpr.k+1]| » ||Fpr.k|| while opposite for their cost

Multiple time-step integration can be useful
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Rational HMC

Single-quark determinante [Kennedy et al. 98, Clark, Kennedy 03]
det(Q) — det(1/Q?) = det(W) detR™! W = |Q|R

where
R = VbRn’e(l’EzQz) € = (ra/rb)2 AQI) € [ra, 1b]

Rational approximation

(x+a) - (x+an-1) 1

~ a >...>ax>0
X+ @) (x+am) X ! "

R™(x)=A

e Zolotarev rational function of degree (n,n)
e Guarantees smallest possible
0 = maxesx<1|1 — /xR (x)|
Frequency splitting (e.g. n=10)
det(R™") « det(P ~'r.a)det(P ~''s.7)det(P ~'s.10)

with
J Rj
Pk,l=||—=1+ U1 > .. > Uy
=k Q2+lf‘§ J:Zk Q2+lf‘%
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Rational HMC

Actions and forces

Sof.ket = (¢Pr,1, Pr,1 Pr.1) (F pr ) (x, ) = 0%.uSps k.1

Remarks

* ,We have to ensure \;det(Q) > 0, this is ensured by measure the spectral range [rq, rp] of Q2

If that fails, sign flip need to be included as reweighting factor (on some CLS ensembles thats the
case [Mohler, Schaefer 19])

e Choose a large enough n to have a good approximation of R
e For Wilson quarks the RHMC is typically used for heavy quarks, (charm and strange)

e det(W) can be included in the accept-reject step or in the observable as a reweighting factor. It
can be estimated stochastically

<D>|Q| _ <DW>R‘1 W _ <e_r)-f-[(1_'_Z)—l/2_1]77 >P
(W g~
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Costs

Approaching the continuum limit at constant physics, the cost to obtain a set of statistical independent
configurations scales like

C « Va—4 V1/8a—1/2 aZ o V9/8a4.5+z

where the first term comes from the solver, the second from the integrator and the third from the
autocorrelation

e OBC:z=2,PBCz=5
On a GPU machine with 4A100 this leads to

e 0(1000) trajectories
* A physical volume of L=5.5 fm and a=0.05 fm
e Nf=2+1+1 twisted mass fermions at physical masses

C = 0.5 Mi node hours
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More techniques

Pure-gauge algorithms
Domain Decomposition
Force gradient integrators
Reweighting techniques
Simulating chiral fermions
Multi-level sampling
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