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Goal: Evaluation of pathintegral
Compute

Deterministic integration methods not feasible!

Current lattice QCD simulations can have M = O(10^9)

Monte Carlo: evaluates integral by sampling the integrand at points selected with probability
under the

integration measure

Basic idea

1. Generate sequence of field configurations with probability

1. Evaluate

<  >= ∫ 𝐷𝜙 (𝜙) 𝐷𝜙 = 𝑑 𝑒. 𝑔. 𝜙 = 𝑈, , 𝜓1
𝑍

𝑒−𝑆(𝜙) ∏
𝑖=1

𝑀

𝜙 𝑖 𝜓⎯⎯⎯⎯

𝑃 ( ) =𝜙 (𝑡) 1
𝑍
𝑒−𝑆( )𝜙𝑡

= ( )𝑂
⎯⎯⎯⎯ 1

𝑁 ∑𝑡=1
𝑁

𝜙 (t)
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Monte Carlo integration
Consider

Compute

where x are random numbers uniformly distributed within [0,1] . This requires a solid random
number generator.

Central limit theorem

with

Uncertainty of results are of statistical rather than systematic nature

Rate of convergence depends on var(f)

⟨𝑓⟩ = 𝑑𝑥 𝑓(𝑥) 𝑥 = ( , … , ) 𝐷 = [0, 1∫𝐷 𝑥1 𝑥𝑑 ]𝑑

= 𝑓( ) = ( , … )𝑓
⎯⎯⎯⎯
𝑁

1
𝑁 ∑

𝑁

𝑘=1
𝑥(𝑘) 𝑥(𝑘) 𝑥(𝑘)1 𝑥(𝑘)𝑑

𝑃 ( ) exp [− ] with var(𝑓) = ⟨(𝑓 − ⟨𝑓⟩ ⟩𝑓
⎯⎯⎯⎯
𝑁 ∝

𝑁→∞ 1
2

( − ⟨𝑓⟩𝑓
⎯⎯⎯⎯
𝑁 )2

var(𝑓)/𝑁
)2

− ⟨𝑓⟩ = (𝑂)(1/ )𝑓
⎯⎯⎯⎯
𝑁 𝑁‾‾√

Error scales as 1/  independently of the dimension 𝑑𝑁‾‾√
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Uniformly sampling is effective
for approximately constant
functions;

here:

var(f) is small

in contrast:

Sampling of more complicated
functions is more difficult

here

Using uniformly distributed
random numbers can easily
require large values of N to reach
a good precision.

Monte Carlo integration
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Importance sampling
Consider

with

Compute

with x random vectors distributed according to p(x)

⟨𝑓⟩ = 𝑑𝑥 𝑝(𝑥) [ ] = ⟨𝑔 with  𝑝(𝑥) > 1 and 𝑑𝑥 𝑝(𝑥) = 1∫𝐷
𝑓(𝑥)
𝑝(𝑥)

⟩𝑝 ∫𝐷

𝑔(𝑥) = 𝑓(𝑥)
𝑝(𝑥)

= 𝑔( (𝑘)) = ( , … )𝑔⎯⎯⎯𝑁
1
𝑁 ∑

𝑁

𝑘=1
𝑥 𝑥(𝑘) 𝑥(𝑘)1 𝑥(𝑘)𝑑
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Importance sampling
Central limit theorem

with

Choice of p(x) can signicantly affect convergence

Optimal p(x) but this requires <|f|>
Only relatively simple distributions p(x) can be directly sampled, e.g. via inverse transform, hit-
and-miss, etc.

𝑃 ( ) exp [− ] with var(𝑓) = ⟨(𝑔 − ⟨𝑓⟩𝑔̄𝑁 ∝
𝑁→∞ 1

2
( − ⟨𝑓⟩𝑔⎯⎯⎯𝑁 )2

var(𝑔)/𝑁
)2⟩𝑝

⟨𝑓⟩ = ± 𝜎( ) 𝜎( ) =𝑔⎯⎯⎯𝑁 𝑔⎯⎯⎯𝑁 𝑔⎯⎯⎯𝑁 var(𝑔)/𝑁‾ ‾‾ ‾ ‾ ‾‾ ‾√
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Effective

A better sampling distribution
allows for sampling more
frequently the regions that give
more contribution to the integral

However

When the sampling distribution
and the function to integrate
have little overlap, we say there
is an overlap problem

Importance sampling

⇒ faster convergence

⇒ very ineffective sampling
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Importance sampling
Application to lattice field theory:

Sharply peaked around configurations of minimal action

Far too complicated distribution for a direct sampling

We need method based on relative probabilities

avoids computation of normalization Z

Convenient, but not necessarily optimal for all O(x)

may result in some large variances

⟨⟩ = ∫ 𝐷𝜙 (𝜙)(𝜙) (𝜙) =𝑃𝑆 𝑃𝑆
1
𝑍 𝑒−𝑆(𝜙)

𝑆(𝜙) must be real (and bounded)
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Markov Chain Monte Carlo
A (discrete) Markov chain is a sequence of random variables

which probability of extraction is given by a transition probability

(t is referred to as Markov time)

Properties

1. Markovian

2. Time-homogeneous

3. Probability (density)

4. Ergodic (& irreducible)

→ → ⋯ → → ⋯⋯ → 𝜙(𝑡) ∈ Ω ← state space𝜙 (0) 𝜙 (1) 𝜙 (𝑡) 𝜙 (𝑁)

𝑇 (𝜙 → )𝜙 ′

𝑇 (𝜙 → ) only depends on the current (𝜙) and future ( ) state𝜙 ′ 𝜙 ′

𝑇 (𝜙 → ) is constant along the chain, i.e. t-independent𝜙 ′

∫ 𝐷 𝑇 (𝜙 → ) = 1 and 𝑇 (𝜙 → ) >= 0𝜙 ′ 𝜙 ′ 𝜙 ′

𝑇 (𝜙 → ) > 0 ∀𝜙, ∈ Ω𝜙 ′ 𝜙 ′

A chain is completely specified by the starting distribution  ( ) and 𝑇 (𝜙 → )𝑃0 𝜙 (0) 𝜙 ′ 9 / 47



Why Markov chains ?

with

Equilibrium distribution

Given an ergodic Markov chain with transition probability T, the limit

Remark

𝑇  is a linear map: 𝑇 :  → , where  is the linear space of real functions on Ω.

