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The purpose of this excercise it to familiarize you with some of the me-
thods discussed in the lecture, namely, Jacobi, Gauss-Seidel, CG, GMRES
and BiCGstab. There is an octave-demo (in the directories task0/ and
task1-2-3/; within task1-2-3/ there are the scripts taskX.m, X ∈ 1, 2, 3)
for each task, showing typical behaviour of these methods. To view the demo
fire up Octave, switch to the octave folder and type in:

octave:xx> taskX

for the task1-2-3/ directory. For task0/, run J GS for discrete Laplacian.m

or J GS for gauge Laplacian.m in there.

The questions given on this sheet are meant to be discussed with your fellow
lattice practicioners while inspecting the demo. For some tasks there is an
advanced question marked by a ⋆ which provides deeper understanding of
the methods1.

Task 0 Basic Iterative Schemes
We consider the linear system

Ax = b,

where A stems from the finite difference discretization of the Poisson equati-
on −∆u = f with Dirichlet boundary conditions on the unit-square [0, 1]×
[0, 1] (discrete Laplacian). Each equation couples a central grid point with
its 4 neighbors, as given by the “5-point stencil”

1It’s probably best to think about these tasks in-between sessions.
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1. Take a look at the convergence of the Jacobi method and the Gauss-
Seidel method for the discretization on an N ×N grid, N = 4, 8, 16,
32, 64, 128.

• How does the number of iterations required for a given accuracy
scale with N?

• Which method performs better? How much?

• Anything remarkable concerning the error?

We now consider the system of the gauge Laplacian, where on the links we
have complex numbers with a randomly chosen phase, depending on the grid
point.
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2. Take a look at the convergence of the Jacobi method and the Gauss-
Seidel method for the discretization on an N ×N grid, N = 4, 8, 16,
32, 64, 128.

• How does the number of iterations required for a given accuracy
scale with N?

• Which method performs better? How much?

• What differences do you observe compared to the discrete Lapla-
cian?
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Task 1 Conjugate Gradients
We now use the conjugate gradients method on the discrete Laplacian.

1. Take a look at the convergence of the method for the discretization on
a 64× 64 grid.

• Why is ∥r∥2 not monotone?

• How do you explain the difference between ∥r∥2 and ∥e∥2?

2. Recall that the conjugate gradients method with x(0) = 0 can be des-
cribed by

r(k) = pk(A)b

e(k) = pk(A)e
(0)

pk(t) = 1− tqk−1(t)

x(k) = qk−1(A)b ∈ Kk(A, b),

where the polynomial pk is the minimizer of

min
pk∈Π̄k

∥pk(λ)b∥A

The demo shows you both the roots and the corresponding polynomial.

• Can you interpret the action of pk(A) on eigenmodes?

• Why do small eigenvalues hamper the performance of Krylov sub-
space methods?

• Speculate&Try⋆: Does the polynomial change if you change the
right-hand side b?

3. In most applications based on partial differential equations the condi-
tion number grows when increasing the accuracy of the discretization,
i.e., mesh-size a → 0.

• What can you say about the solutions on different resolutions?
(this will be explored further in the session Solvers II)

4. The convergence of Krylov subspace methods may depend on the right-
hand side. Can you attach the correct right-hand side to the plot and
explain your choice? In here vi denotes an eigenmode of A, i.e., Avi =
λivi

• b = randomN(0,1), random normal distributed

• b = v1, the smallest eigenmode

• b = ei, a point source

• b = A1, right-hand side to the solution 1
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• b = v1 + v2, the sum of two eigenmodes

5. Bonus⋆: Consider the Arnoldi relation

AVm = Vm+1Hm+1,m.

• What can you say about the structure of Hm+1,m in the case that
A is hermitian positive definite?

• Write down the simplified Arnoldi algorithm for hermitian positi-
ve definite A based on the observations made about the structure
of Hm+1,m. (This algorithm is also known as Lanczos algorithm)

Task 2 GMRES
In order to show properties of the GMRES iteration we consider an example
from Lattice QCD. The system matrix A is given by the Wilson discretiza-
tion of the Dirac equation on a 44 lattice at β = 6 with an additive mass
shift. The system matrix is non-hermitian with its eigenvalues in the right
half-plane.

1. First consider the convergence of plain GMRES for this problem.

• Does the monotonicity of ∥r∥2 surprise you?

2. Similarly to the observations made for CG, we can take a look at the
polynomial associated with the GMRES iteration.

• Do you see similar behaviour as in Task 1.2?

3. Bonus⋆ It can be shown that inverses of the zeros Θ of the GMRES
polynomials all lie in the field of values of A−1, i.e.

Θ−1 ∈ F(A−1) := {x†A−1x : x†x = 1, x ∈ Cn}.

Argue why GMRES and restarted GMRES converge if F(A) is con-
tained in the right half plane.

4. Restarted GMRES has been introduced to deal with the potential-
ly large costs in storage and computational ressources due to large
iteration count.

• How can one explain why GMRES(m) converges much slower
than GMRES?
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Task 3 BiCGstab
To conclude we demonstrate the typical convergence behaviour of BiCGstab,
applied again to the 44 Lattice Dirac Wilson operator and compare it to the
GMRES and GMRES(m) method. Finally, we also consider CG applied to
the normal equations

A†Ax = A†b

to solve this problem.

• Why is it possible to apply CG to the normal equations?

• What is the severe drawback of doing so? (in terms of the condition
number κ)

• Which method would you recommend for the lattice Dirac-Wilson sys-
tem?
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