This contains the subset of probability distributions  . Along a Markov chain𝑃Ω

( ) = (𝑇 )( ) = ∫ 𝐷𝜙 (𝜙)𝑇 (𝜙 → )𝑃𝑛+1 𝜙 ′ 𝑃𝑛 𝜙 ′ 𝑃𝑛 𝜙 ′

∈𝑃 (𝑛) 𝑃Ω

= = Π ∈lim
𝑡→∞

𝑃 (𝑡) lim
𝑡→∞

𝑇 𝑡𝑃 (0) 𝑃Ω

exits, is unique and independent on ∈ .𝑃 (0) 𝑃Ω

Im particular, Π , is the unique fixed point of the chain, i.e. (𝑇𝑃 ) = 𝑃 ⇔ 𝑃 = Π

This is the consequence that T has a unique eigenvalue = 1 and𝜆0

> | | ≥ | | ≥ … , where 𝑇 = and = Π𝜆0 𝜆1 𝜆2 𝑣𝑛 𝜆𝑛𝑣𝑛 𝑣0

= Π + ( Π + 𝑂( ) = 1/ln| |𝑃 (𝑡) ∑
𝑛>0

𝑐𝑡,𝑛 𝜆𝑛)𝑛𝑣𝑛 =𝑡→∞ 𝑒−𝑡/𝜏
𝑒𝑥𝑝 𝜏𝑒𝑥𝑝 𝜆1
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Detailed balance condition

If T is ergodic, a sufficient (but not necessary) condition is detailed balance

Proof:

This gives the stability or fix point condition

Since T is ergodic, its fixed point is unique and corresponds to its equilibrium distribution

Remarks

If T satisfies detailed ballance or stability but is not ergodic, the convergence for large t is not
guaranteed

We can combine transition probabilities:

with Ti not ergodic but satisfies detailed balance and such that T is ergodic. T will automatically
satisfy the stability condition and converge to PI.

How can we find a 𝑇 that has the desired distribution Π as equilibrium distribution ?

Π( )𝑇 ( → 𝜙) = Π(𝜙)𝑇 (𝜙 → )𝜙 ′ 𝜙 ′ 𝜙 ′

Integrate both sides over 𝜙 and use  ∫ 𝐷𝜙 𝑇 ( → 𝜙) = 1.𝜙 ′

Π( ) = (𝑇Π)( )𝜙 ′ 𝜙 ′

𝑇 = ∘ ∘ … ,𝑇1 𝑇2
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Metropolis-Hastings algorithm
A simple way to satisfy detailed balance is given by

Acceptance probability

We can ensure detailed balance for any choice of Pc by taking

Other PA are in principle possible but have lower acceptance.

𝑇 (𝜙 → ) = (𝜙 → ) (𝜙 → )𝜙 ′ 𝑃𝐶 𝜙 ′ 𝑃𝐴 𝜙 ′

A candidate   is proposed from 𝜙 with probability 𝜙 ′ 𝑃𝐶

 is accepted as the next step in the chain with probability 𝜙 ′ 𝑃𝐴

If   is rejected, 𝜙 is the next element, i.e. it is repeated in the chain𝜙 ′

(𝜙 → ) = min [1, ]𝑃𝐴 𝜙 ′
Π( ) ( → 𝜙)𝜙 ′ 𝑃𝐶 𝜙 ′

Π(𝜙) (𝜙 → )𝑃𝐶 𝜙 ′

If  (𝜙 → ) = ( → 𝜙) (symmetric proposal)𝑃𝐶 𝜙 ′ 𝑃𝐶 𝜙 ′

(𝜙 → ) = min [1, ]𝑃𝐴 𝜙 ′
Π( )𝜙 ′

Π(𝜙)
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Metropolis-Hastings algorithm
Remarks

We cannot use Markov chains to compute integrals directly, only ratios

In practice there may be challenges in assuring that T is ergodic

-> can lead to improper sampling and biased results

only the relative probabilities Π( )/Π(𝜙) are needed to construct 𝑇𝜙 ′

⇒ no need for normalization of Π

⟨⟩ =
∫ 𝐷𝜙 Π(𝜙)(𝜙)

∫ 𝐷𝜙 Π(𝜙)
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Simulating lattice phi4-theory
Action

Accept-reject step

1. 

2. 

3. 

1. Repeat 2. & 3. for all points x [sweep]

2. Skip k sweeps (thermalization) so that

𝑆 = [ ( ) + (𝑥) + (𝑥)]∑
𝑥
∑
𝐷−1

𝜇=0

1
2

𝜙(𝑥 + ) − 𝜙(𝑥)𝜇 ̂
𝑎

𝑚2
0

2
𝜙2 𝑔0

4!
𝜙4

Set 𝜙(𝑥) = (𝑥)𝜙0

Propose [Δ > 0, 𝑟 ∈ [0, 1)]  (𝑥) = 𝜙(𝑥) + Δ(𝑟 − )𝜙 ′ 1
2

Accept   or keep 𝜙 according to  𝜙 ′

= min [1, ] 𝛿𝑆 = 𝑆( ) − 𝑆(𝜙) 𝑃𝐴 𝑒−𝛿𝑆 𝜙 ′

𝛿𝑆 only involves  (𝑥), 𝜙(𝑥), 𝜙(𝑥 ± )𝜙 ′ 𝜇 ̂

𝑃 ( ) ∝ ⇒ = ( ) ⇒ = ⟨⟩ + 𝑂(1/ )𝜙 (𝑡) 𝑒−𝑆( )𝜙 (𝑡) 
⎯⎯⎯⎯ 1

𝑁 ∑
𝑡=𝑘+1

𝑁+𝑘

𝜙 (𝑡) 
⎯⎯⎯⎯

𝑁‾‾√

14 / 47



Autocorrelations
Subsequent states in a Markov chain are correlated

The error on time-averges

can be written as

Integrated autocorrelation time is given by

and the autocorrelation function

for time-homogeneous chains the function only depends on the distance in Markov time

⟨⟨ ⟩⟩ ≠ ⟨⟨ ⟩⟩⟨⟨ ⟩⟩  ≡ ( ) ⟨⟨⋅⟩⟩ ≡ avg. indp. chains(𝑘)(𝑙) (𝑘) (𝑙) 𝜙 (𝑘)

( ) = ⟨⟨( − ⟨⟩ ⟩⟩ = ⟨⟨ ⟩⟩ − ⟨ [⟨⟨ ⟩⟩ = ⟨⟩]𝜎2 
⎯⎯⎯⎯


⎯⎯⎯⎯

)2
1
𝑁 2 ∑

𝑁

𝑘,𝑙=1
(𝑘)(𝑙) ⟩2 (𝑘)

( ) = with var() = ⟨ ⟩ − ⟨𝜎2 
⎯⎯⎯⎯ 2 var()𝜏 𝑖𝑛𝑡,

𝑁 2 ⟩2

= [1 + 2 ]𝜏 𝑖𝑛𝑡,
1
2 ∑

𝑁−1

𝑡=1

(𝑡)Γ()

(0)Γ()

= ⟨⟨ ⟩⟩ − ⟨Γ((𝑡)) (𝑡+𝑖) (𝑖) ⟩2

Error scales via 𝑁/2𝜏 𝑖𝑛𝑡
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Autocorrelations
Spectral decomposition

Estimate of the autocorrelation function

Estimate of the integrated autocorrelation time

Relative error on the autocorrelation function grows exponentially -> we must choose a cutoff W

and find a compromise between statistical and systematic error

(𝑡) = = −1/ln| | [𝜆 eignv. of 𝑇 ]Γ() ∑
𝑛>0

𝑏𝑛,𝑒−𝑡/𝜏𝑛 𝜏𝑛 𝜆𝑛

 only depends on the properties of the Markov chain𝜏𝑛

⇒ =  is the "slowest" mode to decorrelate𝜏𝑒𝑥𝑝 𝜏1
 determines the coupling of O to the n-th mode𝑏𝑛,

⇒ it can vary significantly among observables

(𝑡) = [( − )( − )]Γ
⎯⎯⎯⎯() 1

𝑁 − 𝑡 ∑
𝑁−𝑡

𝑖=1
(𝑖+𝑡) 

⎯⎯⎯⎯
(𝑖) 

⎯⎯⎯⎯

= [1 + 2 ]𝜏 𝑖𝑛𝑡,,𝑊 1
2 ∑

𝑊

𝑡=1

(𝑡)Γ()

(0)Γ()
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Autocorrelations (AC) are unavoidable in
Markov Chain Monte Carlo (MCMC)
A proper estimate of AC is curical

no AC -> no error -> no result

Ideal:

Length of simulation > O(100) * tau_exp
For thermalization O(10)*tau_exp

Otherwise risks:

incomplete thermalization:
wrong sampling and a biased result
wrong estimation of AC,
underestimation of errors

Autocorrelations

Estimation of tau^exp

Look for the observable O_slow with the largest AC, i.e. is very sensitive to slow modes

take  ∼𝜏exp 𝜏 𝑖𝑛𝑡,slow
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Simulating Lattice QCD
Feynman Pathintegral

pure gauge theory, quenched Simulation, det D = 1

Action local : requires O(1) operations for a single link U update

Heat-bath
Overrelaxation

Action non-local: requires O(V) operations for a single link uodate

Global update

Global update must be coherent otherwise

⟨⟩ = ∫ 𝐷𝑈 𝐷 𝐷𝜓 ⋅ [𝑈, , 𝜓] 1
𝑍 𝜓⎯⎯⎯⎯ 𝑒−𝑆𝑔[𝑈] 𝑒− 𝐷[𝑢]𝜓𝜓⎯⎯⎯⎯

𝜓⎯⎯⎯⎯

= ∫ 𝐷𝑈 det(𝐷[𝑈]) ⋅ [𝑈, , 𝜓]
1
𝑍 𝑒−𝑆𝑔[𝑈] 𝜓⎯⎯⎯⎯

𝛿𝑆 ∝ 𝑉 ⇒ ∝ exp(−𝛿𝑆) ∼ 0𝑃𝐴
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Hybrid Monte Carlo
Add auxiliarry momentas

Hamiltonian system

Now, we can use Molecular dynamics to update:

using Hamiltons equations

Note that

Introducing t is legitimate

𝜋(𝑥, 𝜇) = (𝑥, 𝜇) ∈ 𝑠𝑢(3) (𝜋, 𝜋) = | (𝑥, 𝜇)𝑇 𝑎𝜋𝑎 ∑
𝑥,𝜇,𝑎

𝜋𝑎 |2

⟨⟩ = ∫ 𝐷𝑈𝐷𝜋 with ∫ 𝐷𝜋 = 11
𝑍 𝑒−𝑆[𝑈] 𝑒−(𝜋,𝜋)/2 𝑒−(𝜋,𝜋)/2

= ∫ 𝐷𝑈𝐷𝜋 with 𝐻 = (𝜋, 𝜋) + 𝑆[𝑈]1
𝑍 𝑒−𝐻[𝜋,𝑈] 1

2

𝑈(𝑥, 𝜇) → 𝑈(𝑥, 𝜇)(𝑡) 𝜋(𝑥, 𝜇) → 𝜋(𝑥, 𝜇)(𝑡)

𝑈(𝑥, 𝑡) = 𝜋(𝑥, 𝜇)𝑈(𝑥, 𝜇)∂𝑡

𝜋(𝑥, 𝜇) = −𝐹 (𝑥, 𝜇) 𝐹 (𝑥, 𝜇 = ∂𝑥, 𝜇 𝑆[𝑈] [ 𝑥, 𝜇𝑈(𝑦, 𝜈) = 𝛿𝑥𝑦 𝛿𝜇𝜈 𝑈(𝑥, 𝜇)]∂𝑡 )𝑎 ∂𝑎 𝑇 𝑎

∝ 𝑒𝑥𝑝−𝐻 and ∝ 𝑒𝑥𝑝−𝑆 are equivalent for sampling  (𝑈)𝑃𝐻 𝑃𝑆

𝐻 = 0 ⇒ (𝜋(0), 𝑈(0)) = (𝜋(𝜏), 𝑈(𝜏))∂𝑡 𝑃𝐻 𝑃𝐻 19 / 47



Hybrid Monte Carlo
Ideal HMC algorithm

1. Start from a gauge-field U(0)

2. Sample a momentum field P(0) from the Gaussian distribution

3. Solver Hamilton eqs. for a time t

4. Repeat 2. and 3. taking U(0)=U(t)

𝑃 𝜋 = /𝑍𝑒(𝜋,𝜋)/2

(𝜋(0), 𝑈(0)) → (𝜋(𝜏), 𝑈(𝜏))
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In practice

Hamilton equations can not be solved
exactly

use numerical integration
H is not conserved

bias in equilibrium distribution

Hybrid Monte Carlo
Ergodicity:

First step is given by a heat-bath for the momenta's

but the step is not ergodic in the total phase-space (only in the momentum part)

Second step is given by the Hamilton evolution

it follows

but is also not ergodic (H=const.)

However, the combination of first and second step is assumed to be ergodic

=𝑃𝜋𝑃𝐻 𝑃𝐻

𝑃𝑀𝐷((𝜋, 𝑈) → ( , )) = 𝛿( − 𝜋(𝜏))𝛿( − 𝑈(𝜏))𝜋′ 𝑈 ′ 𝜋′ 𝑈 ′

𝑃𝑀𝐷 =𝑃𝐻 𝑃𝐻

𝑇 = (𝑃𝑀𝐷 ) has a fixed point and  is equilibrium distribution𝑃𝜋 𝑃𝐻
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Hybrid Monte Carlo on the computer
HMC algorithm [Duane et al. 87]

1. Start from a gauge-field U(0)

2. Sample a momentum field P(0) from the Gaussian distribution

3. Solve Hamilton eqs. numerically for a time t

4. Accept the configuration U'=U(t) with probability

If reject start from the initial one U'=U(0)

5. Repeat 2. - 4. taking U(i)=U' and iterate

𝑃 𝜋 = /𝑍𝑒(𝜋,𝜋)/2

( , ) = (𝜋(0), 𝑈(0)) → (𝜋(𝜏), 𝑈(𝜏)) = ( , )𝜋(𝑖) 𝑈 (𝑖) 𝜋(𝑓) 𝑈 (𝑓)

= min[1, ] with 𝛿𝐻 ≡ 𝐻( , ) − 𝐻( , )𝑃𝐴 𝑒𝛿𝐻 𝜋(𝑓) 𝑈 (𝑓) 𝜋(𝑖) 𝑈 (𝑖)
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Hybrid Monte Carlo on the computer
The numerical solution of Hamilton equations is used as a proposal in a Metropolis step

the accept-reject step guarantees that PH is the equilibrium distribution, even if

For the correctness of the HMC, the numerical integrator must preserve two key properties of
Hamilton dynamics

1. Time-reversibility

Guarantess a symmetric proposal

2. Phase-space measure preservation

in conjuction with 1. guarantees detailed balance

𝛿𝐻 ≠ 0

𝑃𝑀𝐷((𝜋, 𝑈) → ( , )) = 𝑃𝑀𝐷((− , ) → (−𝜋, 𝑈))𝜋′ 𝑈 ′ 𝜋′ 𝑈 ′

𝐷𝜋(0) 𝐷𝑈(0) = 𝐷𝜋(𝜏)𝐷𝑈(𝜏)
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Molecular Dynamics integration
Hamiltonian

Time-evolution operator

(taylor expansion) We can write

Hamiltonian vector field

It follows

and

𝐻(𝑝, 𝑞) = + 𝑆(𝑞) = 𝑇 (𝑝) + 𝑆(𝑞)1
2
𝑝2

exp (𝜏 ) 𝑓(𝑝(𝑡), 𝑞(𝑡)) = 𝑓(𝑝(𝑡 + 𝜏), 𝑞(𝑡 + 𝜏))𝑑
𝑑𝑡

exp (𝜏 ) = exp (𝜏 [ + ]) = exp (𝜏 [− + ]) ≡ exp (𝜏 )𝑑
𝑑𝑡

𝑑𝑝
𝑑𝑡

∂
∂𝑡

𝑑𝑞
𝑑𝑡

∂
∂𝑡

∂𝐻
∂𝑞

∂
∂𝑡

∂𝐻
∂𝑝

∂
∂𝑡

𝐻 ̂

= [ − ] = +𝐻 ̂ ∂𝐻
∂𝑝

∂
∂𝑡

∂𝐻
∂𝑞

∂
∂𝑡 𝑇  ̂ 𝑆  ̂

exp(𝜏 )𝐻 = 𝐻 ⇒ 𝐻 = 0𝐻 ̂ ∂𝑡

= and = −𝑇  ̂ 𝑇 ′ ∂
∂𝑞 𝑆  ̂ 𝑆 ′ ∂

∂𝑝
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Molecular Dynamics integration
Integrable steps

Measure preserving/Volume preserving

can be combined to built symplectic integrators i.e. time-reversible and measure preserving

Leap Frog

which is reversible by construction and volume preserving

: 𝑓(𝑝, 𝑞) → 𝑓(𝑝, 𝑞 + 𝜏 (𝑝))𝑒𝜏𝑇
 ̂ 𝑇 ′

: 𝑓(𝑝, 𝑞) → 𝑓(𝑝 − 𝜏 (𝑞), 𝑞)𝑒𝜏𝑆
 ̂

𝑆 ′

𝐽( ) = = det [ ] = 1𝑒𝜏𝑇
 ̂ ∂ (𝑝, 𝑞)𝑒𝜏𝑇  ̂

∂(𝑝, 𝑞)
1
0

𝜏 (𝑝)𝑇 ″

1

𝐽( ) = = det [ ] = 1𝑒𝜏𝑆
 ̂ ∂ (𝑝, 𝑞)𝑒𝜏𝑆  ̂

∂(𝑝, 𝑞)
1

−𝜏 (𝑞)𝑆 ″
0
1

exp(𝜏 ) and exp(𝜏 ) are exactly integrable for any 𝜏𝑇  ̂ 𝑆  ̂

[ (ℎ) =𝐼 𝐿𝑃𝐹𝑅 ]𝑛 ( )𝑒
ℎ
2
𝑆  ̂𝑒ℎ𝑇

 ̂
𝑒

ℎ
2
𝑆  ̂

𝑛
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Integration error of symplectic integrators
Using Baker-Campbell-Hausdorff (BCH) formula

we find

Shadow Hamiltonian

The commutator of two Hamiltonian vector fields is a Hamiltonian vector field

Symplectic intergrators exactlu conserve a shadow Hamiltonian

ln( ) = (𝐴 + 𝐵) + [𝐴, 𝐵] + ([𝐴, [𝐴, 𝐵]] − [𝐵, [𝐴, 𝐵]]) + …𝑒𝐴𝑒𝐵 1
2

1
12

[ (ℎ) = /ℎ𝐼 𝐿𝑃𝐹𝑅 ]𝑛 (exp[( + )ℎ − ([ , [ , ]] + 2[ , [ , ]]) + 𝑂( )])𝑇  ̂ 𝑆  ̂ 1
24 𝑆  ̂ 𝑆  ̂ 𝑇  ̂ 𝑇  ̂ 𝑆  ̂ 𝑇  ̂ ℎ3 ℎ5

𝜏

= (exp[𝜏(( + ) − ([ , [ , ]] + 2[ , [ , ]]) + 𝑂( ))])𝑇  ̂ 𝑆  ̂ 1
24

𝑆  ̂ 𝑆  ̂ 𝑇  ̂ 𝑇  ̂ 𝑆  ̂ 𝑇  ̂ ℎ2 ℎ4

≡ exp(𝜏 ) = exp(𝜏( + ) + 𝑂( ))𝐻 ̃ 𝑇  ̂ 𝑆  ̂ ℎ2

= −𝐻 ̃ ∂𝐻 ̃
∂𝑝

∂
∂𝑞

∂𝐻 ̃
∂𝑞

∂
∂𝑝
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Shadow Hamiltonian
It holds

and its follows

Now to find the shadow Hamiltonian, replace the commutators with Poisson brackets and it follows

Leap Frog

with

Remarks:

BCH only gives an asymtotic expansion for tildeH

existence of a conserved Hamiltonian tildeH along the trajectory means

[ , ] =𝐻 ̂1 𝐻 ̂2 𝐻 ̂3

= ( , = −𝐻 3 𝐻 1 𝐻 2)𝑝
∂𝐻 1

∂𝑝
∂𝐻 2

∂𝑞
∂𝐻 1

∂𝑞
∂𝐻 2

∂𝑝

Δ = [(𝑆, (𝑆, 𝑇 ) + 2(𝑇 , (𝑆, 𝑇 ) ] + 𝑂( )𝐻𝐿𝑃𝐹𝑅
1
24

)𝑝 )𝑝 ℎ2 ℎ4

= − ( (𝑞) − 2 (𝑞)) + 𝑂( )1
24 𝑆 ′2 𝑝2𝑆 ″ ℎ2 ℎ4

(𝑞) = and (𝑞) =𝑆 ′2 𝐹 2 𝑆 ″ 𝐹 ′

𝛿𝐻 = ( − ) − ( − ) = (Δ − ) = 𝑂( )𝐻 (𝑓) 𝐻 ̃(𝑓) 𝐻 (𝑖) 𝐻 ̃(𝑖) 𝐻 (𝑓) Δ𝐻 (𝑖) ℎ2 27 / 47



Generalization of MD integrators
Second minimal norm scheme (OMF2)

​ with

Fourth order integrator (OMF4) with 11 stages

Remarks

[Clark et al. 11]

𝐼𝑂𝑀𝐹2(ℎ) = 𝑒𝜆ℎ𝑆
 ̂
𝑒ℎ/2𝑇

 ̂
𝑒(1−2𝜆)ℎ𝑆

 ̂
𝑒ℎ/2𝑇

 ̂
𝑒𝜆ℎ𝑆

 ̂

Δ𝐻𝑂𝑀𝐹2 = ( (𝜆)(𝑆, (𝑆, 𝑇 ) + (𝜆)(𝑇 , (𝑆, 𝑇 ) ) + 𝑂( )𝑐1 )𝑝 𝑐2 )𝑝 ℎ2 ℎ4

Minimizing  + gives  𝜆 ≈ 0.19𝑐21 𝑐22

𝐼𝑂𝑀𝐹4(ℎ) = ⋯ Δ𝐻𝑂𝑀𝐹4 = 𝑂( )𝑒 ℎ𝑟0 𝑆  ̂ 𝑒 ℎ𝑟0 𝑆  ̂ ℎ4

Measuring 𝑣𝑎𝑟(Δ𝐻) in simulations and minimizing it allows for a systematic optimization
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Multiple time-scale integration
Multiple actions

If Cost(F2) >> Cost(F1) it may be convenient to use different step sizes h

Nested integrators [Sexton, Weingarten 92]

Shadow Hamiltonian

Remarks

Correlation term between F1 and F2 is not suppressed by m

-> efficiency depends on correlation between forces

in lattice QCD,

and opposite for their cost

𝐻(𝑝, 𝑞) = + (𝑞) + (𝑞) || || ≪ || ||
1
2
𝑝2 𝑆 1 𝑆 2 𝐹2 𝐹1

𝐼(ℎ) = 𝑒
ℎ

2
𝑆2̂( )𝑒

ℎ
2𝑚

𝑆1̂ 𝑒
ℎ
𝑚𝑇

 ̂
𝑒

ℎ
2𝑚

𝑆1̂
𝑚
𝑒

ℎ

2
𝑆2̂

Δ𝐻 = [𝛼 + 𝛽 + 𝛽 + (𝛼 + 𝛽 )] + 𝑂( )𝐹 2
2 𝐹 ′

2 𝐹1𝐹2
1
𝑚2

𝐹 2
1 𝐹 ′

1 ℎ2 ℎ4

||𝐹 𝐺|| ≫ ||𝐹 𝐹 , 1||
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Some Remarks on MD integration
Gauge group integration

Measure preservation

Reversibility:

with

is violated by rounding errors

A too large h

and MD integration becomes unstable

: 𝑈(𝑥, 𝜇) → 𝑈(𝑥, 𝜇) 𝜋(𝑥, 𝜇) → 𝜋(𝑥, 𝜇)𝑒ℎ𝑇
 ̂

𝑒ℎ𝜋(𝑥,𝜇)

: 𝑈(𝑥, 𝜇) → 𝑈(𝑥, 𝜇) 𝜋(𝑥, 𝜇) → 𝜋(𝑥, 𝜇) − ℎ𝐹 (𝑥, 𝜇)𝑒ℎ𝑆
 ̂

⟨ ⟩ = 1 𝛿𝐻 = −𝑒−𝛿𝐻 𝐻 (𝑓) 𝐻 (𝑖)

Δ = || − 𝑈|| ( , ) = 𝐹 ∘ [𝐼(ℎ) ∘ 𝐹 ∘ [𝐼(ℎ) (𝜋, 𝑈)𝑈 ′ 𝜋′ 𝑈 ′ ]𝑛 ]𝑛

𝐹 (𝜋, 𝑈) = (−𝜋, 𝑈)

Δ ∝ with 𝜈 > 0 Liapunov exponentℎ𝜈

𝜈 ∝ ℎ
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Remarks on MD integration
Acceptance probability

With

To tune the algorithm:

Select stable integrator

Minimize cost per trajectory at constant acceptance rate

Requires stable integrator

= ⟨min[1, ]⟩ erfc( )𝑃 𝑎𝑐𝑐 𝑒−𝛿𝐻 =𝑉→∞ (𝛿𝐻)/8𝜎2‾ ‾‾‾ ‾‾‾ ‾‾√

(𝛿𝐻) = ⟨(𝛿𝐻 ⟩ − ⟨𝛿𝐻 ∝ 𝑉𝜎2 )2 ⟩2 ℎ2𝑛

= 𝑐𝑜𝑛𝑠𝑡. ⇒ = 𝑐𝑜𝑛𝑠𝑡. ⇒ ℎ ∝𝑃 𝑎𝑐𝑐 𝜎2 𝑉 −1/2𝑛
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Critical slowing down
Approaching the continuum limit

where z depends on the algorithms

Status

certain algorithms can be analyzed as QFTs :
Simulation time is the (D+1)th dimension [Parisi, Wu 81, Zinn-Justin 86]
HMC can not be analyzed this way: empirically z=2
this might be true if topology issue is absent

∝𝜏 𝑖𝑛𝑡, 𝑎−𝑧
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continuum path-integral with periodic bcs.
for Fmunu is a sum over disconnected
topological sectors

on the lattice the field space "between"
sectors rapidly vanishes as a->0

Probability of changing sector in simulations
rapidly deteriorating

Ergodicity in simulations is compromised
and so the results for any observablee

One possible way, is to open the boundaries
in time

...

Topology freezing

⇒ increases dramatically𝜏 𝑖𝑛𝑡,𝑄
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Fermions in simulations
Lattice QCD path-integral

Fermionic observable

Determinant as observable:

Calculation of det(D[U]) requires O(V^3) operations
Overlap problem -> large statistical fluctuations

⟨⟩ = ∫ 𝐷𝑈 𝐷 𝐷𝜓 [𝑈, , 𝜓]1
𝑍 𝜓⎯⎯⎯⎯ 𝑒−𝑆𝑔[𝑈] 𝑒− 𝐷[𝑈]𝜓𝜓⎯⎯⎯⎯

𝜓⎯⎯⎯⎯

= ∫ 𝐷𝑈 det(𝐷[𝑈])[𝑈]
1
𝑍 𝑒−𝑆𝑔[𝑈]

[𝑈, , 𝜓] → [𝑈] = [𝑈, , ]𝜓⎯⎯⎯⎯ ′ ∂
∂𝜂

∂
∂𝜂⎯⎯⎯

𝑒 [𝑈]𝜂𝜂⎯⎯⎯𝐷−1

⟨⟩ =
⟨det(𝐷[𝑈]) [𝑈]⟩′

⟨det𝐷[𝑈]⟩
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Fermions in simulations
Lattice QCD path-integral

Fermionic observable

Determinant in Metropolis

for a single link update

requires O(V) operation

for a full sweep follows propotional to V^2

det D[U] must be real and positiv

⟨⟩ = ∫ 𝐷𝑈 𝐷 𝐷𝜓 [𝑈, , 𝜓]1
𝑍 𝜓⎯⎯⎯⎯ 𝑒−𝑆𝑔[𝑈] 𝑒− 𝐷[𝑈]𝜓𝜓⎯⎯⎯⎯

𝜓⎯⎯⎯⎯

= ∫ 𝐷𝑈 det(𝐷[𝑈])[𝑈]
1
𝑍 𝑒−𝑆𝑔[𝑈]

[𝑈, , 𝜓] → [𝑈] = [𝑈, , ]𝜓⎯⎯⎯⎯ ′ ∂
∂𝜂

∂
∂𝜂⎯⎯⎯

𝑒 [𝑈]𝜂𝜂⎯⎯⎯𝐷−1

∝𝑃𝐴 𝑒−𝑆𝑔[ ]−𝑆𝑔[𝑈]𝑈 ′ det𝐷[ ]𝑈 ′

det𝐷[𝑈]

det(𝐷[𝑈 + 𝛿𝑈]𝐷[𝑈 )]−1
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Fermions in simulations
Lattice QCD path-integral

Fermionic observable

Determinant as effective action

Difficult and impractical to mae the algorithm efficient (and exact)
det D[U] must be real and positiv

⟨⟩ = ∫ 𝐷𝑈 𝐷 𝐷𝜓 [𝑈, , 𝜓]1
𝑍 𝜓⎯⎯⎯⎯ 𝑒−𝑆𝑔[𝑈] 𝑒− 𝐷[𝑈]𝜓𝜓⎯⎯⎯⎯

𝜓⎯⎯⎯⎯

= ∫ 𝐷𝑈 det(𝐷[𝑈])[𝑈]
1
𝑍 𝑒−𝑆𝑔[𝑈]

[𝑈, , 𝜓] → [𝑈] = [𝑈, , ]𝜓⎯⎯⎯⎯ ′ ∂
∂𝜂

∂
∂𝜂⎯⎯⎯

𝑒 [𝑈]𝜂𝜂⎯⎯⎯𝐷−1

= −tr ln(𝐷[𝑈]) ⇒ = −tr(𝐷[𝑈 ∂𝐷[𝑈])𝑆 𝑒𝑓𝑓 𝐹 𝑒𝑓𝑓 ]−1
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Fermions in simulations
Pseudo-fermions [Weingarten, Petcher 81]

det Q^2 is expressed in terms of a bosonic Gaussian integral with pseudo-fermions interacting
non-locally

but for Wilson quarks not necessarily positiv

positivity of the fermion kernel is needed for the convergence of the integral

two degenerate quarks guarantee positivity and allow for an easy pseudo-fermion generation

more difficult for single quarks

det(𝐷 = det( ) ∝ ∫ 𝐷 𝐷𝜙 [𝑄 = 𝐷 = ])2 𝑄2 𝜙† 𝑒− 𝜙𝜙†𝑄−2
𝛾5 𝑄†

det(𝑄 = det( ) = det𝑄 ∈ ℝ)∗ 𝑄†
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HMC with pseudo-fermions
Heat-bath

At the beginning of a trajectory, we generate pseudo-fermions from Gaussian fields
Averaging results over many trajectories effectively samples the contribution from the pseudo-
fermion integral

Hamiltonian

Dynamics

Pseudo-fermions are held fixed during the Hamiltonian evolution

Fermionic forces

with

𝑃 𝜂[𝜂] ∝ ∫ 𝐷 𝐷𝜂 ⇒ 𝜙 = 𝑄𝜂 ⇒ 𝑃 𝜙[𝜙]𝜂† 𝑒− 𝜂𝜂†

𝐻 = (𝜋, 𝜋) + 𝑆 𝑆 = + 𝑆𝑝𝑓 𝑆𝑝𝑓 = ( 𝜙, 𝜙)1
2

𝑆𝐺 𝑄−1 𝑄−1

𝑈(𝑥, 𝜇) = 𝜋(𝑥, 𝜇)𝑈(𝑥, 𝜇) 𝜋(𝑥, 𝜇) = −𝐹 (𝑥, 𝜇) (𝑥, 𝜇) = 𝑥, 𝜇𝑆∂𝑡 ∂𝑡 𝐹 𝑎 ∂𝑎

𝐹 𝑥, 𝜇 = 𝑥, 𝜇(𝜓, 𝜓) = −2Re(𝜒, ( 𝑥, 𝜇𝑄)𝜓)𝑝𝑓
𝑎 ∂𝑎 ∂𝑎

𝜓 = 𝜙 and 𝜒 = 𝜓𝑄−1 𝑄−1
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Solving the Dirac equation

Computing Spf and Fpf requires solving
linear systems:

D is a sparse matrix :

iterative solvers are an effictive method to
solve these stsmts

Computational cost of conventional solvers
rapidly grows with (a mq)^{-1}, system is
quickly ill conditioned

Multi-grid solvers are pratically solving this
issues

lead to a speed up of O(10) - O(100)

Usually main computational challenge

Challenges of simulating fermions

𝐷𝜒 = 𝜂 ⇒ 𝜒 = 𝜂𝐷−1

𝐷𝜒 requires O(V) operations
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Challenges of simulating fermions
Fermionic forces

Single pseudofermion HMC is not competitive

Consider

Fpf is a stochastic estimate of Feff at the start of the trajectory

Fpf has very large fluctuations

1. 

2. 

Reall the shadow Hamiltonian

large foces also trigger intabilities more easily -> limits the step size h

𝐹 𝑝𝑓 = (𝜙, ∂ 𝜙) 𝑣𝑠. = −2∂trln(𝑄)𝑄−2 𝐹 𝑒𝑓𝑓
𝐹

⟨𝐹 𝑝𝑓⟩ = 𝐹 𝑒𝑓𝑓
𝐹

||𝐹 𝑝𝑓|| ≫ || 𝐹||𝐹 𝑒𝑓𝑓

𝑣𝑎𝑟(||𝐹 𝑝𝑓||) ≫ 𝑣𝑎𝑟( 𝐹)𝐹 𝑒𝑓𝑓

Δ𝐻𝑂𝑀𝐹2 = ( ||𝐹 | + 𝑆) + 𝑂( )𝑐1 |2 𝑐2𝜋2∂2 ℎ2 ℎ4

large 𝑣𝑎𝑟(||𝐹 𝑝𝑓||) ⇒ large 𝑣𝑎𝑟(Δ𝐻) ⇒ low  ⇒ small ℎ𝑃𝐴
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Even-odd reduction/preconditioning
If D only connects nearest-neighboring sites the fermionic problem can be effectively reduced to half
the lattice

Checkerboard decomposition

Even or odd point

Schur decomposition

Even-odd action

Spfe involves pseudo-fermions residing only on the even sites of the lattice, helps in speed and
reducing fluctuations
Sdet and corresponding force can be evaluated exactly, i.e., without introducing pseudofermions

𝐷 = [ ] det𝐷 = det det𝐷𝑜𝑜 = 𝐷𝑒𝑒 − 𝐷𝑒𝑜 𝑜𝑜𝐷𝑜𝑒
𝐷𝑒𝑒

𝐷𝑜𝑒

𝐷𝑒𝑜

𝐷𝑜𝑜
𝐷 ̂ 𝐷 ̂ 𝐷−1

𝑆𝑝𝑓 → 𝑆𝑝𝑓𝑒 + 𝑆𝑑𝑒𝑡 = ( , ) − 2tr ln(𝑄𝑜𝑜)𝑄 ̂−1𝜙𝑒 𝑄 ̂−1𝜙𝑒
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Hasenbusch mass-preconditioning
Frequency splitting [Hasenbusch 01, Hasenbusch, Jansen 03]

Actions and forces

A proper tuning of mu can lead to a significant improvement

for QCD, at the physical point,

Typically

Multiple time-step integration can be useful

det( ) = det( + ) det( ) 0 = < … <𝑄2 𝑄2 𝜇2 ∏
𝑛−1

𝑘=0

+𝑄2 𝜇2𝑘
+ 𝑘 + 1𝑄2 𝜇2

𝜇0 𝜇𝑛

𝑆𝑝𝑓, 𝑛 = ( , ( + )𝜙𝑛 𝑄2 𝜇2𝑛)−1 𝜙𝑛

𝑆𝑝𝑓, 𝑘 = ( , ( + 𝑘 + 1)( + 𝑘 ) 𝑘 = 0, … , 𝑛 − 1𝜙𝑘 𝑄2 𝜇2 𝑄2 𝜇2 )−1 𝜙𝑘

(𝐹 𝑝𝑓, 𝑘 (𝑥, 𝜇) = −2( 𝑘 + 1 − )Re( , ( 𝑥, 𝜇𝑄) ))𝑎 𝜇2 𝜇2𝑘 𝜒𝑘 ∂𝑎 𝜓𝑘

smaller  𝑣𝑎𝑟(||𝐹 𝑝𝑓||) ⇒ smaller 𝑣𝑎𝑟(Δ𝐻) ⇒ larger  ⇒ larger ℎ𝑃𝐴

∼ ; 𝜇𝑘 + 1 ∼ 10𝜇1 𝑚𝑞 𝜇𝑘

||𝐹 𝑝𝑓, 𝑘 + 1|| ≫ ||𝐹 𝑝𝑓, 𝑘|| while opposite for their cost

42 / 47



Rational HMC
Single-quark determinante [Kennedy et al. 98, Clark, Kennedy 03]

where

Rational approximation

Zolotarev rational function of degree (n,n)

Guarantees smallest possible

Frequency splitting (e.g. n=10)

with

det(𝑄) → det( ) = det(𝑊 ) det 𝑊 = |𝑄|𝑅𝑄2‾ ‾‾√ 𝑅 −1

𝑅 = ( ) 𝜖 = ( / 𝜆(|𝑄|) ∈ [ , ]𝑟𝑏𝑅 𝑛,𝜖 𝑟−2𝑏 𝑄2 𝑟𝑎 𝑟𝑏)2 𝑟𝑎 𝑟𝑏

(𝑥) = 𝐴 ≈ > … > 𝑎2𝑛 > 0𝑅 𝑛,𝜖 (𝑥 + )⋯ (𝑥 + 𝑎2𝑛 − 1)𝑎1
(𝑥 + )⋯ (𝑥 + 𝑎2𝑛)𝑎2

1
𝑥‾‾√

𝑎1

𝛿 = max𝜖 ≤ 𝑥 ≤ 1|1 − (𝑥)|𝑥‾‾√ 𝑅 𝑛,𝜖

det( ) ∝ det( 1, 4)det( 5, 7)det( 8, 10)𝑅 −1 𝑃 −1 𝑃 −1 𝑃 −1

𝑃 𝑘, 𝑙 = = 1 + > … >∏
𝑙

𝑗=𝑘

+𝑄2 𝜈2𝑗
+𝑄2 𝜇2𝑗 ∑

𝑙

𝑗=𝑘

𝜌𝑗
+𝑄2 𝜇2𝑗

𝜇1 𝜇𝑛
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Rational HMC
Actions and forces

Remarks

If that fails, sign flip need to be included as reweighting factor (on some CLS ensembles thats the
case [Mohler, Schaefer 19])

Choose a large enough n to have a good approximation of R

For Wilson quarks the RHMC is typically used for heavy quarks, (charm and strange)

det(W) can be included in the accept-reject step or in the observable as a reweighting factor. It
can be estimated stochastically

𝑆𝑝𝑓, 𝑘, 𝑙 = (𝜙𝑘, 𝑙, 𝑃 𝑘, 𝑙 𝜙𝑘, 𝑙) (𝐹 𝑝𝑓, 𝑘, 𝑙 (𝑥, 𝜇) = 𝑥, 𝜇𝑆𝑝𝑓, 𝑘, 𝑙)𝑎 ∂𝑎

,We have to ensure \;det(𝑄) > 0,  this is ensured by measure the spectral range [ , ] of 𝑟𝑎 𝑟𝑏 𝑄2

⟨⟩|𝑄| = 𝑊 = ⟨ ⟩𝑃
⟨𝑊 ⟩𝑅−1

⟨𝑊 ⟩𝑅−1
𝑒− [(1+𝑍 −1]𝜂𝜂† )−1/2

44 / 47



Costs
Approaching the continuum limit at constant physics, the cost to obtain a set of statistical independent
configurations scales like

where the first term comes from the solver, the second from the integrator and the third from the
autocorrelation

OBC: z=2, PBC z=5

On a GPU machine with 4A100 this leads to

O(1000) trajectories
A physical volume of L=5.5 fm and a=0.05 fm
Nf=2+1+1 twisted mass fermions at physical masses

𝐶 ∝ 𝑉 ∝𝑎−4 𝑉 1/8𝑎−1/2 𝑎−𝑧 𝑉 9/8𝑎4.5+𝑧

𝐶 ≈ 0.5 Mi node hours 
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More techniques
Pure-gauge algorithms
Domain Decomposition
Force gradient integrators
Reweighting techniques
Simulating chiral fermions
Multi-level sampling
...

46 / 47



References
This talk is based on Mattia Della Brida's Lattice Practice Contribution of 2021

Other references:
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